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ON A BEST EXTENSION OF A HALF-DISCRETE HILBERT-TYPE
INEQUALITY

BICHENG YANG

Abstract. By using the way of weight functions and the technique of real analysis,

a best extension of a half-discrete Hilbert-type inequality with one-pair conjugate

exponents and two interval variables is given. The equivalent forms, the operator

expressions and the reverses are considered.

1. Introduction

Suppose that p > 1, 1
p

+ 1
q

= 1, f(≥ 0) ∈ Lp(0,∞), g(≥ 0) ∈ Lq(0,∞), ||f ||p =

{
∫ ∞

0
fp(x)dx}

1
p > 0, ||g||q > 0. Then we have the following famous Hardy-Hilbert’s

integral inequality (cf. [1]):

(1.1)

∫ ∞

0

∫ ∞

0

f(x)g(y)

x+ y
dxdy <

π

sin(π/p)
||f ||p||g||q,

where the constant factor π
sin(π/p)

is the best possible. If am, bn ≥ 0, a = {am}∞m=1 ∈

lp, b = {bn}∞n=1 ∈ lq, ||a||p = {
∑∞

m=1 a
p
m}

1
p > 0, ||b||q > 0, then we still have the follow-

ing discrete Hardy-Hilbert’s inequality with the same best constant factor π
sin(π/p)

:

(1.2)
∞∑
m=1

∞∑
n=1

ambn
m+ n

<
π

sin(π/p)
||a||p||b||q.
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Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [2],

[3], [4]). In 1998, by introducing an independent parameter λ ∈ (0, 1], Yang [5] gave

an extension of (1.1) (for p = q = 2). Recently, by using the way of weight functions,

Yang [6] gave some best extensions of (1.1) and (1.2) as follows: For r > 1, 1
r
+ 1

s
= 1,

we have

(1.3)

∫ ∞

0

∫ ∞

0

f(x)g(y)

(x+ y)λ
dxdy < B(

λ

r
,
λ

s
)||f ||p,φ||g||q,ψ(λ > 0),

(1.4)
∞∑
m=1

∞∑
n=1

ambn
(m+ n)λ

< B(
λ

r
,
λ

s
)||a||p,φ||b||q,ψ(0 < λ ≤ 2 min{r, s}),

where, B(u, v)(=
∫ ∞

0
tu−1

(1+t)u+v dt(u, v > 0)) is the Beta function and φ(x) = xp(1−
λ
r
)−1,

ψ(x) = xq(1−
λ
s
)−1, 0 < ||f ||p,φ := {

∫ ∞
0
φ(x)|f(x)|pdx}

1
p < ∞, 0 < ||g||q,ψ < ∞,

0 < ||a||p,φ := {
∑∞

n=1 φ(n)|an|n}
1
p < ∞ and 0 < ||b||q,ψ < ∞. Some Hilbert-type

inequalities about the other measurable kernels are provided in [7]-[14].

About the case of half-discrete Hilbert-type inequalities with the non-homogeneous

kernels, Hardy et al. provided some results in Theorem 351 of [1]. But they did not

prove that the the constant factors in the inequalities are the best possible. And

Yang [15] gave a result with the kernel 1
1+nx

similar to 1
n+x

by introducing an interval

variable as follows: If u(t) is a differentiable strictly increasing function in

(n0 − 1,∞)(n0 ∈ N), such that u((n0 − 1)+) = 0 and u(∞) = ∞, λ > 0,

(u(t))
λ−2

2 u′(t))(t ∈ (n0 − 1,∞)) is decreasing, and

f(x), an ≥ 0, 0 <
∫ ∞
n0−1

(u(x))1−λ

u′(x)
f 2(x)dx <∞, 0 <

∑∞
n=n0

(u(n))1−λ

u′(n)
a2
n <∞, then∫ ∞

n0−1

f(x)
∞∑

n=n0

an
(1 + u(n)u(x))λ

dx

< B(
λ

2
,
λ

2
)

{∫ ∞

n0−1

(u(x))1−λ

u′(x)
f 2(x)dx

∞∑
n=n0

(u(n))1−λ

u′(n)
a2
n

} 1
2

,(1.5)

where the constant factor B(λ
2
, λ

2
) is the best possible.
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In this paper, by using the way of weight functions and the technique of real

analysis, a best extension of (1.5) with one-pair conjugate exponents and two interval

variables is given. The equivalent forms, the operator expressions and some reverses

are considered.

