Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp.251 - 266 ON TOPOLOGICAL CLOSED GRAPHS IN THE NEW FORM M. LELLIS THIVAGAR⁽¹⁾ AND NIRMALA REBECCA PAUL⁽²⁾ ABSTRACT. The aim of this paper is to introduce \tilde{g}_{α} -closed graphs and strongly \tilde{g}_{α} -closed graphs using \tilde{g}_{α} -open sets and derive the relation between them. We also derive the basic properties of the strongly \tilde{g}_{α} -closed graphs in terms of \tilde{g}_{α} -continuous, weakly \tilde{g}_{α} -continuous , \tilde{g}_{α} -irresolute, completely \tilde{g}_{α} -continuous and almost \tilde{g}_{α} -irresolute functions. As an application we introduce \tilde{g}_{α} -Hausdorff spaces, strongly G-closed spaces and present some of their properties with \tilde{g}_{α} -closed graphs. 1. Introduction Jafari et al.[1] introduced \tilde{g}_{α} -closed sets in topological spaces and proved that the class of \tilde{g}_{α} -closed sets form a topology. Long[5] introduced closed graphs and Noiri introduced[4] strongly closed graphs. In this paper we have introduced \tilde{g}_{α} -closed graphs and strongly \tilde{g}_{α} -closed graphs and established the relationship between them. We have derived some of the properties of strongly \tilde{g}_{α} -closed graphs with the help of different types of \tilde{g}_{α} -maps. As an application we have introduced \tilde{g}_{α} -Hausdorff spaces and strongly G-closed spaces. 1991 Mathematics Subject Classification. 54C08,54C10,54D10. Key words and phrases. \widetilde{g}_{α} -open sets, \widetilde{g}_{α} -closed sets, \widetilde{g}_{α} -continuous and \widetilde{g}_{α} -irresolute. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: Sept. 9, 2011 Accepted: Sept. 18, 2012. #### 2. Preliminaries We list some definitions which are useful in the following sections. The interior and the closure of a subset A of (X, τ) are denoted by Int(A) and Cl(A), respectively. Throughout the present paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axiom is defined, unless otherwise mentioned. ## **Definition 2.1.** A subset A of a space X is called - (i) a semi-open set [4] if $A \subseteq Cl(Int(A))$ - (ii) an α -open set [6] if $A \subseteq Int(Cl(Int(A)))$ - (iii) regular open set [8] if A = Int(Cl(A)) The complement of a semi-open (resp α -open and regular open) set is called a semi-closed (resp. α -closed and regular closed) set. The α -closure[6] (resp semi-closure[4]) of a subset A of X is denoted by $\alpha Cl(A)$ (resp sCl (A))and is defined to be the intersection of all α -closed sets (resp. semi-closed sets) containing A.A subset A of a topological space (X, τ) is α -closed (resp. semi-closed) if and only if $\alpha Cl(A) = A$ (resp sCl(A) = A). The collection of all semi-open sets, α -open sets and regular open sets are denoted by SO(X), α O(X) and RO(X) respectively. The collection of all semi-closed sets, α -closed sets and regular closed sets are denoted as SC(X), α C(X) and RC(X) respectively. ### **Definition 2.2.** A subset A of a topological space (X, τ) is called - (i) an ω -closed set [11] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) , - (ii) a *g-closed set [15] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) , - (iii) a #g-semi-closed set(briefly #gs-closed)[16] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in (X, τ) , - (iv) \widetilde{g}_{α} -closed set[2] if $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in (X, τ) and - (v) \widetilde{g} -closed set[1] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in (X, τ) The complement of ω -closed(resp *g-closed,#gs-closed, \tilde{g}_{α} -closed and \tilde{g} -closed)set is said to be ω -open(resp *g-open,#gs-open, \tilde{g}_{α} -open and \tilde{g} -open). The collection of all \tilde{g}_{α} -open sets and \tilde{g}_{α} -closed sets are denoted by $\tilde{G}_{\alpha}O(X)$ and $\tilde{G}_{\alpha}C(X)$ respectively. **Theorem 2.1** (2). (i) Every open set is \widetilde{g}_{α} -open but not conversely. - (ii) Every α -open set is \widetilde{g}_{α} -open but not conversely. - (iii)Every \tilde{g} -open set is \tilde{g}_{α} -open but not conversely. - (iv) Every \widetilde{g}_{α} -open set is $g\alpha(\alpha g)$ -open but not conversely. - (v) Every \widetilde{g}_{α} -open set is sg(gs-open)-open but not conversely. **Definition 2.3.