*g-CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

O. RAVI⁽¹⁾, S. THARMAR⁽²⁾, M. SANGEETHA⁽³⁾ AND J. ANTONY REX RODRIGO⁽⁴⁾

ABSTRACT. Characterizations and properties of \mathcal{I}_{*g} -closed sets and \mathcal{I}_{*g} -open sets are given. A characterization of normal spaces is given in terms of \mathcal{I}_{*g} -open sets. Also, it is established that an \mathcal{I}_{*g} -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

1. Introduction and preliminaries

An ideal \mathcal{I} on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. Given a topological space (X,τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \rightarrow \wp(X)$, called a local function [8] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[7], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [16]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$.

If \mathcal{I} is an ideal on X, then (X,τ,\mathcal{I}) is called an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X,τ) . A subset A of an ideal space (X,τ,\mathcal{I}) is \star -closed [7]

²⁰⁰⁰ Mathematics Subject Classification. 54A05, Secondary 54D15, 54D30.

Key words and phrases. *g-closed set, \mathcal{I}_{*q} -closed set and \mathcal{I} -compact space.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Nov 15, 2011 Accepted: Oct. 10, 2012.

(resp. \star -dense in itself [5]) if $A^*\subseteq A$ (resp. $A\subseteq A^*$). A subset A of an ideal space (X,τ,\mathcal{I}) is \mathcal{I}_q -closed [2] if $A^*\subseteq U$ whenever $A\subseteq U$ and U is open.

By a space, we always mean a topological space (X,τ) with no separation properties assumed. If $A\subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X,τ) and $int^*(A)$ will denote the interior of A in (X,τ^*) .

A subset A of a space (X,τ) is an α -open [14] (resp. semi-open [9], preopen [11]) set if $A\subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $A\subseteq \operatorname{cl}(\operatorname{int}(A))$, $A\subseteq \operatorname{int}(\operatorname{cl}(A))$).

The family of all α -open sets in (X,τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X,τ^{α}) is denoted by $cl_{\alpha}(A)$.

Definition 1.1. A subset A of a space (X,τ) is said to be

- (1) g-closed [10] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open,
- (2) \hat{g} -closed [17] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open,
- (3) \hat{g} -open [17] if its complement is \hat{g} -closed,
- (4) *g-closed [6] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open.

The family of all \hat{g} -open sets in (X,τ) is a topology on X. The \hat{g} -closure [17] of a subset A of X, denoted by \hat{g} cl(A), is defined to be the intersection of all \hat{g} -closed sets containing A.

Definition 1.2. An ideal \mathcal{I} is said to be

- (1) codense [3] or τ -boundary [13] if $\tau \cap \mathcal{I} = \{\emptyset\}$,
- (2) completely codense [3] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X,τ) .

Lemma 1.1. Every completely codense ideal is codense but not the converse [3].

The following Lemmas will be useful in the sequel.

Lemma 1.2. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. If $A\subseteq A^*$, then $A^*=cl(A^*)=cl(A)$ = $cl^*(A)$ [15], Theorem 5].

Lemma 1.3. Let (X,τ,\mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G\subseteq G^*$ for every semi-open set G in X [15], Theorem 3].

Lemma 1.4. Let (X,τ,\mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [15], Theorem 6].

Remark 1. If (X,τ) is a topological space, then every closed set is \hat{g} -closed but not conversely [[1], Theorem 2.3].

Lemma 1.5. If (X,τ,\mathcal{I}) is a T_1 ideal space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [12], Corollary 2.2.

Lemma 1.6. Every g-closed set is \mathcal{I}_q -closed but not conversely [[2], Theorem 2.1].

2. \mathcal{I}_{*q} -closed sets

Definition 2.1. A subset A of an ideal space (X,τ,\mathcal{I}) is said to be

- (1) \mathcal{I}_{*g} -closed if $A^*\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open,
- (2) \mathcal{I}_{*g} -open if its complement is \mathcal{I}_{*g} -closed.

Theorem 2.1. If (X,τ,\mathcal{I}) is any ideal space, then every \mathcal{I}_{*g} -closed set is \mathcal{I}_g -closed but not conversely.

