A DECOMPOSITION OF (μ, λ) -CONTINUITY IN GENERALIZED TOPOLOGICAL SPACES

M.RAJAMANI , V. INTHUMATHI AND R.RAMESH

ABSTRACT. : In this paper, we introduce and study the notions of $w_{(\mu,\lambda)}$ - \mathcal{H} -continuity and $w_{(\mu,\lambda)}^*$ - \mathcal{H} -continuity in generalized topological spaces. Also, we prove that $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is (μ,λ) -continuous if and only if it is $w_{(\mu,\lambda)}$ - \mathcal{H} -continuous and $w_{(\mu,\lambda)}^*$ - \mathcal{H} -continuous.

1. Introduction and Preliminaries

In 2002, Csaszar[2] introduced the notions of generalized topology and generalized continuity. Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a generalized topology (briefly GT) on X iff $\emptyset \in \mu$ and the union of an arbitrary class of elements of μ always belong to μ . We call the pair (X, μ) be a generalized topological space (briefly GTS) on X. Let μ be a GT in X. The elements of μ are said to be μ -open, their complements are μ -closed. We consider the largest μ -open subset of $A \subset X$ and denote it by $i_{\mu}(A)$ and the smallest μ -closed superset of A and denoted it by $c_{\mu}(A)$. A subset A of X is μ -pre-open [3] (resp. μ -semi-open [3]), if $A \subset i_{\mu}c_{\mu}(A)$ (resp. $A \subset c_{\mu}i_{\mu}(A)$). A

Received: Nov. 23, 2011 Accepted: Oct. 7, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. (μ, λ) -continuity, $w_{(\mu, \lambda)}$ - \mathcal{H} -continuity, $w_{(\mu, \lambda)}^*$ - \mathcal{H} -continuity. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

generalized topological space (X,μ) is said to be μ -regular [8] if for each μ -closed set F of X not containing x, there exist disjoint μ -open sets U and V such that $x \in U$ and $F \subseteq V$. A function $f:(X,\mu) \to (Y,\lambda)$ is said to be (μ,λ) -continuous [2] (resp. (π,λ) -continuous [7]), iff $U \in \lambda$ implies that $f^{-1}(U)$ is μ -open (resp. μ -pre-open) in (X,μ) . A function $f:(X,\mu) \to (Y,\lambda)$ is said to be weakly (μ,λ) -continuous [6], if for each $x \in X$ and each λ -open neighbourhood V of f(x), there exist a μ -open neighbourhood U of x such that $f(U) \subseteq c_{\lambda}(V)$. A nonempty family \mathcal{H} of subsets of X is said to be a hereditary class [4], if $A \in \mathcal{H}$ and $B \subset A$, then $B \in \mathcal{H}$. Given a generalized topological space (X,μ) with a hereditary class \mathcal{H} , for each $A \subseteq X$, $A^*(\mathcal{H},\mu) = \{x \in X : A \cap V \notin \mathcal{H}$ for every $V \in \mu$ such that $x \in V\}$ [4]. If $c_{\mu}^*(A) = A \cup A^*(\mathcal{H},\mu)$ for every subset A of X, then $\mu^* = \{A \subset X : X - A = c_{\mu}^*(X - A)\}$ is a GT, μ^* is finer than μ [[4], Theorem 3.6]. A subset A of (X,μ,\mathcal{H}) is said to be pre- \mathcal{H} -open [6], if $A \subset i_{\mu}c_{\mu}^*(A)$. A hereditary class \mathcal{H} is μ -codense [4], iff $\mu \cap \mathcal{H} = \{\emptyset\}$. A hereditary class \mathcal{H} is strongly μ -codense [4], iff $M, M' \in \mu$, $M \cap M' \in \mathcal{H}$ implies $M \cap M' = \emptyset$.

Definition 1.1. [2] A function $f:(X,\mu) \to (Y,\lambda)$ is said to be $\theta(\mu,\lambda)$ -continuous at x if for each λ -open neighbourhood V of f(x), there is a μ -open neighbourhood U of x such that $f(c_{\mu}(U)) \subseteq c_{\lambda}(V)$.

Lemma 1.2. [[4], Proposition 2.8] Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then $A \in \mu$ implies $A \subseteq A^*$ iff \mathcal{H} is strongly μ -codense.