** Let (X, τ) be a topological space and E be subset of X.We define \widetilde{g}_{α} -Interior of E denoted by \widetilde{g}_{α} -Int(E)to be the union of all \widetilde{g}_{α} -open sets contained in E.[2] **Definition 2.4.** Let x be a point of (X, τ) and V be a subset of X. Then V is called a \widetilde{g}_{α} -neighbourhood of x in (X, τ) if there exists a \widetilde{g}_{α} -open set U of (X, τ) such that $x \in U \subseteq V$.[14] **Proposition 2.1** (2). For any two subsets A and B of (X, τ) - (1) \widetilde{g}_{α} -Int $(A \cap B) = \widetilde{g}_{\alpha}$ -Int $(A) \cap \widetilde{g}_{\alpha}$ -Int(B) - (2) \widetilde{g}_{α} -Int $(A \cup B) \subseteq \widetilde{g}_{\alpha}$ -Int $(A) \cup \widetilde{g}_{\alpha}$ -Int(B) - (3) If $A \subseteq B$ then \widetilde{g}_{α} -Int $(A) \subseteq \widetilde{g}_{\alpha}$ -Int(B) - (4) \widetilde{g}_{α} -Int(X) = X. - (5) \widetilde{g}_{α} -Int $(\phi) = \phi$. **Definition 2.5** (2). Let (X, τ) be a topological space and $B \subseteq X$. We define the \widetilde{g}_{α} -closure of B (briefly \widetilde{g}_{α} -Cl(B) to be the intersection of all \widetilde{g}_{α} -closed sets containing B which is denoted by \widetilde{g}_{α} - $Cl(B) = \bigcap \{A : B \subseteq A \ and A \in \widetilde{G}_{\alpha}C(X, \tau)\}.$ **Lemma 2.1.** For any $B \subseteq X, B \subseteq \widetilde{g}_{\alpha}\text{-}Cl(B) \subseteq Cl(B)/2$ **Theorem 2.2.** The \widetilde{g}_{α} -closure is a Kuratowski closure operator on X.[2] **Proposition 2.2** (2). Let (X, τ) be a topological space and $B \subseteq A$. The following properties hold. i) \widetilde{g}_{α} -Cl(B) is the smallest \widetilde{g}_{α} -closed set containing B. ii) B is \widetilde{g}_{α} -closed if and only if \widetilde{g}_{α} -Cl(B) = B **Definition 2.6.** A function $f:(X,\tau)\to (Y,\sigma)$ is called - (i) \widetilde{g}_{α} -continuous [14] if $f^{-1}(V)$ is a \widetilde{g}_{α} -open set (X, τ) for each open set V of (Y, σ) , - (ii) \widetilde{g}_{α} -irresolute[12] if $f^{-1}(V)$ is a \widetilde{g}_{α} -open set of (X, τ) for each \widetilde{g}_{α} -open set V of (Y, σ) , **Proposition 2.3** (14). A function $f:(X,\tau)\to (Y,\sigma)$ is said to be \widetilde{g}_{α} -continuous if for each $x\in X$ and every $V\in O(Y,f(x))$ there exist a $U\in \widetilde{G}_{\alpha}O(X,x)\ni f(U)\subseteq V$. **Proposition 2.4.** Every \widetilde{g}_{α} -irresolute function is \widetilde{g}_{α} -continuous.[12] **Definition 2.7** (5). Let $f:(X,\tau)\to (Y,\sigma)$ be any function. Then the subset $G(f)=\{(x,f(x):x\in X\} \text{ of the product space } (X\times Y,\tau\times\sigma) \text{ is called the graph of } f.$ **Definition 2.8** (5). Let (X, τ) and (Y, σ) are topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to have the closed graph if its graph G(f) is closed in the product space $(X \times Y, \tau \times \sigma)$. **Definition 2.9** (7). Let (X, τ) and (Y, σ) are topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to have the strongly closed graph if for each $(x, y) \in X \times Y - G(f)$, there exist $U \in O(X, x), V \in O(Y, y)$ such that $U \times Cl(V) \cap G(f) = \phi$. Remark 1. The set of all open sets containing the point x is denoted by O(X,x). Similarly $\widetilde{G}_{\alpha}O(X,x)$ and $\alpha O(X,x)$ denote the set of all \widetilde{g}_{α} -open sets and α -open sets containing the point x respectively. Also $RO(X) = \{V \in RO(X)/x \in V \text{ for } x \in X\}$. **Lemma 2.2** (5). A function $f:(X,\tau)\to (Y,\sigma)$ has a closed graph if for each $(x,y)\in X\times Y-G(f)$, there exist $U\in O(X,x), V\in O(Y,y)$ such that $f(U)\cap V=\phi$. **Lemma 2.3** (7). A function $f:(X,\tau)\to (Y,\sigma)$ has a strongly closed graph if for each $(x,y)\in X\times Y-G(f)$, there exist $U\in O(X,x), V\in O(Y,y)$ such that $f(U)\cap Cl(V)=\phi$. # **Definition 2.10** (10). A space (X, τ) is called - (i) \widetilde{g} - T_0 if for every pair of distinct points x,y in X there exists a \widetilde{g} -open set U containing one of the points but not the other. - (ii) \widetilde{g} - T_1 if for every pair of distinct points x,y in X there exists a \widetilde{g} -open set U containing x but not y and a \widetilde{g} -open set V containing y but not x. - (iii) \widetilde{g} - T_2 if for every pair of distinct points x,y in X there exist disjoint \widetilde{g} -open sets U and V containing x and y respectively.