ON ALMOST WN-INJECTIVE RINGS

RAIDA D.M.⁽¹⁾ AND AKRAM S.M.⁽²⁾

ABSTRACT: Let R be a ring. Let M_R be a module with $S = End(M_R)$. The module M is called almost Wnil-injective (briefly right AWN-injective) if, for any $0 \neq a \in N(R)$, there exists $n \geq 1$ and an S-submodule X_a of M such that $a^n \neq 0$ and $l_M(r_R(a^n)) = Ma^n \oplus X_{a^n}$ as left S-modules. If R_R is almost Wnil-injective, then we call R is right almost Wnil-injective ring. In this paper, we give some characterization and properties of almost Wnil-injective rings. In particular, Conditions under which right almost Wnil-injective rings are n-regular rings and n-weakly regular rings are given. Also we study rings whose simple singular right R-module are almost Wnil-injective, It is proved that if R is a NCI ring, MC2, whose every simple singular R-module is almost Wnil-injective, Then R is reduced.

1. INTRODUCTION

Throughout the paper R is an associative ring with identity, and is a right R-module with $S = End(M_R)$. For $a \in R$, r(a), l(a) denote the right annihilator and left annihilator of a, respectively. We write J(R), Z(R)(Y(R)), for the Jacobson radical and the left (right) singular ideal of R, respectively. $X \leq M$ denote that X is a submodule of M.

Following [9] a ring R is called a right (left) NPP if for aR is projective for all $a \in N(R)$ (the set of nilpotent elements). Clearly, right (left) PP ring (that is if every principal right ideal of R is projective as right R-module) is right (left)NPP, but the converse is not true by [9]. The ring R is said to be reduced if R has no non zero nilpotent

Keywords: Nil-Injective, Reduced Ring, MC2 Ring, N-Regular Ring

 $\textbf{Copyright} \\ \textcircled{0} \\ \textbf{Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.} \\$

Received: Dec. 21, 2011 Accepted: Oct. 7, 2012

element. The ring R is called right (left) SXM [10], if for each $0 \neq a \in R$, $r(a) = r(a^n)$ [$l(a) = l(a^n)$] for all positive integer n satisfying $a^n \neq 0$. For example, reduced rings are right (left)SXM ring. R is said to be Von Neumann regular (or just regular), $a \in aRa$ for every $a \in R$ [15], a ring R is called n-regular [9] if $a \in aRa$ for all $a \in N(R)$. Clearly, Von Neumann regular ring are n-regular, but the converse is not true. A ring R is called right (left) n-weakly regular if $a \in aRaR$ ($a \in RaRa$), for all $a \in N(R)$ [4]. Call a ring R right MC2 if for right minimal element $k \in R$, kR is a summand in R_R , whenever kR is projective as right R-module[8]. A ring R is called weakly reversible if ab = 0 implies that Rbra is a nil left ideal of R for all $a,b,r \in R$ [14]. Generalizations of injectivity have been discussed in many papers see [5], [6]. A right R-module R is called principal injective (or P-injective), if every R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism from R to R.

Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$ [2] .In [5] ,Nicholson and Yousif studied the structure of principally injective rings and give some applications . They also continued to study rings with some other kind of injectivity , namely , GP-injective rings [6] and [10] . A ring R is called GP-injective if for any $a \in R$ there exists a positive integer n with $a^n \neq 0$ and $lr(a^n) = Ra^n$, Right GP-injective rings are called right YJ-injective rings by several authors. In [18] , Zhao introduced an almost P-injective module . Let M_R be a right R-module with $S = End(M_R)$. The module M is called AP-injective, if for any $a \in R$, there exists a left S-submodule X_a of M_R such that $l_M r_R(a) = Ma \oplus X_a$.

AP-injectivity has been generally studied (see [6]). In [9], Wei and Jianhua first introduced and characterized a right nil-injective ring, and give many properties .A ring R is said to be reversible if ab = 0 implies that ba = 0 for all $a,b \in R$. A ring R is called right nil-injective, if $a \in N(R)$, lr(a) = Ra. In [19], Zhao and Du introduced an almost nil-injective module. Let M_R be a module with $S = End(M_R)$. The module M is called right

almost nil-injective if for any $k \in N(R)$, there exists an S-submodule X_k of M such that $l_M r_R(k) = Mk \oplus X_k$ as left S-module. If R_k is almost nil-injective then we call R a right almost nil-injective ring.