Example 2.1. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{c\},\{a,b\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}\}$. Then \mathcal{I}_{*g} -closed sets are $\emptyset,X,\{a\},\{c\},\{a,b\},\{a,c\}$ and \mathcal{I}_{g} -closed sets are power set of X. It is clear that $\{b\}$ is \mathcal{I}_{g} -closed but it is not \mathcal{I}_{*g} -closed.

The following theorem gives characterizations of \mathcal{I}_{*g} -closed sets.

Theorem 2.2. If (X,τ,\mathcal{I}) is any ideal space and $A\subseteq X$, then the following are equivalent.

- 4
- (1) A is \mathcal{I}_{*g} -closed,
- (2) $cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open in X,
- (3) For all $x \in cl^*(A)$, $\hat{g}cl(\{x\}) \cap A \neq \emptyset$.
- (4) $cl^*(A)-A$ contains no nonempty \hat{g} -closed set,
- (5) A^*-A contains no nonempty \hat{g} -closed set.
- *Proof.* (1) \Rightarrow (2) If A is \mathcal{I}_{*g} -closed, then $A^*\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open in X and so $cl^*(A)=A\cup A^*\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open in X. This proves (2).
- $(2)\Rightarrow(3)$ Suppose $x\in cl^*(A)$. If $\hat{g}cl(\{x\})\cap A=\emptyset$, then $A\subseteq X-\hat{g}cl(\{x\})$. By (2), $cl^*(A)\subseteq X-\hat{g}cl(\{x\})$, a contradiction, since $x\in cl^*(A)$.
- (3)⇒(4) Suppose F⊆cl*(A)−A, F is \hat{g} -closed and x∈F. Since F⊆X−A and F is \hat{g} -closed, then A⊆X−F and F is \hat{g} -closed, \hat{g} cl({x})∩A= \emptyset . Since x∈cl*(A) by (3), \hat{g} cl({x})∩A≠ \emptyset . Therefore cl*(A)−A contains no nonempty \hat{g} -closed set.
- (4)⇒(5) Since $cl^*(A)-A=(A\cup A^*)-A=(A\cup A^*)\cap A^c=(A\cap A^c)\cup (A^*\cap A^c)=A^*\cap A^c=A^*-A$. Therefore A^*-A contains no nonempty \hat{g} -closed set.
- (5)⇒(1) Let A⊆U where U is \hat{g} -open set. Therefore X-U⊆X-A and so A*∩(X-U) ⊆A*∩(X-A)=A*-A. Therefore A*∩(X-U)⊆A*-A. Since A* is always closed set, so A* is \hat{g} -closed set and so A*∩(X-U) is a \hat{g} -closed set contained in A*-A. Therefore A*∩(X-U)= \emptyset and hence A*⊆U. Therefore A is \mathcal{I}_{*g} -closed.

Theorem 2.3. Every \star -closed set is \mathcal{I}_{*q} -closed but not conversely.

Proof. Let A be a \star -closed, then $A^*\subseteq A$. Let $A\subset U$ where U is \hat{g} -open. Hence $A^*\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open. Therefore A is \mathcal{I}_{*g} -closed.

Example 2.2. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a,b\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{*g} -closed sets are $\emptyset,X,\{c\},\{a,c\},\{b,c\}$ and \star -closed sets are $\emptyset,X,\{c\}$. It is clear that $\{a,c\}$ is \mathcal{I}_{*g} -closed set but it is not \star -closed.

Theorem 2.4. Let (X,τ,\mathcal{I}) be an ideal space. For every $A \in \mathcal{I}$, A is \mathcal{I}_{*q} -closed.

Proof. Let $A \subseteq U$ where U is \hat{g} -open set. Since $A^* = \emptyset$ for every $A \in \mathcal{I}$, then $cl^*(A) = A \cup A^* = A \subseteq U$. Therefore, by Theorem 2.2, A is \mathcal{I}_{*q} -closed.

Theorem 2.5. If (X,τ,\mathcal{I}) is an ideal space, then A^* is always \mathcal{I}_{*g} -closed for every subset A of X.