[10] # 3. \widetilde{q}_{α} -CLOSED GRAPHS **Definition 3.1.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to have a \widetilde{g}_{α} -closed graph if for each $(x,y)\in X\times Y-G(f)$, there exist $U\in \widetilde{G}_{\alpha}O(X,x), V\in \widetilde{G}_{\alpha}O(Y,y)$ such that $U\times V\cap G(f)=\phi$ **Lemma 3.1.** Let $f:(X,\tau)\to (Y,\sigma)$ be a function then the graph G(f) is \widetilde{g}_{α} -closed in $X\times Y$ if and only if for each $(x,y)\in X\times Y-G(f)$, there exist $U\in \widetilde{G}_{\alpha}O(X,x), V\in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(U)\cap V=\phi$ *Proof.* It follows from the definition. ## **Definition 3.2.** A space (X, τ) is called (i) \widetilde{g}_{α} - T_0 if for every pair of distinct points x,y in X there exists a \widetilde{g}_{α} -open set U containing one of the points but not the other. - (ii) \widetilde{g}_{α} - T_1 if for every pair of distinct points x,y in X there exists a \widetilde{g}_{α} -open set U containing x not y and a \widetilde{g}_{α} -open set V containing y but not x. - (iii) \widetilde{g}_{α} - T_2 if for every pair of distinct points x,y in X there exist disjoint \widetilde{g}_{α} -open sets U and V containing x and y respectively. Remark 2. Every \tilde{g} - T_i -space is \tilde{g}_{α} - T_i -space for i = 0, 1, 2. **Example 3.1.** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}$. Here X is a \widetilde{g}_{α} - T_0 -space but not a \widetilde{g} - T_0 -space. **Theorem 3.1.** If $f:(X,\tau)\to (Y,\sigma)$ is an injective function with the \widetilde{g}_{α} -closed graph G(f) then X is \widetilde{g}_{α} - T_1 Proof. Let x and y be two distinct points of X then $f(x) \neq f(y)$. Thus $(x, f(y)) \in X \times Y - G(f)$. But G(f) is \widetilde{g}_{α} -closed. So there exist \widetilde{g}_{α} -open sets U and V containing x and f(y) respectively such that $f(U) \cap V = \phi$. Hence $y \notin U$. Similarly there exist \widetilde{g}_{α} -open sets M and N containing y and f(x) such that $f(M) \cap N = \phi$. Hence $x \notin M$. It follows that X is \widetilde{g}_{α} - T_1 **Theorem 3.2.** If $f:(X,\tau)\to (Y,\sigma)$ is a surjective function with the \widetilde{g}_{α} -closed graph G(f) then Y is \widetilde{g}_{α} - T_1 . *Proof.* Let y and z be two distinct points of Y. Since f is surjective there exist a point x in X such that f(x) = z. Therefore $(x, y) \notin G(f)$, by lemma 3.2 there exist \widetilde{g}_{α} -open sets U and V containing x and y respectively such that $f(U) \cap V = \phi$. It follows that $z \notin V$. Similarly there exist $w \in X$ such that f(w)=y. Hence $(w, z) \notin G(f)$. Similarly there exist \widetilde{g}_{α} -open sets M and N containing w and z respectively such that such that $f(M) \cap N = \phi$. Thus $y \notin N$. Hence the space Y is \widetilde{g}_{α} - T_1 . **Definition 3.3.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be weakly \widetilde{g}_{α} -continuous if for each $x\in X$ and each open set V of Y containing f(x), there exists a \widetilde{g}_{α} -open set U in X containing x such that $f(U)\subseteq \widetilde{g}_{\alpha}$ -Cl(V) Remark 3. Any \widetilde{g}_{α} -continuous function is weakly \widetilde{g}_{α} -continuous. **Example 3.2.** Let $X = \{a, b, c\}, Y = \{p, q, r\}, \tau = \{\phi, X, \{a\}, \{b, c\}\},\$ $\sigma = \{\phi, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}\}.$ The function $f: (X, \tau) \to (Y, \sigma)$ is defined as f(a) = p, f(b) = q, f(c) = r. The function f is weakly \widetilde{g}_{α} -continuous but not \widetilde{g}_{α} -continuous. **Theorem 3.3.** If a function $f:(X,\tau)\to (Y,\sigma)$ is weakly \widetilde{g}_{α} -continuous and Y is Hausdorff, then G(f) is \widetilde{g}_{α} -closed. Proof. Suppose that $(x,y) \notin G(f)$ then $f(x) \neq y$. Since Y is Hausdroff ,there exist open sets W and V such that $f(x) \in W, y \in V$ and $W \cap V = \phi$. It follows that $\widetilde{g}_{\alpha}\text{-}Cl(W) \cap V = \phi$. Since f is weakly $\widetilde{g}_{\alpha}\text{-}continuous$ there exist $U \in \widetilde{G}_{\alpha}O(X,x)$ such that $f(U) \subseteq \widetilde{g}_{\alpha} - Cl(W)$. Hence $f(U) \cap V = \phi$. Thus G(f) is $\widetilde{g}_{\alpha}\text{-}closed$. Corollary 3.1. If a function $f:(X,\tau)\to (Y,\sigma)$ is \widetilde{g}_{α} -continuous and Y is Hausdroff, then G(f) is \widetilde{g}_{α} -closed. **Theorem 3.4.