2. Characterizations of Almost Wn-Injective

In this section we introduced the notion of a right GNNP and almost WN-injective with some of their basic properties; we also give necessary and sufficient conditions for almost WN-injective to be n-regular.

Following [9] a right R-module M is called Wnil-injective, if for any $0 \neq a \in N(R)$, there exists a positive integer n such that $a^n \neq 0$ and any right R-homomorphism $f: a^n R \to M$ can be extends to $R \to M$. Equivalently, if for any $0 \neq a \in N(R)$ there exists a positive integer n such that $a^n \neq 0$ and $Ra^n = lr(a^n)$.

Clearly right nil-injective module are all Wnil-injective module . Remark [6]:

We fix the following notation .If N is a submodule of M, we write N/M to indicate that N is a direct summand of M .For an (R,R)-bimodule M, we let $R\alpha M$ be the trivial extension of R and M, i.e., $R\alpha M = R \oplus M$ as an abelian group, with the following multiplication: (r,x)(s,y) = (rs,ry+xs)

Example 6:

A non commutative right almost nil-injective ring which is not a right Wnil-injective.

Let C be a noncommutative division subring of a division ring D such that the C-vector space $_CD$ has dimension >1 .Let $R=C\alpha D$ be the trivial extension of C and the C-module D. Then R is not commutative. Let $0 \neq a = (c,d) \in N(R)$.If $c \neq 0$.then a is invertible in R and so we can let $X_a = (0)$, If c = 0, then $lr(a) = (0)\alpha D$ and $Ra = (0)\alpha Cd$. Write $D = Cd \oplus D_1$ as a left C-vector space and let $X_a = (0)\alpha D_1$. Then

 $lr(a) = Ra \oplus X_a$. Therefore, R is right almost nil-injective. Note that $a^2 = 0$ and $lr(a) \neq Ra$. Thus R is not right W nil-injective.

Lemma 2.1 [11]:

The following conditions are equivalent for a ring R:

- 1- R is n-regular.
- 2- Every right R-module is Wnil-injective.
- 3- Every cyclic right R-module is Wnil-injective.
- 4- R is right Wnil-injective and NPP ring.

Lemma 2.2 [18]:

Suppose M is a right R-module with $S = End(M_R)$. If $l_M r_R(a) = Ma \oplus X_a$, where X_a is a left S-submodule of M_R . Set $f:aR \to M$ is a right R-homomorphism, then $f(a) = ma + x \text{ with } m \in M \text{ , } x \in X_a.$

Now we give the following definition.

Definition 2.3:

A ring R is said to be right (left) GNPP if $a^n R$, (Ra^n) is projective for all $a \in N(R)$ and for some positive integer n, $a^n \neq 0$.

Clearly every n-regular rings, reduced rings and NPP are right GNPP rings.

Lemma 2.4 [9]:

If R is a right NPP ring ,then Y(R) = 0.

As a parallel result to Lemma (2.4) ,the following result was obtained: *Proposition 2.5:*

Let R be a right GNPP ring . Then Y(R) = 0.

Proof:

Let $0 \neq a \in Y(R)$, with $a^2 = 0$. Then $a \in N(R)$. Since R is a right GNPP ring, then there exists a positive integer n such that $a^n \neq 0$, $a^n R$ is projective. But $a^2 = 0$, so n=1 and aR is projective. Thus r(a) is a direct summand of R as a right R-module. But $a \in Y(R)$, r(a) must be essential in R, which is a contradiction. Hence Y(R) = 0.

According to [16], a ring R is right GQ-injective if for any right ideal I isomorphic to a complement right ideal of R, every right R-homomorphism of I into R extends to an endomorphism of $_{R}R$.

In [16], shows that if R is right (left) GQ-injective, then J(R) = Y(R) (J = Z), R/J is regular.

Every regular ring is right (left) GQ-injective. Clearly, R is regular if and only if R is right (left) GQ-injective right non singular [12].

Corollary 2.6:

If R is a right GNPP-ring, then R is regular if and only if R is right GQ-injective.

Proof:

Since R is right GQ-injective then Y(R) = J(R) and R/J is regular ring .By Proposition (2.5) 0 = Y(R) = J(R) .So R is regular ring .