Lemma 1.3. [4] Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, B be subsets of X. Then the following properties are hold:

- (1) If $A \subset B$, then $A^* \subset B^*$,
- (2) $A^* = c_{\mu}(A^*) \subseteq c_{\mu}(A),$
- (3) $(A^*)^* \subseteq A^*$.

Lemma 1.4. [[4], Proposition 3.7] Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then the following statements are equivalent.

- (1) $A \subset A^*$,
- (2) $A^* = c^*_{\mu}(A),$
- (3) $A^* = c_{\mu}(A)$.

Lemma 1.5. [[6], Theorem 3.2] Let (X, μ) and (Y, λ) be generalized topological spaces. Then $f: (X, \mu) \to (Y, \lambda)$ is (μ, λ) continuous iff for each $x \in X$ and each λ -open set V containing f(x), there exist a μ -open set U containing x such that $f(U) \subseteq V$.

Lemma 1.6. [[8], Theorem 4.3] Let (X, μ) be a generalized topological space. If X is μ -regular, then for each $x \in X$ and each $U \in \mu$ containing x, there exists $V \in \mu$ such that $x \in V \subseteq c_{\mu}(V) \subseteq U$.

2. Weakly (μ, λ) - \mathcal{H} -continuity and weak* (μ, λ) - \mathcal{H} -continuity

Definition 2.1. A function $f:(X,\mu) \to (Y,\lambda,\mathcal{H})$ is said to be weakly (μ,λ) - \mathcal{H} continuous (briefly $w_{(\mu,\lambda)}$ - \mathcal{H} -c), if for each $x \in X$ and each λ -open neighbourhood V of f(x), there exist a μ -open neighbourhood U of x such that $f(U) \subset c_{\lambda}^{*}(V)$.

Remark 2.2. Every weakly (μ, λ) - \mathcal{H} -continuous function is weakly (μ, λ) -continuous but the converse is need not be true.

Example 2.3. Let $X = Y = \{a, b, c, d\}, \ \mu = \{\emptyset, \{a, b\}, \{c, d\}, X\},$ $\lambda = \{\emptyset, \{a, c, d\}, \{b, c, d\}, Y\}, \ and \ \mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{c, d\}\}.$ The identity function $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is weakly (μ, λ) -continuous but not weakly (μ, λ) - \mathcal{H} -continuous.

- (i) Let $a \in X$. Then $V = \{a, c, d\}$ and Y are the λ -open sets containing f(a) in (Y, λ) . There exist a μ -open set $U = \{a, b\}$ containing a in (X, μ) such that $f(U) \subset c_{\lambda}(V) = Y$.
- (ii) Let $b \in X$. Then $V = \{b, c, d\}$ and Y are the λ -open sets containing f(b) in (Y, λ) . There exist a μ -open set $U = \{a, b\}$ containing b in (X, μ) such that $f(U) \subset c_{\lambda}(V) = Y$.
- (iii) Let $c \in X$. Then $V_1 = \{a, c, d\}$, $V_2 = \{b, c, d\}$ and Y are the λ -open sets containing f(c) in (Y, λ) . There exist a μ -open set $U = \{c, d\}$ containing c in (X, μ) such that $f(U) \subset c_{\lambda}(V) = Y$, where V be a λ -open set containing f(c).
- (iv) Let $d \in X$. Then $V_1 = \{a, c, d\}$, $V_2 = \{b, c, d\}$ and Y are the λ -open sets containing f(d) in (Y, λ) . There exist a μ -open set $U = \{c, d\}$ containing d in (X, μ) such that $f(U) \subset c_{\lambda}(V) = Y$, where V be a λ -open set containing f(d).
- By (i), (ii), (iii), and (iv), f is weakly (μ, λ) -continuous. On the other hand, consider the λ -open set $V = \{a, c, d\}$ in (Y, λ) . Now, $\{a, c, d\}^* = \{a\}$ and so $c_{\lambda}^*(\{a, c, d\}) = \{a, c, d\}$. Note that the μ -open subsets of (X, μ) containing a are $U = \{a, b\}$ and X. Further $f(U) = U \nsubseteq c_{\lambda}^*(V)$ and $f(X) = Y \nsubseteq c_{\lambda}^*(V)$. Therefore f is not $w_{(\mu, \lambda)} \mathcal{H}$ -c.
- **Theorem 2.4.** A function $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is weakly (μ,λ) - \mathcal{H} -continuous if and only if for each λ -open set $V\subset Y,\ f^{-1}(V)\subset i_{\mu}(f^{-1}(c_{\lambda}^{*}(V))).$