** If a function $f:(X,\tau)\to (Y,\sigma)$ has a \widetilde{g}_{α} -closed graph then for each $x\in X, \{f(x)\}=\bigcap_{A\in \widetilde{G}_{\alpha}O(X,x)}\widetilde{g}_{\alpha}\text{-}Cl(f(A))$ Proof. Suppose that $y \neq f(x)$ and $y \in \bigcap_{A \in \widetilde{G}_{\alpha}O(X,x)} \widetilde{g}_{\alpha}\text{-}Cl(f(A))$. Then $y \in \widetilde{g}_{\alpha}\text{-}Cl(f(A))$ for each $x \in A \in \widetilde{G}_{\alpha}O(X,x)$. This implies that for each \widetilde{g}_{α} -open set B containing $y, B \cap f(A) \neq \phi(\text{By lemma } 8.3[14])$. Since $(x,y) \notin G(f)$ and G(f) is a \widetilde{g}_{α} -closed graph, this is a contradiction. Hence the result. **Definition 3.4.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be strongly \widetilde{g}_{α} -open if the image of every \widetilde{g}_{α} -open set in X is \widetilde{g}_{α} -open in Y. **Theorem 3.5.** If $f:(X,\tau)\to (Y,\sigma)$ is a surjective strongly \widetilde{g}_{α} -open function with \widetilde{g}_{α} -closed graph G(f) then Y is $\widetilde{g}_{\alpha}-T_2$. Proof. Let y_1, y_2 be distinct points of Y.Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in X \times Y - G(f)$. This implies that there exist a \widetilde{g}_{α} -open set A of X and a \widetilde{g}_{α} -open set B of Y such that $(x, y_2) \in A \times B$ and $(A \times B) \cap G(f) = \phi$. We have $f(A) \cap B = \phi$. Since f is strongly \widetilde{g}_{α} -open then f(A) is \widetilde{g}_{α} -open such that $f(x) = y_1 \in f(A)$. Thus Y is $\widetilde{g}_{\alpha} - T_2$. **Theorem 3.6.** If $f:(X,\tau)\to (Y,\sigma)$ is a \widetilde{g}_{α} -continuous injective function and Y is T_2 then X is \widetilde{g}_{α} - T_2 . Proof. Let x and y in X be any pair of distinct points. Then there exist disjoint open sets U and V in Y such that $f(x) \in U, f(y) \in V$. Since f is \widetilde{g}_{α} -continuous, $f^{-1}(U), f^{-1}(V)$ are \widetilde{g}_{α} -open in X containing x and y respectively. We have $f^{-1}(U) \cap f^{-1}(V) = \phi$. Thus X is $\widetilde{g}_{\alpha} - T_2$. # 4. Strongly \widetilde{g}_{α} -closed graphs **Definition 4.1.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to have a strongly \widetilde{g}_{α} -closed graph if and only if for each $(x,y)\in X\times Y-G(f)$, there exist $U\in \widetilde{G}_{\alpha}O(X,x), V\in \widetilde{G}_{\alpha}O(Y,y)$ such that $U\times \widetilde{g}_{\alpha}\text{-}Cl(V)\cap G(f)=\phi$. **Lemma 4.1.** A function $f:(X,\tau)\to (Y,\sigma)$ has a strongly \widetilde{g}_{α} -closed graph if and only for each $(x,y)\in X\times Y-G(f)$, there exist $U\in \widetilde{G}_{\alpha}O(X,x), V\in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(U)\cap \widetilde{g}_{\alpha}\text{-}Cl(V)=\phi$. Remark 4. Any strongly \widetilde{g}_{α} -closed graph is a \widetilde{g}_{α} -closed graph but not conversely. **Example 4.1.** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b, c\}\}, Y = \{p, q, r\},$ $\sigma = \{\phi, Y, \{p, q\}\}.$ The function f is defined as f(a) = f(c) = p, f(b) = q. The function f has a \widetilde{g}_{α} -closed graph but not a strongly \widetilde{g}_{α} -closed graph. Remark 5. If (X, τ) is \widetilde{g}_{α} - T_i then it is \widetilde{g}_{α} - T_{i-1} for i=1,2. **Example 4.2.** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b, c\}\}$. The space X is \widetilde{g}_{α} - T_0 but not \widetilde{g}_{α} - T_1 and \widetilde{g}_{α} - T_2 . **Theorem 4.1.** If $f:(X,\tau)\to (Y,\sigma)$ is \widetilde{g}_{α} -irresolute and Y is \widetilde{g}_{α} - T_2 then G(f) is strongly \widetilde{g}_{α} -closed. Proof. Let $(x,y) \in X \times Y - G(f)$. Since Y is \widetilde{g}_{α} - T_2 there exist a $V \in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(x) \notin \widetilde{g}_{\alpha}$ -Cl(V). Then $Y - \widetilde{g}_{\alpha}$ - $Cl(V) \in \widetilde{G}_{\alpha}O(Y,f(x))$. Since f is \widetilde{g}_{α} -irresolute, there exist a $U \in \widetilde{G}_{\alpha}O(X,x) \ni f(U) \subseteq Y - \widetilde{g}_{\alpha}$ -Cl(V)(By theorem 3.11[14]) then $f(U) \cap \widetilde{g}_{\alpha}$ - $Cl(V) = \phi$. Hence G(f) is strongly \widetilde{g}_{α} -closed. **Theorem 4.2.