Conversely: It is clear.

Call a ring is right NC2 if aR projective implies aR = eR, $e = e^2 \in R$ for all $a \in N(R)$ [11]. Every n-regular rings is NPP and NC2 rings [10].

Proposition 2.7:

If R is a ring with $l(a^n) \subseteq l(a)$, then R is right NC2 and GNPP if and only if R is n-regular.

Proof:

Let $a \in N(R)$. Since R is right GNPP, then $a^n R$ is projective for some positive integer n and $a^n \neq 0$. Since R is right NC2 ring, $a^n R = eR$,

 $e^2 = e \in R$.Thus $a^n = ea^n$ implies that a = ea ($l(a^n) \subseteq l(a)$) .So e = ab for some $b \in R$, Hence $a = ea = aba \in aRa$. Thus R is n-regular.

Conversely:

Let R is n-regular ring, implies that R is NPP ring. So is GNPP and NC2 ring.

In [6], Stanley and Yiqiang introduced an almost generalized principally injective (AGP-injective) module. Let M be a right R-module with $S = End(M_R)$. The module M is called AGP-injective if , for any $0 \neq a \in R$, there exists a positive integer n and S-submodule X_a of M such that $a^n \neq 0$ and $l_M r_R(a^n) = Ma^n \oplus X_a$ as a left S-modules. Also studied right AGP-injective rings and give some characterization and properties which generalization results of [19].

Now, we consider rings which are more general than WN-injective rings, an idea parallel to the notion of AGP-injective rings.

Definition 2.8:

Let M_R be a module with $S = End(M_R)$. The module M is called almost Wnilinjective (briefly right AWN-injective) if, for any $0 \neq a \in N(R)$, there exists $n \geq 1$ and an S-submodule X_a of M such that $a^n \neq 0$ and $l_M(r_R(a^n)) = Ma^n \oplus X_{a^n}$ as left S-modules. If R_R is almost WN-injective, then we call R is right almost WN-injective ring.

Remark:

Examples [19]:

The ring Z of integers is AWN-injective which is not AGP- injective

Let
$$Z_2$$
 be a field, and $R = \begin{bmatrix} Z_2 & Z_2 \\ 0 & Z_2 \end{bmatrix}$, $N(R) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$. Let $0 \neq u \in Z_2$, Then

$$lr\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & Z_2 \\ 0 & Z_2 \end{bmatrix}$$
 and $R\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & uZ_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$, Therefore $lr\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix} \neq R\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix}$

and So R is not right WN-injective but R is AWN-injective $(lr(a)) = Ra \oplus X_a$).

Let
$$R = \begin{bmatrix} 0 & Z_2 \\ 0 & Z_2 \end{bmatrix}$$
, where Z_2 is a field. Then $N(R) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$. Let

$$y = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} \in N(R)$$
, Then $Ry = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $lr(y) = R$. Therefore $lr(y) \neq Ry$ and so R is

not WN-injective. But $lr(y) = Ry \oplus R$, So R is right AWN-injective

Lemma 2.9 [3]:

The following conditions are equivalent:

- 1- R is n-regular.
- 2- $N_1(R) = \{0 \neq x \in R : x^2 = 0\}$ is regular.
- 3- For any $a \in N(R)$, there exists a positive integer n such that $a^n \neq 0$ and $a^n R$ is generated by idempotent.

It is clear that any n-regular rings is AWN-injective but the converse is not true.

The following Theorem gives a partial converse.

Theorem 2.10:

Let R be a right SXM ring. Then the following conditions are equivalent:

- 1- R is n-regular.
- 2- R is a right AWN-injective right NPP-ring.

Proof:

 $(1) \rightarrow (2)$ is clear by [Lemma 2.1]

(2) o (1), Let $0 \neq a \in N(R)$. Since R is a right AWN-injective ,then there exists $n \geq 1$ such that $a^n \neq 0$ and $lr(a^n) = Ra^n \oplus X_a$, Since R is right NPP ring and $a^n \in N(R)$, $r(a^n) = (1-e)R$, $e^2 = e \in R$. Therefore $Re = lr(a^n) = Ra^n \oplus X_a$, $e = ra^n + x$, where $r \in R$, $x \in X_a$. So $a^n = a^n e = a^n ra^n + a^n x$, $(1-a^n r)a^n = a^n x \in Ra^n \cap X_a = 0$ and $a^n = a^n ra^n$ this implies that $(1-ba^n) \in r(a^n) = r(a)$ [R is SXM], yielding $a = a ra^n$. Take $c = ra^{n-1} \in R$, hence a = aca. Therefore R is n-regular.