Proof. Let V be any λ -open set of Y and $x \in f^{-1}(V)$. Since f is $w_{(\mu,\lambda)}$ - \mathcal{H} -c, there exists a μ -open set U such that $x \in U$ and $f(U) \subset c_{\lambda}^{*}(V)$. Hence $x \in U \subset f^{-1}(c_{\lambda}^{*}(V))$ and $x \in i_{\mu}(f^{-1}(c_{\lambda}^{*}(V)))$. Therefore, we obtain $f^{-1}(V) \subset i_{\mu}(f^{-1}(c_{\lambda}^{*}(V)))$. Conversely, let $x \in X$ and V be a λ -open set of Y containing f(x). Then $x \in f^{-1}(V) \subset i_{\mu}(f^{-1}(c_{\lambda}^{*}(V)))$. Let $U = i_{\mu}(f^{-1}(c_{\lambda}^{*}(V)))$,

then $f(U) = f(i_{\mu}(f^{-1}(c_{\lambda}^{*}(V)))) \subset f(f^{-1}(c_{\lambda}^{*}(V))) \subset c_{\lambda}^{*}(V)$. This shows that f is $w_{(\mu,\lambda)}$ - \mathcal{H} -c.

Theorem 2.5. Let $(Y, \lambda, \mathcal{H})$ be a hereditary generalized topological space, where \mathcal{H} is strongly λ -codence. Then the following are equivalent:

- (a) $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is weakly (μ,λ) - \mathcal{H} -continuous,
- (b) For every λ -semi-open set V in Y, there exist a λ -open set W in Y such that $W \subset V$ and $f^{-1}(W) \subset i_{\mu}(f^{-1}(V^*))$,
- (c) $f^{-1}(W) \subset i_{\mu}(f^{-1}(W^*))$ for every λ -open set V in Y.

Proof. (a) \Rightarrow (b). Assume that f is weakly (μ, λ) - \mathcal{H} -continuous and V is λ -semi-open in (Y, λ) . Since V is λ -semi-open in (Y, λ) , there exist a λ -open set W in (Y, λ) such that $W \subset V \subset c_{\lambda}(W)$. Since \mathcal{H} is strongly μ -codense, $W^* = c_{\lambda}(W) = c_{\lambda}^*(W)$ by Lemmas 1.2 and 1.3. Therefore, $W \subset V \subset W^*$ so that $W^* = V^* = c_{\lambda}^*(W)$. By Theorem 2.4, $f^{-1}(W) \subset i_{\mu}(f^{-1}(c_{\lambda}^*(W))) = i_{\mu}(f^{-1}(V^*))$, which proves (b).

- $(b) \Rightarrow (c)$. Let V be λ -semi-open in (Y, λ) , there exist a λ -open set W in (Y, λ) such that $W \subset V$ and $f^{-1}(W) \subset i_{\mu}(f^{-1}(V^*))$. The set W be λ -open in (Y, λ) , then $f^{-1}(W) \subset i_{\mu}(f^{-1}(W^*))$.
- $(c) \Rightarrow (a)$. Let V be λ -open set in (Y, λ) . Then $f^{-1}(V) \subset i_{\mu}(f^{-1}(V^*))$. Since \mathcal{H} is strongly μ -codense, then $f^{-1}(V) \subset i_{\mu}(f^{-1}(c_{\lambda}^*(V)))$. By Theorem 2.4 $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is weakly $(\mu, \lambda) \mathcal{H}$ -continuous.

Theorem 2.6. If $(Y, \lambda, \mathcal{H})$ is a hereditary generalized topological space such that \mathcal{H} is strongly λ -codense and $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is $w_{(\mu, \lambda)} - \mathcal{H} - c$, then $c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V)) = f^{-1}(V^{*})$ for every λ -open set V in Y.