** If $f:(X,\tau)\to (Y,\sigma)$ is \widetilde{g}_{α} -open and has a closed graph G(f) then G(f) is strongly \widetilde{g}_{α} -closed. Proof. Let $(x,y) \in X \times Y - G(f)$. Since G(f) is closed there exist $U \in O(X,x), V \in O(Y,y)$ such that $f(U) \cap V = \phi$ —-(i). Since f is \widetilde{g}_{α} -open $f(U) \in \widetilde{G}_{\alpha}O(Y)$. From (i) we get $V \subseteq (f(U))^c$ and $f(U)^c$ is \widetilde{g}_{α} -closed in Y. Therefore \widetilde{g}_{α} - $Cl(V) \subseteq (f(U))^c$ and hence $f(U) \cap \widetilde{g}_{\alpha}$ - $Cl(V) = \phi$. Hence G(f) is strongly \widetilde{g}_{α} -closed. **Theorem 4.3.** If $f:(X,\tau)\to (Y,\sigma)$ is surjective and has a strongly \widetilde{g}_{α} -closed graph G(f) then Y is \widetilde{g}_{α} - T_2 . Proof. Let $y_1 \neq y_2 \in Y$. Since f is surjective there exist $x_1 \in X \ni f(x_1) = y_1$. Now $(x_1, y_2) \in X \times Y - G(f)$. Since G(f) is strongly \widetilde{g}_{α} -closed it implies that there exist $U \in \widetilde{G}_{\alpha}O(X, x_1), V \in \widetilde{G}_{\alpha}O(Y, y_2) \ni f(U) \cap \widetilde{g}_{\alpha}$ - $Cl(V) = \phi$ which implies that $y_1 \notin \widetilde{g}_{\alpha}\text{-}Cl(V)$. This means that there exist $W \in \widetilde{G}_{\alpha}O(Y,y_1) \ni W \cap V = \phi$. So Y is $\widetilde{g}_{\alpha}\text{-}T_2$. **Theorem 4.4.** A space X is \widetilde{g}_{α} - T_2 if and only if the identity function $i: X \to X$ has a srtongly \widetilde{g}_{α} -closed graph. *Proof.* Necessity.Let X be \widetilde{g}_{α} - T_2 . Since the identity function is \widetilde{g}_{α} -irresolute by theorem 4.1 G(i) is strongly \widetilde{g}_{α} -closed. Sufficiency. Let G(i) be strongly \tilde{g}_{α} -closed. Since f is surjective by theorem 4.3 X is \tilde{g}_{α} - T_2 . **Theorem 4.5.** If $f:(X,\tau)\to (Y,\sigma)$ is a bijective function with strongly \widetilde{g}_{α} -closed graph then both X and Y are \widetilde{g}_{α} - T_1 *Proof.* It follows from the Theorems 4.3 and 3.1. **Definition 4.2.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be weakly \widetilde{g}_{α} -irresolute if for each point x in X and each $V\in \widetilde{G}_{\alpha}O(Y,f(x))$ there exists $U\in \widetilde{G}_{\alpha}O(X,x)$ such that $f(U)\subseteq \widetilde{g}_{\alpha}$ -Cl(V). Remark 6. Any \widetilde{g}_{α} -irresolute function is weakly \widetilde{g}_{α} -irresolute. **Example 4.3.** Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a, c\}, \{b\}\}, \sigma = \{\phi, Y, \{a, b\}\}\}$. The function f is the identity function. Here f is weakly \widetilde{g}_{α} -irresolute but not \widetilde{g}_{α} -irresolute. **Theorem 4.6.** If $f:(X,\tau)\to (Y,\sigma)$ is a weakly \widetilde{g}_{α} -irresolute injective function with strongly \widetilde{g}_{α} -closed graph G(f) then X is \widetilde{g}_{α} - T_2 Proof. Since f is injective for any pair of distinct points $x_1, x_2 \in X$, $f(x_1) \neq f(x_2)$. Therefore $(x_1, f(x_2)) \in X \times Y - G(f)$. Since G(f) is strongly \widetilde{g}_{α} -closed there exist $U \in \widetilde{G}_{\alpha}O(X, x_1), V \in \widetilde{G}_{\alpha}O(Y, f(x_2))$ such that $f(U) \cap \widetilde{g}_{\alpha}$ - $Cl(V) = \phi$ and hence $U \cap f^{-1}(\widetilde{g}_{\alpha}$ - $Cl(V)) = \phi$ which gives $f^{-1}((\widetilde{g}_{\alpha}$ - $Cl(V)) \subseteq X - U$. Since f is weakly \widetilde{g}_{α} -irresolute, there exist $W \in \widetilde{G}_{\alpha}O(X, x_2) \ni f(W) \subseteq \widetilde{g}_{\alpha}$ -Cl(V). Hence $W \subseteq f^{-1}(\widetilde{g}_{\alpha}-Cl(V)) \subseteq X - U$ which implies that $W \cap U = \phi$. Hence X is \widetilde{g}_{α} - T_2 . Corollary 4.1. If $f:(X,\tau)\to (Y,\sigma)$ is a \widetilde{g}_{α} -irresolute function with strongly \widetilde{g}_{α} closed graph then G(f) then X is \widetilde{g}_{α} - T_2 **Definition 4.3.