Proposition 2.11:

Let R be a ring whose every simple right R-module is AWN-injective then:

$$_{1}$$
 $J(R) \cap Soc(R) = 0$

2- J(R) is a reduced ideal of R.

Proof:

Let $0 \neq a \in J(R)$ such that $a^2 = 0$. Since $a \neq 0$, then there exists a maximal right ideal M of R containing r(a). Thus R/M is AWN-injective, and $l_{R/M} r_R(a) = (R/M)a \oplus X_a \leq R/M$.

Let $f:aR\to R/M$ be defined by f(ar)=r+M. Then f is a well defined R-homomorphism. So there exists $r\in R, x\in X_a$ such that 1+M=ra+M+x, $1-ra+M=x\in R/M\cap X_a=0$. Hence $1-ra\in M$ and so $1\in M$, which is a contradiction. Hence J(R) is reduced.

Lemma 2.12 [1]:

If Y(R) = 0, then SR is a maximal right quotient ring of R. Thus the maximal right quotient ring of any right nonsingular ring is regular.

Now, we have the following theorem.

Theorem 2.13:

If R is a right GNPP right AWN-injective ring, then the center of R (C(R)) is n-regular.

Proof:

Since Y(R)=0 [Proposition 2.5], then there exists a right maximal quotient ring S of R such that it is regular Lemma (2.12), then C(S) is also regular [The center of a regular ring is regular]. For any $0 \neq a \in N(C(R)) \subseteq N(C(S))$, there exists $s \in C(S)$ such that $a=asa=a^2s=sa^2$. Thus $r(a^n)=r(a), l(a)=l(a^n)$ for any positive integer n. We Claim that a is n-regular in N(C(R)). Note that $a^2 \neq 0$, So there exists a positive integer m with $a^{2m} \neq 0$ such that $lr(a^{2m})=Ra^{2m} \oplus X_{a^{2m}}$ for some left ideal $X_{a^{2m}}$ of R since R is right AWN-injective. Thus $lr(a^{2m-1})=lr(a^{2m})=Ra^{2m} \oplus X_{a^{2m}}$ and So $a^{2m-1}=da^{2m}+x$ for some $a \in R$ and $a \in$

Therefore $(1-ad)a^{2m} = 0$ and $(1-ad) \in l(a^{2m}) = l(a)$, and So $a = ada = a^2d$. Let $u = ad^2$ then $a = a^2d = a(a^2d)d = a^2ad^2 = a^2u$. For any $x \in R$, $a^2(xu - ux) = 0$ So $(xu - ux) \in r(a^2) = r(a)$, $0 = a(xu - ux) = a(xad^2 - ad^2x) = a^2(xd^2 - d^2x)$, $(xd^2 - d^2x) \in r(a^2) = r(a)$. Thus $xu - ux = xad^2 - ad^2x = a(xd^2 - d^2x) = 0$. So xu = ux, $u \in C(R)$ and a = aua. Therefore C(R) is n-regular.

Lemma 2.14 [7]:

If R is a semiprime ring ,then $r(a^n) = r(a)$ for any $a \in C(R)$ and a positive integer n. Proposition 2.15:

If R is a semiprime right AWN-injective ring ,then the center C(R) of R is n-regular . Proof:

For any $0 \neq a \in N(C(R))$, $Ra \cap l(a) = 0$. Since R is semiprime. Therefore, $l(a^m) = l(c) = r(c) = r(a^n)$ for any a positive integer n Lemma (2.14). Note that $a^2 = 0$ because $Ra \cap l(a) = 0$. As in the proof of Theorem [2.13], C(R) is n-regular.