Proof. Let $x \in c_{\mu}(f^{-1}(V))$. Assume that $x \notin f^{-1}(c_{\lambda}^{*}(V))$. By Lemmas 1.2 and 1.3, we have $x \notin f^{-1}(V^{*})$ and $f(x) \notin V^{*} = c_{\lambda}(V)$. Therefore, there exist a λ -open set W containing f(x) such that $W \cap V = \emptyset$ which implies that $c_{\lambda}(W) \cap V = \emptyset$ and so $c_{\lambda}^{*}(W) \cap V = \emptyset$. Since f is weakly $(\mu, \lambda) - \mathcal{H}$ -c, there is a μ -open set U containing x in X such that $f(U) \subset c_{\lambda}^{*}(W)$ and so $f(U) \cap V = \emptyset$. Now $x \in c_{\mu}(f^{-1}(V))$ implies that $U \cap f^{-1}(V) \neq \emptyset$ and so $f(U) \cap V \neq \emptyset$, a contradiction, which completes the proof.

If $\mathcal{H} = \emptyset$, in the above Theorem 2.6, we have the following Corollary.

Corolary 2.7. [[6], Theorem 3.5]. If (X, μ) and (Y, λ) are generalized topological spaces and $f: (X, \mu) \to (Y, \lambda)$ is weakly (μ, λ) -continuous, then $c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}(V))$, for every λ -open set V in (Y, λ) .

Definition 2.8. A hereditary generalized topological space (X, μ, \mathcal{H}) is $R_{\mu}\mathcal{H}$ -space if, for each $x \in X$ and each μ -open neighbourhood U of x, there exist a μ -open neighbourhood V of x such that $x \in V \subset c_{\mu}^*(V) \subset U$.

Theorem 2.9. Let $(Y, \lambda, \mathcal{H})$ be a $R_{\mu}\mathcal{H}$ -space. Then $f:(X, \mu) \to (Y, \lambda, \mathcal{H})$ is $w_{(\mu,\lambda)} - \mathcal{H}$ -c if and only if f is (μ,λ) -continuous.

Proof. Let $x \in X$ and V be a λ -open set of Y containing f(x). Since Y is a $R_{\mu}\mathcal{H}$ space, there exist a λ -open set W of Y such that $f(x) \in W \subset c_{\lambda}^{*}(W) \subset V$. Let fbe $w_{(\mu,\lambda)} - \mathcal{H}$ -c, there exist a μ -open set U such that $x \in U$ and $f(U) \subset c_{\lambda}^{*}(W) \subset V$.

This implies f is (μ,λ) -continuous. Conversely, let $x \in X$ and V be any λ -open set of Y containing f(x). Since f is (μ,λ) -continuous, there exist a μ -open set Ucontaining x such that $f(U) \subset V \subset c_{\lambda}^{*}(V)$, hence f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c.

Theorem 2.10. If $(Y, \lambda, \mathcal{H})$ is a hereditary generalized topological space and $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is a (π, λ) -continuous mapping such that $c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V))$ for every λ -open set V in Y, then f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c.

Proof. Let $x \in X$ and V be a λ -open set in Y containing f(x). By hypothesis $c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V))$. Since f is (π, λ) -continuous, $f^{-1}(V)$ is μ -pre-open in X and so $x \in f^{-1}(V) \subset i_{\mu}(c_{\mu}(f^{-1}(V)))$. Which implies there exist a μ -open set such that $x \in U \subset c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V))$, that is $U \subset f^{-1}(c_{\lambda}^{*}(V))$, $f(U) \subset c_{\lambda}^{*}(V)$ which implies that f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c.

Theorem 2.11. If $(Y, \lambda, \mathcal{H})$ is a hereditary generalized topological space such that \mathcal{H} is strongly λ -codense and $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is μ -pre-continuous, then f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c if and only if $c_{\mu}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V)) = f^{-1}(V^{*})$ for every λ -open set V in Y.

Proof. Follows from Theorem 2.6 and 2.10.

If $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is any mapping. Then $f(\mathcal{H})=\{f(H):H\in\mathcal{H}\}$ is a hereditary class on (Y,λ) .

Theorem 2.12. If $f:(X,\mu,\mathcal{H}) \to (Y,\lambda,\mathcal{J})$ is a weakly (μ,λ) - \mathcal{J} -continuous where $\mathcal{J} = f(\mathcal{H})$ is strongly λ -codense, then $c^*_{\mu}(f^{-1}(V)) \subset f^{-1}(c^*_{\lambda}(V)) = f^{-1}(V^*)$ for every λ -open set V in Y.