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost \widetilde{g}_{α} -irresolute if for each x in X and each \widetilde{g}_{α} neighbourhood V of f(x), \widetilde{g}_{α} - $Cl(f^{-1}(V))$ is a \widetilde{g}_{α} neighbourhood of x. Remark 7. Every \widetilde{g}_{α} -irresolute function is almost \widetilde{g}_{α} -irresolute. **Example 4.4.** Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}, \{c\}\}, \sigma = \{\phi, Y, \{a, b\}\}\}$. The function f is the identity function. Here f is almost \widetilde{g}_{α} -irresolute but not \widetilde{g}_{α} -irresolute. **Theorem 4.7.** If a function $f:(X,\tau)\to (Y,\sigma)$ is almost \widetilde{g}_{α} -irresolute ,injective with strongly \widetilde{g}_{α} -closed graph then X is \widetilde{g}_{α} - T_2 . Proof. As in Theorem 4.6 we $\operatorname{get} f(U) \cap \widetilde{g}_{\alpha}\text{-}Cl(V) = \phi$ and hence $U \cap f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V))) = \phi$ which implies that $f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V))) \subseteq X - U$. Since X-U is a \widetilde{g}_{α} -closed set containing $f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V)))$ and any $\widetilde{g}_{\alpha}\text{-}Cl(f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V))))$ is the smallest \widetilde{g}_{α} -closed containing $f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V)))$, we have $\widetilde{g}_{\alpha}\text{-}Cl(f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V)))) \subseteq X - U$. Since f is almost \widetilde{g}_{α} -irresolute $\widetilde{g}_{\alpha}\text{-}Cl(f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V))))$ is a \widetilde{g}_{α} neighbourhood of x_2 . This implies that there exist $H \in \widetilde{G}_{\alpha}O(X,x_2)$ such that $H \subseteq \widetilde{g}_{\alpha}\text{-}Cl(f^{-1}(\widetilde{g}_{\alpha}\text{-}Cl((V)))) \subseteq X - U$ which implies that $U \cap H = \phi$. Thus X is $\widetilde{g}_{\alpha}\text{-}T_2$. **Theorem 4.8.** If a function $f:(X,\tau)\to (Y,\sigma)$ is almost \widetilde{g}_{α} -irresolute, bijective with strongly \widetilde{g}_{α} -closed graph then both X and Y are \widetilde{g}_{α} - T_2 . *Proof.* It follws from Theorems 4.5 and 4.7. \Box **Definition 4.4.** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be nearly \widetilde{g}_{α} -continuous if and only if for each x in X and for each $V\in RO(Y,f(x))$ there exist a $U\in \widetilde{G}_{\alpha}O(X,x)$ such that $f(U)\subseteq V$. Remark 8. Every \widetilde{g}_{α} -continuous function is nearly \widetilde{g}_{α} -continuous. **Example 4.5.** Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{a, b\}\}\}$. The function f is the identity function. Here f is \widetilde{g}_{α} -irresolute but not nearly \widetilde{g}_{α} -irresolute. **Theorem 4.9.** If $f:(X,\tau)\to (Y,\sigma)$ is nearly \widetilde{g}_{α} -continuous and Y is T_2 , then G(f) is strongly \widetilde{g}_{α} -closed. Proof. Let $(x,y) \in X \times Y - G(f)$. Since Y is T_2 there exist an open set V in Y containing y such that $f(x) \notin Cl(V)$. Cl(V) is a regular closed set in Y. So $Y - Cl(V) \in RO(Y, f(x))$. By the nearly \widetilde{g}_{α} -continuity of f there exist $U \in \widetilde{G}_{\alpha}O(X,x)$ such that $f(U) \subseteq Y - Cl(V)$ hence $f(U) \cap Cl(V) = \phi$. Hence $f(U) \cap \widetilde{g}_{\alpha} - Cl(V) = \phi$. Corollary 4.2. If $f:(X,\tau)\to (Y,\sigma)$ is \widetilde{g}_{α} -continuous and Y is T_2 , then G(f) is strongly \widetilde{g}_{α} -closed. #### 5. Applications **Definition 5.1.** A space (X, τ) is called strongly G-closed if every \widetilde{g}_{α} -open cover of X has a finite subfamily such that the union of their \widetilde{g}_{α} -closures cover X. **Definition 5.2.** A subset A of X is said to be strongly G-closed relative to X,if every cover of A by \tilde{g}_{α} -open sets of X has a finite subfamily such that the union of their \tilde{g}_{α} -closures cover X. **Definition 5.3.** A subset A of (X, τ) is said to be \widetilde{g}_{α} -clopen if A is both \widetilde{g}_{α} -open and \widetilde{g}_{α} -closed. **Lemma 5.1.