Proposition 2.16:

Let R be a ring ,if for any element $a \in N(R)$,there exists a positive integer n such that $r(a^n) \subseteq r(a)$ and $a^n \neq 0$ if $R/r(a^n)$ is AWN-injective, then R is n-regular ring. Proof:

Let a be any element in N(R) and let $f: a^nR \to R/r(a^n)$ be defined by $f(a^ns) = s + r(a^n)$ for all $s \in R$ and positive integer n and $a^n \ne 0$. Then f is a well defined R-homomorphism. Since $R/r(a^n)$ is AWN-injective, $l_{R/r(a^n)}r_R(a^n) = (R/r(a^n))a^n \oplus X_{a^n}$,

where X_{a^n} is a left S-submodule of $R/r(a^n)$, $(X_{a^n} \subseteq R)$, Then there exists $b \in R$ and $x \in X_{a^n}$ such that $1 + r(a^n) = f(a^n) = ba^n + r(a^n) + x$ (Lemma 2.2).

Thus $1-ba^n+r(a^n)=x\in R/r(a^n)\cap X_{a^n}=0$, $1-ba^n\in r(a^n)\subseteq r(a)$ implies that $a=aba^n$. Take $c=ba^{n-1}$, Hence a=aca. Therefore R is n-regular ring.

Theorem 2.17:

Let R be a ring with $a^nR = aR$ for every $a \in R$ and a positive integer $n, a^n \neq 0$. If every simple right R-module is AWN-injective, then R is right n-weakly regular ring.

Proof:

We will Show that RaR+r(a)=R for any $a\in N(R)$, If $RaR+r(a)\neq R$, then there exists a maximal right ideal M of R containing RaR+r(a). Then R/M is AWN-injective ,then $l_{R/M}r(a^n)=(R/M)a^n\oplus X_{a^n}$, $X_{a^n}\leq R/M$. Let $f:a^nR\to R/M$ be defined by $f(a^nr)=r+M$. Note that f is well defined .So $1+M=f(a^n)=ca^n+M+x$, $c\in R$, $x\in X_{a^n}$, $1-ca^n+M=x\in R/M\cap X=0$.

So $1-ca^n \in M$, Since $ca^n \in Ra^nR = RaR \subseteq M$, $1 \in M$, Which is a contradiction. Therefore RaR + r(a) = R for any $a \in N(R)$, then R is a right n-weakly regular.

Following [13], a ring R is called right N duo if aR is an ideal of R for all $a \in N(R)$. Every reduced rings is N duo.

Now, we give the definition.

Definition 2.18:

An element $x \in N(R)$ is called right (left) generalized n-regular if there exists a positive integer n such that $x^n \neq 0$ and $x^n = x^n yx$ ($x^n = xyx^n$) for some $y \in R$. A ring R is called right (left) generalized n-regular if every element in N(R) is right (left) generalized n-regular.

Theorem 2.19:

Let R be AWN-injective ring with $lr(a^n) = l(r(a^{n-1}))$ for every $a \in N(R)$ and $a^n \neq 0$. Then R is generalized n-regular.

Proof:

Suppose that $a \in N(R)$. Then there exists a positive integer n such that $a^n \neq 0$ and $lr(a^n) = Ra^n \oplus X$ for some $X \leq R$. Since $lr(a^n) = l(r(a^{n-1}))$, then $lr(a^{n-1}) = Ra^n \oplus X$ and $a^{n-1} = da^n + x$ for some $d \in R$, $x \in X$. So $a^n = ada^n + ax$, $ax = a^n - ada^n \in Ra^n \cap X = 0$, $a^n = ada^n$.

This proves that R is generalized n-regular.

Definition 2.20:

A ring R is called right Quasi-Nduo ring if every right maximal right ideal is right Nduo.

Theorem 2.21:

Let R be a right quasi N duo and every simple right R-module is AWN-injective Then every element of N(R) is strongly Π -regular.

Proof:

For any $0 \neq a \in N(R)$, we will show that there exists a positive integer n such that $a^nR+r(a^n)=R$. Suppose not ,then there exists a maximal right ideal M of R containing $a^nR+r(a^n)$. Since R/M is AWN-injective, $l_{R/M}(r_R(a^n))=(R/M)a^n+X_{a^n}$, $X_{a^n}\leq R/M$ and $a^n\neq 0$. Let $f:a^nR\to R/M$ be defined by $f(a^nr)=r+M$. Since $a^nR+r(a^n)\subseteq M$, f is well defined R-homomorphism. Thus there exists $c\in R$, $x\in X_{a^n}$ such that $1+M=ca^n+M+x$, by Lemma (2.2) ,then $1-ca^n+M=x\in (R/M)a^n\cap X_{a^n}=0$,

 $1-ca^n \in M$ and $ca^n \in M$ (R is right N duo) and So $1 \in M$, which is a contradiction. Therefore $a^nR+r(a^n)=R$. In particular $a^nx+y=1$, $x \in R$, $y \in r(a^n)$, So $a^n=a^{2n}+x$. Thus a is strongly Π -regular.