Proof. Let $x \in c^*_{\mu}(f^{-1}(V))$. Assume that $x \notin f^{-1}(c^*_{\lambda}(V))$. That is $x \notin f^{-1}(V^*(\mathcal{J}))$ implies that $f(x) \notin V^*(\mathcal{J}) = c_{\lambda}(V)$, since \mathcal{J} is strongly λ -codense. Therefore, there exist a λ -open set W containing f(x) in Y such that $W \cap V = \emptyset$. Since V is λ -open, $c_{\lambda}(W) \cap V = \emptyset$ and so $c^*_{\lambda}(W) \cap V = \emptyset$. Since f is weakly $(\mu, \lambda) - \mathcal{J}$ -continuous, there exist a μ -open set U in X containing x such that $f(U) \subset c^*_{\lambda}(W)$

and so $f(U) \cap V = \emptyset$. Now, $x \in c_{\mu}^*(f^{-1}(V))$ implies that $x \in c_{\mu}(f^{-1}(V))$ which implies that $f^{-1}(V) \cap U \neq \emptyset$ and so $V \cap f(U) \neq \emptyset$, a contradiction. This completes the proof.

Definition 2.13. A function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is said to be pre- \mathcal{H} -continuous, if for each λ -open V in Y, $f^{-1}(V)$ is pre- \mathcal{H} -open in (X,μ,\mathcal{H}) .

Theorem 2.14. If $f:(X,\mu,\mathcal{H})\to (Y,\lambda,\mathcal{J})$ is a pre- \mathcal{H} -continuous mapping where $\mathcal{J}=f(\mathcal{H})$ and $c_{\mu}^*(f^{-1}(V))\subset f^{-1}(c_{\lambda}^*(V))$ for every λ -open set V in Y, then f is weakly (μ,λ) - \mathcal{J} -continuous.

Proof. Let $x \in X$ and V be a λ -open set in Y containing f(x). By hypothesis, $c_{\mu}^{*}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V))$. Since f is pre- \mathcal{H} -continuous, $f^{-1}(V)$ is pre- \mathcal{H} -open in X and so $f^{-1}(V) \subset i_{\mu}(c_{\mu}^{*}(f^{-1}(V)))$. Since $x \in f^{-1}(V) \subset i_{\mu}(c_{\mu}^{*}(f^{-1}(V)))$, there exist a μ -open set U containing x such that $x \in U \subset c_{\mu}^{*}(f^{-1}(V)) \subset f^{-1}(c_{\lambda}^{*}(V))$ and so $f(U) \subset c_{\lambda}^{*}(V)$ which is implies that f is weakly (μ, λ) - \mathcal{J} -continuous.

Definition 2.15. A function $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is said to be weak* (μ,λ) - \mathcal{H} -continuous (briefly $w^*_{(\mu,\lambda)}$ - \mathcal{H} -c), if for each λ -open set V in Y, $f^{-1}(f^*_r(V))$ is μ -closed in (X,μ) , where $f^*_r(V)=V^*-i_\lambda(V)$ is λ -closed in (Y,λ,\mathcal{H}) .

Theorem 2.16. A function $f:(X,\mu) \to (Y,\lambda,\mathcal{H})$ is (μ,λ) -continuous if and only if it is both $w_{(\mu,\lambda)}$ - \mathcal{H} -c and $w_{(\mu,\lambda)}^*$ - \mathcal{H} -c.

Proof. Let $x \in X$ and V be any λ -open set of Y containing f(x). Since f is (μ, λ) -continuous, there exist a μ -open set U containing x such that $f(U) \subset V \subset c_{\lambda}^*(V)$ and $f^{-1}(f_r^*(V))$ is μ -closed in (X, μ) . Hence f is $w_{(\mu, \lambda)}$ - \mathcal{H} -c and $w_{(\mu, \lambda)}^*$ - \mathcal{H} -c. Conversely, let $x \in X$ and V be any λ -open set of Y containing f(x), since f is $w_{(\mu, \lambda)}$ - \mathcal{H} -c, there exist a μ -open set U containing