** Every \widetilde{g}_{α} -clopen subset of a strongly G-closed space X is strongly G-closed relative to X. Proof. Let A be any \widetilde{g}_{α} -clopen subset of a storngly G-closed space X.Let $\{G_{\alpha} : \alpha \in I\}$ be any cover of A by \widetilde{g}_{α} -open sets in X. Then $\Omega = \{G_{\alpha} : \alpha \in I\} \cup \{A^c\}$ is a cover of X by \widetilde{g}_{α} -open sets in X. Because of the strong G closedness of X there exist a finite subfamily $E = \{G_{\alpha_i} : i = 1, 2, ...n\} \cup \{A^c\}$ of Ω that covers X. Since A is \widetilde{g}_{α} -clopen we find that $\{\widetilde{g}_{\alpha}\text{-}Cl(G_{\alpha_i}) : i = 1, 2, ...n\}$ covers A. Hence A is strongly G-closed relative to X. **Definition 5.4.** A space (X, τ) is called extremally \widetilde{g}_{α} -disconnected if the \widetilde{g}_{α} closure of every \widetilde{g}_{α} -open set is \widetilde{g}_{α} -open. **Example 5.1.** Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c, d\}\}.$ $\widetilde{G}_{\alpha}O(X) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}.$ The space X is extremally \widetilde{g}_{α} -disconnected. **Theorem 5.1.** If Y is strongly G-closed and extremally \widetilde{g}_{α} -disconnected and \widetilde{g}_{α} - T_2 then the function $f:(X,\tau)\to (Y,\sigma)$ with G(f) strongly \widetilde{g}_{α} -closed is weakly \widetilde{g}_{α} -irresolute. Proof. Let $x \in X$, $V \in \widetilde{G}_{\alpha}O(Y, f(x))$. Take any $y \in Y - \widetilde{g}_{\alpha}\text{-}Cl(V)$. Then $(x,y) \in X \times Y - G(f)$. Since G(f) is strongly $\widetilde{g}_{\alpha}\text{-}closed$, there exist $U_y \in \widetilde{G}_{\alpha}O(X,x), V_y \in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(U_y) \cap \widetilde{g}_{\alpha}\text{-}Cl(V_y) = \phi$ —(i). Since Y is $\widetilde{g}_{\alpha}\text{-}T_2$, there exist $V_y \in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(x) \notin \widetilde{g}_{\alpha}\text{-}Cl(V_y)$. Since Y is extremally $\widetilde{g}_{\alpha}\text{-}disconnected$ implies the \widetilde{g}_{α} -clopennes of $\widetilde{g}_{\alpha}\text{-}Cl(V)$ and hence $Y - \widetilde{g}_{\alpha}\text{-}Cl(V)$ is also $\widetilde{g}_{\alpha}\text{-}clopen$. Now $\{V_y : y \in Y - \widetilde{g}_{\alpha}\text{-}Cl(V)\}$ is a cover of $Y - \widetilde{g}_{\alpha}\text{-}Cl(V)\}$ by $\widetilde{g}_{\alpha}\text{-}open$ sets in Y. By the Lemma 5.1 there exist a finite subfamily $\{V_{y_i} : i = 1, 2..n\}$ such that $Y - \widetilde{g}_{\alpha}\text{-}Cl(V) \subseteq \bigcup_{i=1}^n \widetilde{g}_{\alpha}\text{-}Cl(V_{y_i})$. Let $W = \bigcap_{i=1}^{i=n} U_{y_i}(x)$ where $U_{y_i}(x)$ are \widetilde{g}_{α} -open sets in X satisfying (i). Since finite intersection of \widetilde{g}_{α} -open set is \widetilde{g}_{α} -open[1], we have $f(W) \cap (Y - \widetilde{g}_{\alpha} - Cl(V)) \subseteq f(\bigcap_{i=1}^n U_{y_i}(x)) \cap \bigcup_{i=1}^n (\widetilde{g}_{\alpha} - Cl(V_{y_i})) = \bigcup_{i=1}^n (f(U_{y_i}(x)) \cap \widetilde{g}_{\alpha} - Cl(V_{y_i})) = \emptyset$ by (i). Therefore $f(W) \subseteq \widetilde{g}_{\alpha} - Cl(V)$ and hence f is weakly \widetilde{g}_{α} -irresolute. Corollary 5.1. If Y is strongly G-closed, extremally \widetilde{g}_{α} -disconnected space then the surjective function $f:(X,\tau)\to (Y,\sigma)$ with strongly \widetilde{g}_{α} -closed graph is weakly \widetilde{g}_{α} -irresolute. *Proof.* By the Theorem 4.3 Y is \tilde{g}_{α} - T_2 and by the Theorem 5.1 f is weakly \tilde{g}_{α} -irresolute. **Theorem 5.2.** Let the function $f:(X,\tau)\to (Y,\sigma)$ have a strongly \widetilde{g}_{α} -closed graph G(f). Then f satisfies the following property. P^* . For each set A strongly G-closed relative to Y, $f^{-1}(A)$ is \widetilde{g}_{α} -closed in X. Proof. If $f^{-1}(A)$ is not \widetilde{g}_{α} -closed in X. Then there exists $x \in \widetilde{g}_{\alpha}Cl(f^{-1}(A)) - f^{-1}(A)$. Let $y \in A$. Then $(x,y) \in X \times Y - G(f)$. Since G(f) is strongly \widetilde{g}_{α} -closed, there exist of $U_y(x) \in \widetilde{G}_{\alpha}O(X,x), V_y \in \widetilde{G}_{\alpha}O(Y,y)$ such that $f(U_y(x)) \cap \widetilde{g}_{\alpha}$ - $Cl(V_y) = \phi$ —-(i). $\{V_y : y \in A\}$ is a cover of A by \widetilde{g}_{α} -open sets in Y. The strong G-closedness of A relative to Y implies the existence of \widetilde{g}_{α} -open sets $V_{y_1}, V_{y_2}, ... V_{y_n}$ in Y such that $A \subseteq \bigcup_{i=1}^n \widetilde{g}_{\alpha}$ - $Cl(V_{y_i})$. Let $\{U_{y_i}(x) : i = 1, 2, ..n\}$ be the corresponding \widetilde{g}_{α} -open sets in X satisfying (i). Let $U = \bigcap_{i=1}^n \{U_{y_i}(x) : i = 1, 2, ..n\}$. Then $U \in \widetilde{G}_{\alpha}O(X,x)$. Since the finite intersection of \widetilde{g}_{α} -open sets is \widetilde{g}_{α} -open. We have, $f(U) \cap A \subseteq f(\bigcap_{i=1}^n U_{y_i}(x)) \cap (\bigcup_{i=1}^n) \widetilde{g}_{\alpha}$ - $Cl(V_{y_i}) = \bigcup_{i=1}^n f(U_{y_i}(x)) \cap \widetilde{g}_{\alpha}$ - $Cl(V_{y_i}) = \phi$. But $x \in \widetilde{g}_{\alpha}$ - $Cl(f^{-1}(A)) \Rightarrow U \cap f^{-1}(A) \neq \phi$ a contradiction to our assumption to the above result. Hence our assumption is wrong. **Theorem 5.3.