3- On Simple Singular AWN-injective Modules

In this section ,we study of rings whose Simple singular right R-module are AWN-injective .Also we give the relation between this rings and reduced rings .

A right MC2 ring R is called strongly right MC2 if R is also weakly reversible ring [12].

Now, the following result is given:

Proposition 3.1:

Let R be a ring whose every simple singular right R-module is AWN-injective .Then $Y(R) \cap Z(R) = 0$.

Proof:

If $Y(R) \cap Z(R) \neq 0$, then there exists $0 \neq b \in Y(R) \cap Z(R)$ such that $b^2 = 0$. We claim that RbR + r(b) = R. Otherwise there exists a maximal essential right ideal M of R containing RbR + r(b). So R/M is AWN-injective, and $l_{R/M} r_R(b) = (R/M)b \oplus X_b$. $X_b \leq R/M$. Let $f:bR \to R/M$ be defined by f(br) = r + M. Note that f is a well defined R-homomorphism. Then 1 + M = f(b) = cb + M + x, $c \in R$, $x \in X_b$, $1 - cb + M = x \in R/M \cap X_b = 0$, $1 - cb \in M$. Since $cb \in RbR \subseteq M$, $1 \in M$, which is a contradiction. Therefore 1 = x + y, $x \in RbR$, $y \in r(b)$, and so b = bx. Since $RbR \subseteq Z(R)$, $x \in Z(R)$. Thus l(1 - x) = 0 and so b = 0, which is a contradiction. This show that $Y(R) \cap Z(R) = 0$.

Theorem 3.2:

R is a reduced ring if and only if R is a strongly right MC2 ring whose simple singular right R-modules are AWN-injective .

Proof:

The necessity is evident.

Conversely: Let $a^2=0$. Suppose that $a\neq 0$. Then there exists a maximal right ideal M of R containing r(a). First observe that M is an essential right ideal of R. If not ,then M=r(e) for some $e\in ME_r$ (the set of all minimal idempotents elements of R). Since R is strongly right MC2 ring, R is a strongly min-right semi central ring, to so we obtain e is central in R. using $a\in r(a)$, we get ae=ea=0. Hence $e\in r(a)\subseteq M=r(e)$. Which is a contradiction. Therefore M must be an essential right ideal of R. Thus R/M is AWN-injective, and there exists a positive integer $n\geq 1$ such that $a^n\neq 0$ and $l_{R/M}r_R(a^n)=(R/M)a^n\oplus X_{a^n}$, $X_{a^n}\leq R/M$. Since $a^2=0$, then n=1, and therefore $l_{R/M}r_R(a)=(R/M)a\oplus X_a$. Let $f:aR\to R/M$ defined by f(ar)=r+M. Note that f is a well-defined R-homomorphism. Since R/M is AWN-injective, there exists $c\in R$ such that 1+M=f(a)=ca+M+x, $x\in X_a$ (Lemma2.2). So $1-ca+M=x\in R/M\cap X_a=0$, Since $a^2=0$, $acaR\subseteq N^*(R)$ (the sum of all nil ideal) G0. Hence G1. Hence G2 and so G3 and G4 is reduced.

Theorem 3.3:

Let R be a NCI ring .If R satisfies one of the following conditions ,then R is a reduced ring :

1- R is a right n-weakly regular.

- 2- Every simple right R-modules is AWN-injective.
- 3- R is right MC2 whose every simple singular right module is AWN-injective.

Proof:

If $N(R) \neq 0$, there exists $0 \neq I$ of R contained in N(R). Clearly, there exists $0 \neq b \in I$ such that $b^2 = 0$ and so there exists a maximal right ideal M of R containing r(b).

If R is right n-weakly regular ,then b=bc for some $c \in RbR$.Since $RbR \subseteq I \subseteq N(R)$, there exists a positive integer $n \ge 1$ such that $c^n = 0$ Hence $b = bc = ccb = cccb =c^nb = 0$, which is a contradiction .