x such that $f(U) \subset c_{\lambda}^*(V)$. Now $f_r^*(V) = V^* - i_{\lambda}(V)$ and thus $f(x) \notin f_r^*(V)$. Hence $x \notin f^{-1}(f_r^*(V))$ and $U - f^{-1}(f_r^*(V))$ is μ -open set containing x since f is $w_{(\mu,\lambda)}^* - \mathcal{H}$ -c. The proof will be complete when we show $f(U - f^{-1}(f_r^*(V))) \subset V$. Let $y \in U - f^{-1}(f_r^*(V))$. Then $y \in U$ and hence $f(y) \in f(U) \subset c_{\lambda}^*(V)$. But $y \notin f^{-1}(f_r^*(V))$ and thus $f(y) \notin f_r^*(V) = V^* - i_{\lambda}(V) = V^* - V$ which implies $f(y) \in V$. Therefore $f(U) \subset V$ hence f is (μ, λ) -continuity.

Remark 2.17. The notions of $w_{(\mu,\lambda)}$ - \mathcal{H} -c and $w_{(\mu,\lambda)}^*$ - \mathcal{H} -c are independent.

Example 2.18. Let $X = Y = \{a, b, c, d\}, \ \mu = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, \{b, c, d\}, X\}, \ \lambda = \{\emptyset, \{a, b\}, \{a, c, d\}, Y\}, \ and \ \mathcal{H} = \{\emptyset, \{d\}\}.$ The identity function $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is $w_{(\mu, \lambda)} - \mathcal{H} - c$ but not $w_{(\mu, \lambda)}^* - \mathcal{H} - c$.

- (i) Let $a \in X$. Then $V_1 = \{a, b\}$, $V_2 = \{a, c, d\}$ and Y are the λ -open sets containing f(a) in (Y, λ) . Now $V_1^* = V_2^* = Y$ and $c_{\lambda}^*(V_1) = c_{\lambda}^*(V_2) = Y$. There exist a μ -open set $U = \{a, b\}$ of (X, μ) containing a such that $f(U) \subset c_{\lambda}^*(V)$, where V is a λ -open set in (Y, λ) containing f(a).
- (ii) Let $b \in X$. Then $V = \{a, b\}$ and Y are the λ -open sets containing f(b) in (Y, λ) . Now $V^* = Y$ and $c_{\lambda}^*(V) = Y$. There exist a μ -open set $U = \{a, b\}$ of (X, μ) containing b such that $f(U) \subset c_{\lambda}^*(V)$.
- (iii) Let $c \in X$. Then $V = \{a, c, d\}$ and Y are the λ -open sets containing f(c) in (Y, λ) . Now $V^* = Y$ and $c^*_{\lambda}(V) = Y$. There exist a μ -open set $U = \{a, b, c\}$ of (X, μ) containing c such that $f(U) \subset c^*_{\lambda}(V)$.
- (iv) Let $d \in X$. Then $V = \{a, c, d\}$ and Y are the λ -open sets containing f(d) in (Y, λ) . Now $V^* = Y$ and $c^*_{\lambda}(V) = Y$. There exist a μ -open set $U = \{b, c, d\}$ of (X, μ) containing d such that $f(U) \subset c^*_{\lambda}(V)$.

By (i), (ii), (iii), and (iv), f is $w_{(\mu,\lambda)}$ - \mathcal{H} -c. On the other hand, consider the λ -open set $V = \{a, c, d\}$ in (Y, λ) . Now, $f_r^*(V) = V^* - i_{\lambda}(V) = \{b\}$. Since $f^{-1}(f_r^*(V)) = \{b\}$ and $\{b\}$ is not μ -closed in (X, μ) , f is not $w_{(\mu,\lambda)}^*$ - \mathcal{H} -c.

Example 2.19. Let $X = Y = \{a, b, c\}$, $\mu = \{\emptyset, \{a, b\}, \{c\}, X\}$, $\lambda = \{\emptyset, \{a\}, \{b, c\}, Y\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. The identity function $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is $w_{(\mu, \lambda)}^* - \mathcal{H} - c$ but not $w_{(\mu, \lambda)} - \mathcal{H} - c$.