** For a \widetilde{g}_{α} - T_2 space X , every strongly G-closed subset relative to X is \widetilde{g}_{α} -closed. Proof. Let X be a \widetilde{g}_{α} - T_2 space and A be a strongly G-closed subset relative to X. Let $x \in A$ and $y \in X - A$. Since X is \widetilde{g}_{α} - T_2 and $x \neq y$ there exist $U_x \in \widetilde{G}_{\alpha}O(X,x), V \in \widetilde{G}_{\alpha}O(Y,y)$ such that $U_x \cap V = \phi \Rightarrow \widetilde{g}_{\alpha}$ - $Cl(U_x) \cap V = \phi \Rightarrow y \notin \widetilde{g}_{\alpha} - Cl(U_x) \Rightarrow \widetilde{g}_{\alpha}$ - $Cl(U_x) \subseteq X - \{y\}$. $\{U_x : x \in A\}$ is a cover of A by \widetilde{g}_{α} -open sets in X. Since A is strongly G-closed relative to X there exist a finite subcover $\{U_{x_i} : i = 1, 2..n\}$ such that $A \subseteq \bigcup_{i=1}^n \widetilde{g}_{\alpha}$ - $Cl(U_{x_i}) \subseteq \widetilde{g}_{\alpha}$ - $Cl(\bigcup_{i=1}^n U_{x_i}) = \widetilde{g}_{\alpha}$ -Cl(U) where $U = \bigcup_{i=1}^n U_{x_i}$. Hence $y \notin \widetilde{g}_{\alpha}$ -Cl(U). If $y \in \widetilde{g}_{\alpha}$ -Cl(U) then $y \in \widetilde{g}_{\alpha} - Cl(\bigcup_{i=1}^n U_{x_i}) \Rightarrow (\bigcup_{i=1}^n U_{x_i}) \cap V \neq \phi \Rightarrow \bigcup_{i=1}^n (U_{x_i} \cap V) \neq \phi$ which is a contradiction. Therefore $A \subseteq \widetilde{g}_{\alpha}$ - $Cl(U) \subseteq X - \{y\}$. Therefore $A = \bigcap_{y \in X - A} (X - \{y\}) = \bigcap_{y \in X - A} \widetilde{g}_{\alpha}$ - $Cl(U_y)$. Hence A is \widetilde{g}_{α} -closed in Y. #### References - [1] Jafari S,Noiri T,Rajesh N and Thivagar M.L.,Another generalized closed sets,Kochi J.Math., 3(2008),25-38. - [2] Jafari S,Thivagar M.L and Nirmala Rebecca P,Remarks on \tilde{g}_{α} -closed sets,International Mathematical Forum,5(2010), 1167-1178. - [3] Jancovic D.S., A note on mappings of extremally disconnected spaces, Acta Math. Hung., 46 (1985), 83-92. - [4] Levine N,Semi-open sets and semi-conitnuity in topological spaces, Amer. Math. Monthly, 70(1963),36-41. - [5] Long P.E, Functions with closed graphs, Amer. Math. Monthly, 76(1969), 930-932. - [6] Njastad O,On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970. - [7] Noiri T,On functions with strongly closed graphs, Acta Sci. Hungar. Tomus, 32(1978), 1-4. - [8] Palaniappan N and Chandrasekhara Rao, Regular Generalised closed set, Kyungpook Mathematical Journal, 33(1980), 161-169. - [9] Reilly I.L and Vamanamurthy M.K, On α -continuity in topological spaces, Acta Math. Hung., 45(1985),27-32. - [10] , Sarsak M and Rajesh N, Weak separation axioms via \tilde{g} -open sets, Far East Journal of Mathematical Sciences, Vol30, Issue 3,(2008),457-471. - [11] Sundaram P and Sheik John M, On ω -closed sets in Topology, Acta Ciencia Indica, 4(2000), 389-392. - [12] Thivagar M.L and Nirmala Rebecca P,Remarks on \tilde{g}_{α} -irresolute maps,Bol.Soc.Paran.Mat.,v29(1)(2011),49-60. - [13] Thivagar M.L and Nirmala Rebecca P,On Topological \tilde{g}_{α} -quotient mappings,Journal of Advanced studies in Topology,1(2010),9-16. - [14] Thivagar M.L and Nirmala Rebecca P,New Types of Topological mappings, International J.of Math.Sci and Engg.Appls., Vol NoIV, (2011), 43-61. - [15] Veera Kumar M.K.R.S,Between g* and g-closed sets,Mem.Fac. Sci.Kochi Univ Math.,21 (2000),1-19. - [16] Veera Kumar M.K.R.S,#g-semi closed sets in Topological spaces,Antarctica J.Math.,2(2005),201-222. - (1) School of Mathematics, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India. E-mail address: mlthivagar@yahoo.co.in (2) Department of Mathematics, Lady Doak College, Madurai 625002, Tamilnadu, India. $E ext{-}mail\ address: nimmi_rebecca@yahoo.com}$