If R/M is AWN-injective, then $l_{R/M}r(b^n)=(R/M)b^n\oplus X_{b^n}$, $X_{b^n}\leq R/M$.Since $b^2=0$, then $l_{R/M}r(b)=(R/M)b\oplus X_b$. Let $f:bR\to R/M$ be defined by f(br)=r+M. Note f is a well defined So 1+M=f(b)=cb+M+x, $c\in R, x\in X_b$, $1-cb+M=x\in R/M\cap X_b=0$, $1-cb\in M$.

Since $cb \in I \subseteq N(R)$, $1-cb \in U(R)$, which implies that M=R, a contradiction.

If M is not an essential right ideal of R, then M=r(e) for some $e\in ME_r(R)$. Clearly eb=0 .If $eRb\neq 0$, Then eRbR=eR. But $eRbR\subseteq I\subseteq N(R)$, which is a contradiction, because $e\notin N(R)$. So eRb=0. Therefore M is essential, then R/M is AWN-injective and $l_{R/M}r(b)=(R/M)b\oplus X_b$. Hence by the same method as in the proof of (2), a contradiction. Therefore R is reduced.

A ring R is said to be NI if N(R) forms an ideal of R. A ring R is said to be 2-prim if N(R) = P(R), where P(R) is the prime radical of R. Clearly, every 2-prime ring is NI [9].

Theorem 3.4:

Let *R* a right MC2 ring whose every Simple singular right R-module is AWN-injective, then the following conditions are equivalent:

- 1- R is reduced ring.
- 2-R is 2-prime ring.
- 3-R is NI ring.

Proof:

$$1 \rightarrow 2 \rightarrow 3$$
 are obviously.

 $(3) \rightarrow (1)$ Let $a^2 = 0$. Suppose $a \ne 0$. Then there exists a maximal right ideal M of R containing r(a). If M is not essential in R, then M = r(e), where $e^2 = e \in R$ is a right minimal element. Hence ea = 0 because $a \in r(a)$. If $eRa \neq 0$, then eRaR = eR. Since R is NI ring, then N(R) is an ideal of R, So $eRaR \in N(R)$ because $a \in N(R)$. Thus $e \in N(R)$, which is a contradiction . This show that eRa = 0. Hence aRe = 0 because R is right MC2. Thus $e \in r(a) \subseteq r(e)$ which is also a contradiction. This implies that M is then R/Mis AWN-injective .by essential R hypothesis $l_{R/M}r(a) = (R/M)a \oplus X_a$, $X_a \le R/M$ ($a^2 = 0$, then n=1). Let $f: aR \to R/M$ be defined by f(ar) = r + M. Note that f is well defined R-homomorphism. Then 1+M = f(a) = ca + M + x, $c \in R$, $x \in X_a$, $1-ca + M = x \in R/M \cap X_a = 0$, $1-ca \in M$. Since $ca \in N(R)$, 1-ca is invertible, So M=R, which is a contradiction. This show that a = 0 and so R is reduced.

Call a ring R right GMC2 for any $a \in R$, any right minimal idempotent $e \in R$, eRa = 0 implies a Re = 0. Clearly, a right GMC2 ring is right MC2. [12]

Lemma 3.5 [12]:

Let R be a right GMC2 ring and if $a \in R$ is not a right weakly regular element, then every maximal right ideal M of R containing RaR + r(a) must be essential in R.

Proposition 3.6:

Let R be a right GMC2 ring and if every simple singular right R-module is AWN-injective, then for any $0 \neq a \in N(R)$ there exists a positive integer n such that $a^n \neq 0$ and $RaR + r(a^n) = R$.

Proof:

Assume that $a^n \neq 0$, $a^{n+1} = 0$. If a^n is a right weakly regular element, then we are done. otherwise ,by Lemma(3.5), there exists a maximal essential right ideal containing $Ra^nR + r(a^n)$. Thus R/M is AWN-injective and $l_{R/M}r(a^n) = (R/M)a^n \oplus X_{a^n}$, $X_{a^n} \leq R/M$. Let $f: a^nR \to R/M$ be defined by $f(a^nr) = r + M$. Note that f is a well defined R-homomorphism. Then $1+M=f(a^n)=da^n+M+x$, $d \in R$, $x \in X_{a^n}$, $1-da^n+M=x \in R/M \cap X_{a^n}=0$, $1-da^n \in M$. Since $da^n \in Ra^nR \subseteq M$, $1 \in M$, which is a contradiction. Hence $R=Ra^nR+r(a^n)=RaR+r(a^n)$.