- (i) Let $a \in X$. Then $V = \{a\}$ and Y are the λ -open sets containing f(a) in (Y, λ) . Now, $\{a\}^* = \{a\}$ and $f_r^*(V) = V^* - i_{\lambda}(V) = \emptyset$. Hence $f^{-1}(f_r^*(V)) = f^{-1}(\emptyset) = \emptyset$ and \emptyset is μ -closed in (X, μ) .
- (ii) Let $b \in X$. Then $V = \{b, c\}$ and Y are the λ -open sets containing f(b) in (Y, λ) . Now, $(\{b, c\})^* = \{b, c\}$ and $f_r^*(V) = V^* i_{\lambda}(V) = \emptyset$. Hence $f^{-1}(f_r^*(V)) = f^{-1}(\emptyset) = \emptyset$ and \emptyset is μ -closed in (X, μ) .
- (iii) Let $c \in X$. Then $V = \{b, c\}$ and Y are the λ -open sets containing f(c) in (Y, λ) . Now, $(\{b, c\})^* = \{b, c\}$ and $f_r^*(V) = V^* i_{\lambda}(V) = \emptyset$. Hence $f^{-1}(f_r^*(V)) = f^{-1}(\emptyset) = \emptyset$ and \emptyset is μ -closed in (X, μ) .
- By (i), (ii), and (iii), f is $w_{(\mu,\lambda)}^*$ - \mathcal{H} -c. On the other hand, consider the λ -open sets $V = \{a\}$ and (Y,λ) are containing f(a) in Y. Now, $\{a\}^* = \{a\}$ and so, $c_{\lambda}^*(V) = \{a\}$. Note that the μ -open sets of (X,μ) containing a are $U = \{a,b\}$ and X. Further $f(U) = U \not\subseteq c_{\lambda}^*(V)$ and $f(X) = Y \not\subseteq c_{\lambda}^*(V)$. Therefore f is not $w_{(\mu,\lambda)}$ - \mathcal{H} -c.

Definition 2.20. A hereditary generalized topological space (X, μ, \mathcal{H}) is said to be $F_{\mu}\mathcal{H}^*$ -space, if $c_{\mu}(U) \subseteq U^*$ for every μ -open set $U \subset X$.

Theorem 2.21. Let (X, μ, \mathcal{H}) be an $F_{\mu}\mathcal{H}^*$ -space and $A \in \mu$. Then the following properties are hold:

- (1) $A^* = c_{\mu}^*(A) = (c_{\mu}(A))^* = c_{\mu}(A^*) = c_{\mu}^*(A^*),$
- (2) $c_{\mu}^*(c_{\mu}(A)) = c_{\mu}(c_{\mu}^*(A)) = c_{\mu}^*(A^*).$

Proof. 1. Let (X, μ, \mathcal{H}) be an $F_{\mu}\mathcal{H}^*$ -space and $A \in \mu$. Then $c_{\mu}(A) \subseteq A^*$. Thus $(c_{\mu}(A))^* \subset (A^*)^* \subset A^*$ by Lemma 1.3. Also $A \subseteq c_{\mu}(A)$, $A^* \subseteq (c_{\mu}(A))^*$ by Lemma 1.3. Therefore $A^* = (c_{\mu}(A))^*$. By Lemma 1.3, $A^* = c_{\mu}(A^*)$. Since (X, μ, \mathcal{H}) is an $F_{\mu}\mathcal{H}^*$ -space, $A^* \subseteq c_{\mu}^*(A) \subseteq c_{\mu}(A) \subseteq A^*$. Thus, $A^* = c_{\mu}^*(A) = c_{\mu}(A)$. Now, $c_{\mu}^*(A^*) = c_{\mu}^*(c_{\mu}(A)) = c_{\mu}(A) \cup (c_{\mu}(A))^* = A^* \cup A^* = A^*$. Hence we obtain $A^* = c_{\mu}^*(A) = (c_{\mu}(A))^* = c_{\mu}(A^*) = c_{\mu}^*(A^*)$.

(2) Follows from (1).

Lemma 2.22. If a hereditary generalized topological space $(Y, \lambda, \mathcal{H})$ is $F_{\lambda}\mathcal{H}^*$ -space and a function $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is $w_{(\mu,\lambda)}-\mathcal{H}$ -c, then $c_{\mu}^*(f^{-1}(V))\subset f^{-1}(c_{\lambda}^*(V))$ for each λ -open set $V\subset Y$.