Proof. Let $A^*\subseteq U$ where U is \hat{g} -open. Since $(A^*)^*\subseteq A^*$ [7], we have $(A^*)^*\subseteq U$ whenever $A^*\subseteq U$ and U is \hat{g} -open. Hence A^* is \mathcal{I}_{*g} -closed.

Theorem 2.6. Let (X,τ,\mathcal{I}) be an ideal space. Then every \mathcal{I}_{*g} -closed, \hat{g} -open set is \star -closed set.

Proof. Since A is \mathcal{I}_{*g} -closed and \hat{g} -open. Then $A^*\subseteq A$ whenever $A\subseteq A$ and A is \hat{g} -open. Hence A is \star -closed.

Corollary 2.1. If (X,τ,\mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and A is an \mathcal{I}_{*g} -closed set, then A is \star -closed set.

Corollary 2.2. Let (X,τ,\mathcal{I}) be an ideal space and A be an \mathcal{I}_{*g} -closed set. Then the following are equivalent.

- (1) A is a \star -closed set,
- (2) $cl^*(A) A$ is a \hat{g} -closed set,
- (3) A^*-A is a \hat{g} -closed set.

Proof. (1) \Rightarrow (2) If A is \star -closed, then A* \subseteq A and so cl*(A)-A= $(A\cup A^*)-$ A= \emptyset . Hence cl*(A)-A is \hat{g} -closed set.

- (2) \Rightarrow (3) Since cl*(A) $-A=A^*-A$ and so A^*-A is \hat{g} -closed set.
- (3)⇒(1) If A*-A is a \hat{g} -closed set, since A is \mathcal{I}_{*g} -closed set, by Theorem 2.2, A*-A= \emptyset and so A is \star -closed.

Theorem 2.7. Let (X,τ,\mathcal{I}) be an ideal space. Then every *g-closed set is an \mathcal{I}_{*g} -closed set but not conversely.

Proof. Let A be a *g-closed set. Then $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open. We have $cl^*(A)\subseteq cl(A)\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open. Hence A is \mathcal{I}_{*g} -closed.

Example 2.3. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{c\},\{a,b\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}\}$. Then \mathcal{I}_{*g} -closed sets are $\emptyset,X,\{a\},\{c\},\{a,b\},\{a,c\}\}$ and *g-closed sets are $\emptyset,X,\{c\},\{a,b\}$. It is clear that $\{a\}$ is \mathcal{I}_{*g} -closed set but it is not *g-closed.

Theorem 2.8. If (X,τ,\mathcal{I}) is an ideal space and A is a \star -dense in itself, \mathcal{I}_{*g} -closed subset of X, then A is *g-closed.

Proof. Suppose A is a \star -dense in itself, \mathcal{I}_{*g} -closed subset of X. Let $A \subseteq U$ where U is \hat{g} -open. Then by Theorem 2.2 (2), $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open. Since A is \star -dense in itself, by Lemma 1.2, $cl(A) = cl^*(A)$. Therefore $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open. Hence A is *g-closed.

Corollary 2.3. If (X,τ,\mathcal{I}) is any ideal space where $\mathcal{I}=\{\emptyset\}$, then A is \mathcal{I}_{*g} -closed if and only if A is *g-closed.

Proof. From the fact that for $\mathcal{I}=\{\emptyset\}$, $A^*=\operatorname{cl}(A)\supseteq A$. Therefore A is \star -dense in itself. Since A is \mathcal{I}_{*g} -closed, by Theorem 2.8, A is *g-closed.

Conversely, by Theorem 2.7, every *g-closed set is \mathcal{I}_{*g} -closed set.

Corollary 2.4. If (X,τ,\mathcal{I}) is any ideal space where \mathcal{I} is codense and A is a semi-open, \mathcal{I}_{*g} -closed subset of X, then A is *g-closed.

Proof. By Lemma 1.3, A is ★-dense in itself. By Theorem 2.8, A is *g-closed.

Example 2.4. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{c\},\{a,b\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}\}$. Then g-closed sets are power set of X and \mathcal{I}_{*g} -closed sets are $\emptyset,X,\{a\},\{c\},\{a,b\},\{a,c\}$. It is clear that $\{b\}$ is g-closed set but it is not \mathcal{I}_{*g} -closed.