From Theorem (3.4) and proposition (3.6) we get:

Corollary 3.7:

Let R be a right GMC2, NI ring ,whose every simple singular right R-module is AWN-injective. Then R is weakly regular ring.

Theorem3.8:

If R is strongly right MC2, then the following statements are equivalent:

Every right R-module is WN-injective.

Every right R-module is AWN-injective.

Every simple right R-module is AWN-injective.

Every simple singular right R-module is AWN-injective.

R is reduced.

R is n-regular.

Proof:

Obviously $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, $(5) \Rightarrow (6)$. And by [Theorem 3.2], (4) implies (5). $(6) \Rightarrow (1)$ Lemma (2.1).

REFERENCES

- [1] Goodearl K.R., "Ring Theory Nonsingular Rings and Modules"; MARCEL DEKKER, INC. New York and Basel 1976.
- [2] Jianlong chen , Yiqiang Zhou and Zhanmin Zhu, "GP-injective Rings Need not be P-injective", Communications in algebra, (2005), 33,

PP.2395-2402.

- [3] Mahmood ,R.D. and Mohammd, H.Q. " On Wnil-injective Modules", To appear in Journal Rafidain of comp. science and Math (2009),.
- [4] Mahmood , R.D. and Younis , M.T. , "On n-weakly regular rings", To appear in Journal Rafidain of comp. science and Math (2010).
- [5] Nicholson W.K. and Yousif ,M.F., "Principally Injective Rings", J. Algebra, (1995), 174, PP.77-93.
- [6] Stanley S. page, "Generalizations of principally Injective Rings", Journal of algebra, (1998), 206, PP.706-721.
- [7] Sang Bok Nam, "A note on simple singular GP-injective modules", Kang. Kyungki Math. J. (1999),7 No.2. 215-218.
- [8] Wei ,J.C. , " The rings characterized by minimal left ideal " , Acta. Math. Siniea. ,(2005), 21(3), PP.473-482 .
- [9] Wei , J.C. and Jianhua chen , " nil-injective rings " ,International Electronic Journal of Algebra , (2007) , Vol.2 ,PP. 1-21 .
- [10] Wei, J.C., "On Simple Singular YJ-injective modules", Sou. Asian Bull. of Math., (2007), 31.P.P. 1-

- [11] Wei , J.C. and Jianhua chen ," NPP Rings ,Reduced Rings and SNF Rings " , International Electronic Journal of Algebra ,(2008),Vol.4 ,PP. 9-26 .
- [12] Wei ,J.C. , "Certain rings whose simple singular modules are nil- injective" ,Turk J. Math. (2008),32, PP.393-408 .
- [13] Wei, J.C. and Libin Li, "Nilpotent elements and Reduced rings", Turk J. Math. (2010), 34, PP.1-13.
- [14] Wei , J.C. and Libin Li , " Weakly normal rings " , Turk J. Math. (2011),35, PP.1-11 .
- [15] Yue chi Ming ,R. " On Von Neumann Regular Rings " , Proc. Edinburgh Math. Soc.(1974), 19 , PP.89-91 .
- [16] Yue chi Ming ,R. " On quasi-injectivity and Von Neumann regularity ", Mountshefterfr Math. (1983), 95 ,PP.25-32 .
- [17] Zhao, Y. "Rings in which certain right ideals are direct summand of annihilators ", J. Aust. Math. Soc.(2002), 73:335-346.
- [18] Zhao Yu-e, "On Simple Singular AP-injective Modules", International Mathematical Forum, (2011), Vol. 6, no. 21, PP. 1037- 1043.
- [19] Zhao Yu-e and Du Xianneng ,"On Almost nil-injective Rings ", International Electronic of algebra , (2011), Vol. 9 ,pp. 103-113 .
- (1) Department of Mathematics, College of Computers Science and Mathematics, University of Mousl, Iraq.

E-mail address: raida.1963@yahoo.com

(2) Department of Mathematics, College of Computers Science and Mathematics, University of Tikrit, Iraq.