Proof. Let $x \in c^*_{\mu}(f^{-1}(V))$. Assume that $x \notin f^{-1}(c^*_{\lambda}(V))$. Then $f(x) \notin c^*_{\lambda}(V)$, we have $f(x) \notin V$ and $f(x) \notin V^*$. Since Y is $F_{\lambda}\mathcal{H}^*$ -space, $f(x) \notin c_{\lambda}(V)$. Hence there exist a λ -open set W containing f(x) such that $W \cap V = \emptyset$. Since V is λ -open, $V \cap c_{\lambda}(W) = \emptyset$ and hence we have $V \cap c^*_{\lambda}(W) = \emptyset$. Since f is $w_{(\mu,\lambda)}$ - \mathcal{H} -c, there exist a μ -open set $U \subset X$ containing x such that $f(U) \subset c^*_{\lambda}(W)$. Thus we obtain $f(U) \cap V = \emptyset$. On the other hand, $x \in c^*_{\mu}(f^{-1}(V))$ and we have $x \in c_{\mu}(f^{-1}(V))$ and hence $U \cap f^{-1}(V) \neq \emptyset$. Thus $f(W) \cap V \neq \emptyset$, a contradiction so, $c^*_{\mu}(f^{-1}(V)) \subset f^{-1}(c^*_{\lambda}(V))$.

Theorem 2.23. Let (X, μ) be a μ -regular space and $(Y, \lambda, \mathcal{H})$ be an $F_{\lambda}\mathcal{H}^*$ -space. A function $f: (X, \mu) \to (Y, \lambda, \mathcal{H})$ is $\theta(\mu, \lambda)$ -continuous if and only if it is $w_{(\mu, \lambda)} - \mathcal{H}$ -c. Proof. Let f be $\theta(\mu, \lambda)$ -continuous, $x \in X$ and V be any λ -open set of Y containing f(x). Since f is $\theta(\mu, \lambda)$ -continuous, there exists a μ -open neighbourhood U of x such that $f(c_{\mu}(U)) \subseteq c_{\lambda}(V)$. Since $(Y, \lambda, \mathcal{H})$ is an $F_{\lambda}\mathcal{H}^*$ -space, $f(U) \subseteq f(c_{\mu}(U)) \subseteq c_{\lambda}(V) \subseteq V^* \subseteq V^* \cup V \subseteq c_{\lambda}^*(V)$. Thus f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c. Conversely, let f be $w_{(\mu,\lambda)} - \mathcal{H}$ -c, $x \in X$ and V be any λ -open set of Y containing f(x). Since f is $w_{(\mu,\lambda)} - \mathcal{H}$ -c, there exists a μ -open neighbourhood U of x such that $f(U) \subseteq c_{\lambda}^*(V)$. Since $\lambda \subseteq \lambda^*$, $f(U) \subseteq c_{\lambda}^*(V) \subseteq c_{\lambda}(V)$. Since (X,μ) is a μ -regular space, there exists a μ -open neighbourhood W of x such that $x \in W \subseteq c_{\mu}(W) \subseteq U$ by Lemma 1.6. Then $f(c_{\mu}(W)) \subseteq f(U) \subseteq c_{\lambda}(V)$. Thus f is $\theta(\mu, \lambda)$ -continuous.

Acknowledgement

The authors wish to thank the referee for his valuable suggestions towards the improvement of the paper.

References

- A. Ackgoz, T. Noiri and S. Ykesl, A Decomposition of Continuity in ideal Topological Spaces, Acta Math. Hungar., 105(4)(2004), 285-289.
- [2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [3] A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005),
 53-66.
- [4] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [5] F. Kuyucu, T. Noiri and A. Ackgoz, A note on W-I-continuous functions, Acta Math. Hungar., 119(4)(2008), 393-400.
- [6] W. K. Min, Weak continuity on generalized topological spaces, Acta Math. Hungar., 124 (1-2)(2009), 73-81.

- [7] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128(4)(2010), 299-306.
- [8] B. Roy, On a type of generalized open sets, Applied General topology., 12(2)(2011), 163-173.

Department of Mathematics, N G M College, Pollachi - 642 001, Tamil Nadu, India.

 $E ext{-}mail\ address, (R.Ramesh): rameshwaran141@gmail.com$