Example 2.5. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a,b\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}\}$. Then g-closed sets are $\emptyset,X,\{c\},\{a,c\},\{b,c\}$ and \mathcal{I}_{*g} -closed sets are $\emptyset,X,\{a\},\{c\},\{a,c\},\{b,c\}$. It is clear that $\{a\}$ is \mathcal{I}_{*g} -closed set but it is not g-closed.

Remark 2. By Example 2.4 and Example 2.5, g-closed sets and \mathcal{I}_{*g} -closed sets are independent.

Remark 3. We have the following implications for the subsets stated above.

Theorem 2.9. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. Then A is \mathcal{I}_{*g} -closed if and only if A=F-N where F is \star -closed and N contains no nonempty \hat{g} -closed set.

Proof. If A is \mathcal{I}_{*g} -closed, then by Theorem 2.2 (5), N=A*-A contains no nonempty \hat{g} -closed set. If F=cl*(A), then F is \star -closed such that F-N=(A \cup A*)-(A*-A)=(A \cup A*) \cap (A* \cap A^c)^c=(A \cup A*) \cap ((A*)^c \cup A)=(A \cup A*) \cap (A \cup (A*)^c)=A \cup (A* \cap (A*)^c)=A.

Conversely, suppose A=F-N where F is \star -closed and N contains no nonempty \hat{g} -closed set. Let U be an \hat{g} -open set such that $A\subseteq U$. Then $F-N\subseteq U$ which implies that $F\cap (X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap (X-U)\subseteq F^*\cap (X-U)\subseteq F\cap (X-U)\subseteq N$. By hypothesis, since $A^*\cap (X-U)$ is \hat{g} -closed, $A^*\cap (X-U)=\emptyset$ and so $A^*\subseteq U$. Hence A is \mathcal{I}_{*g} -closed.

Theorem 2.10. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. If $A\subseteq B\subseteq A^*$, then $A^*=B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.11. Let (X,τ,\mathcal{I}) be an ideal space. If A and B are subsets of X such that $A\subseteq B\subseteq cl^*(A)$ and A is \mathcal{I}_{*g} -closed, then B is \mathcal{I}_{*g} -closed.

Proof. Since A is \mathcal{I}_{*g} -closed, then by Theorem 2.2 (5), $cl^*(A)$ -A contains no nonempty \hat{g} -closed set. Since $cl^*(B)$ -B \subseteq $cl^*(A)$ -A and so $cl^*(B)$ -B contains no nonempty \hat{g} -closed set. Hence B is \mathcal{I}_{*g} -closed.

Corollary 2.5. Let (X,τ,\mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is \mathcal{I}_{*g} -closed, then A and B are *g-closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$ which implies that $A \subseteq B$ $\subseteq A^* \subseteq cl^*(A)$ and A is \mathcal{I}_{*g} -closed. By Theorem 2.11, B is \mathcal{I}_{*g} -closed. Since $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and so A and B are \star -dense in itself. By Theorem 2.8, A and B are \star -g-closed.

The following theorem gives a characterization of \mathcal{I}_{*q} -open sets.

Theorem 2.12. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. Then A is \mathcal{I}_{*g} -open if and only if $F\subseteq int^*(A)$ whenever F is \hat{g} -closed and $F\subseteq A$.

Proof. Suppose A is \mathcal{I}_{*g} -open. If F is \hat{g} -closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $cl^*(X-A) \subseteq X - F$ by Theorem 2.2 (2). Therefore $F \subseteq X - cl^*(X-A) = int^*(A)$. Hence $F \subseteq int^*(A)$.

Conversely, suppose the condition holds. Let U be a \hat{g} -open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq int^*(A)$. Therefore $cl^*(X-A)\subseteq U$. By Theorem 2.2 (2), X-A is \mathcal{I}_{*g} -closed. Hence A is \mathcal{I}_{*g} -open.

Corollary 2.6. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. If A is \mathcal{I}_{*g} -open, then $F\subseteq int^*(A)$ whenever F is closed and $F\subseteq A$.

The following theorem gives a property of \mathcal{I}_{*q} -closed.

Theorem 2.13. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. If A is \mathcal{I}_{*g} -open and $int^*(A)\subseteq B\subseteq A$, then B is \mathcal{I}_{*g} -open.

Proof. Since A is \mathcal{I}_{*g} -open, then X-A is \mathcal{I}_{*g} -closed. By Theorem 2.2 (4), $\operatorname{cl}^*(X-A)$ -(X-A) contains no nonempty \hat{g} -closed set. Since $\operatorname{int}^*(A)\subseteq\operatorname{int}^*(B)$ which implies that $\operatorname{cl}^*(X-B)\subseteq\operatorname{cl}^*(X-A)$ and so $\operatorname{cl}^*(X-B)-(X-B)\subseteq\operatorname{cl}^*(X-A)-(X-A)$. Hence B is \mathcal{I}_{*g} -open.

The following theorem gives a characterization of \mathcal{I}_{*g} -closed sets in terms of \mathcal{I}_{*g} -open sets.

Theorem 2.14. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. Then the following are equivalent.

- (1) A is \mathcal{I}_{*q} -closed,
- (2) $A \cup (X-A^*)$ is \mathcal{I}_{*g} -closed,
- (3) A^*-A is \mathcal{I}_{*q} -open.

Proof. (1) \Rightarrow (2) Suppose A is \mathcal{I}_{*g} -closed. If U is any \hat{g} -open set such that $A \cup (X - A^*) \subseteq U$, then $X - U \subseteq X - (A \cup (X - A^*)) = X \cap (A \cup (A^*)^c)^c = A^* \cap A^c = A^* - A$. Since A is \mathcal{I}_{*g} -closed, by Theorem 2.2 (5), it follows that $X - U = \emptyset$ and so X = U. Therefore $A \cup (X - A^*) \subseteq U$ which implies that $A \cup (X - A^*) \subseteq X$ and so $(A \cup (X - A^*))^* \subseteq X^* \subseteq X = U$. Hence $A \cup (X - A^*)$ is \mathcal{I}_{*g} -closed.

 $(2)\Rightarrow(1)$ Suppose $A\cup(X-A^*)$ is \mathcal{I}_{*g} -closed. If F is any \hat{g} -closed set such that $F\subseteq A^*-A$, then $F\subseteq A^*$ and $F\subseteq X\setminus A$ which implies that $X-A^*\subseteq X-F$ and $A\subseteq X-F$. Therefore $A\cup(X-A^*)\subseteq A\cup(X-F)=X-F$ and X-F is \hat{g} -open. Since $(A\cup(X-A^*))^*\subseteq X-F$ which implies that $A^*\cup(X-A^*)^*\subseteq X-F$ and so $A^*\subseteq X-F$ which implies that $F\subseteq X-A^*$. Since $F\subseteq A^*$, it follows that $F=\emptyset$. Hence A is \mathcal{I}_{*g} -closed.

(2) \Leftrightarrow (3) Since $X-(A^*-A)=X\cap (A^*\cap A^c)^c=X\cap ((A^*)^c\cup A)=(X\cap (A^*)^c)\cup (X\cap A)=A\cup (X-A^*)$, the equivalence is clear.

Theorem 2.15. Let (X,τ,\mathcal{I}) be an ideal space. Then every subset of X is \mathcal{I}_{*g} -closed if and only if every \hat{g} -open set is \star -closed.

Proof. Suppose every subset of X is \mathcal{I}_{*g} -closed. If $U \subseteq X$ is \hat{g} -open, then U is \mathcal{I}_{*g} -closed and so $U^* \subseteq U$. Hence U is \star -closed.

Conversely, suppose that every \hat{g} -open set is \star -closed. If U is \hat{g} -open set such that $A\subseteq U\subseteq X$, then $A^*\subseteq U^*\subseteq U$ and so A is \mathcal{I}_{*g} -closed.

The following theorem gives a characterization of normal spaces in terms of \mathcal{I}_{*g} open sets.

Theorem 2.16. Let (X,τ,\mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1) X is normal,
- (2) For any disjoint closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3) For any closed set A and open set V containing A, there exists an \mathcal{I}_{*g} -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof. (1) \Rightarrow (2) The proof follows from the fact that every open set is \mathcal{I}_{*g} -open.

 $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint \mathcal{I}_{*g} -open sets U and W such that $A\subseteq U$ and $X-V\subseteq W$. Since X-V is \hat{g} -closed and W is \mathcal{I}_{*g} -open, $X-V\subseteq \operatorname{int}^*(W)$ and so $X-\operatorname{int}^*(W)\subseteq V$. Again $U\cap W=\emptyset$ which implies that $U\cap \operatorname{int}^*(W)=\emptyset$ and so $U\subseteq X-\operatorname{int}^*(W)$ which implies that $\operatorname{cl}^*(U)\subseteq X-\operatorname{int}^*(W)\subseteq V$. U is the required \mathcal{I}_{*g} -open sets with $A\subseteq U\subseteq \operatorname{cl}^*(U)\subseteq V$.

 $(3)\Rightarrow(1)$ Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an \mathcal{I}_{*g} -open set U such that $A\subseteq U\subseteq cl^*(U)\subseteq X-B$. Since U is \mathcal{I}_{*g} -open, $A\subseteq int^*(U)$. Since \mathcal{I} is completely codense, by Lemma 1.4, $\tau^*\subseteq \tau^\alpha$ and so $int^*(U)$ and $X-cl^*(U)\in \tau^\alpha$. Hence $A\subseteq int^*(U)\subseteq int(cl(int(int^*(U))))=G$ and $B\subseteq X-cl^*(U)\subseteq int(cl(int(X-cl^*(U))))$ =H. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.2. A subset A of an ideal space (X,τ,\mathcal{I}) is said to be an $\alpha \hat{g}$ -closed set [1] if $\operatorname{cl}_{\alpha}(A)\subseteq U$ whenever $A\subseteq U$ and U is \hat{g} -open. The complement of $\alpha \hat{g}$ -closed is said to be an $\alpha \hat{g}$ -open set.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that \mathcal{I}_{*g} -closed sets coincide with $\alpha \hat{g}$ -closed sets and so we have the following Corollary.

Corollary 2.7. Let (X,τ,\mathcal{I}) be an ideal space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

- (1) X is normal,
- (2) For any disjoint closed sets A and B, there exist disjoint $\alpha \hat{g}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3) For any closed set A and open set V containing A, there exists an $\alpha \hat{g}$ -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

Definition 2.3. A subset A of an ideal space is said to be \mathcal{I} -compact [4] or compact modulo \mathcal{I} [13] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of A, there exists a finite subset Δ_0 of Δ such that $A - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.17. Let (X,τ,\mathcal{I}) be an ideal space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [12], Theorem 2.17].

Corollary 2.8. Let (X,τ,\mathcal{I}) be an ideal space. If A is an \mathcal{I}_{*g} -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every \mathcal{I}_{*g} -closed is \mathcal{I}_{g} -closed.

Acknowledgement

We thank the referees for their suggestions for improvement of this paper.

References

- [1] M. E. Abd El-Monsef, S. Rose Mary and M. L. Thivagar, $\alpha \hat{G}$ -closed sets in topological spaces, Assiut Univ. J. of Mathematics and Computer Science, 36(1) (2007), 43-51.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [4] T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. U. M. I., (7) 4-B(1990), 849-861.
- [5] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205-215.
- [6] S. Jafari, T. Noiri, N. Rajesh and M. L. Thivagar, Another generalization of closed sets, Kochi J. Math., 3(2008), 25-38.
- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [8] K. Kuratowski, Topology, Vol. I, Academic Press (New york, 1966).
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta. math. Hungar. 119(4)(2008), 365-371.

- [13] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of cal. at Santa Barbara (1967).
- [14] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [15] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [16] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1946).
- [17] M. K. R. S. Veerakumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.
- (1) Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

E-mail address: siingam@yahoo.com

(2) Department of Mathematics, R. V. S College of Engineering and Technology, Dindigul, Tamil Nadu, India.

E-mail address: tharmar11@yahoo.co.in

- (3) DEPARTMENT OF MATHEMATICS, YADAVA COLLEGE, MADURAI, TAMIL NADU, INDIA.

 E-mail address: sangeethaabi10@gmail.com
- (4) Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India.

 $E ext{-}mail\ address: antonyrexrodrigo@yahoo.co.in}$