2. Some Lemmas

Lemma 2.1. If λ > 0, u(x)(x ∈ (b, c)), v(x)(x ∈ (n0 − 1,∞), n0 ∈ N) are strictly

increasing differentiable functions and [v(x)]
λ
2
−1v′(x) is decreasing with

u(b+) = v((n0− 1)+) = 0, u(c−) = v(∞) = ∞, define two weight functions as follows

ω(n) : = [v(n)]
λ
2

∫ c

b

u′(x)

(1 + v(n)u(x))λ
[u(x)]

λ
2
−1dx, n ≥ n0(n ∈ N),(2.1)

$(x) : = [u(x)]
λ
2

∞∑
n=n0

v′(n)

(1 + v(n)u(x))λ
[v(n)]

λ
2
−1, x ∈ (b, c).(2.2)

If we define the function θλ(x) as follows, then we have the following inequality:

0 < B(
λ

2
,
λ

2
)(1− θλ(x)) < $(x) < ω(n) = B(

λ

2
,
λ

2
),(2.3)

θλ(x) =
1

B(λ
2
, λ

2
)

∫ u(x)v(n0)

0

t
λ
2
−1dt

(t+ 1)λ
= O([u(x)]

λ
2 ), x ∈ (b, c).(2.4)

Proof. Setting t = v(n)u(x) in (2.1), we find

ω(n) =

∫ ∞

0

1

(t+ 1)λ
t

λ
2
−1dt = B(

λ

2
,
λ

2
).

For any fixed x ∈ (b, c), in view of the fact that the function

[v(y)]
λ
2−1v′(y)

(1+u(x)v(y))λ (y ∈ (n0 − 1,∞)) is strictly decreasing, we find

$(x) < [u(x)]
λ
2

∫ ∞

n0−1

1

(1 + u(x)v(y))λ
[v(y)]

λ
2
−1v′(y)dy

t=u(x)v(y)
=

∫ ∞

0

1

(t+ 1)λ
t

λ
2
−1dt = B(

λ

2
,
λ

2
) = ω(n).
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Moreover,

$(x) > [u(x)]
λ
2

∫ ∞

n0

1

(1 + u(x)v(y))λ
[v(y)]

λ
2
−1v′(y)dy

t=u(x)v(y)
=

∫ ∞

u(x)v(n0)

t
λ
2
−1

(t+ 1)λ
dt = B(

λ

2
,
λ

2
)[1− θλ(x)].

Clearly θλ(x) > 0 and

θλ(x) <
1

B(λ
2
, λ

2
)

∫ u(x)v(n0)

0

t
λ
2
−1dt =

2

λB(λ
2
, λ

2
)
(u(x)v(n0))

λ
2 .

Hence, we have (2.3) and (2.4). �

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled and additionally,

p > 0(p 6= 1), 1
p

+ 1
q

= 1, an ≥ 0, n ≥ n0(n ∈ N), f(x) is a non-negative measurable

function in (b, c). Then

(i) for p > 1, we have the following inequalities:

J1 : =

{
∞∑

n=n0

v′(n)

[v(n)]1−
pλ
2

[∫ c

b

f(x)

(1 + v(n)u(x))λ
dx

]p} 1
p

≤ [B(
λ

2
,
λ

2
)]

1
q

{∫ c

b

$(x)
[u(x)]p(1−

λ
2
)−1

[u′(x)]p−1
fp(x)dx

} 1
p

,(2.5)

and

L1 : =

{∫ c

b

[$(x)]1−qu′(x)

[u(x)]1−
qλ
2

[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q
dx

} 1
q

≤

{
B(

λ

2
,
λ

2
)

∞∑
n=n0

[v(n)]q(1−
λ
2
)−1

[v′(n)]q−1
aqn

} 1
q

;(2.6)

(ii) for 0 < p < 1, we have the reverses of (2.5) and (2.6).
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Proof. (1) By Hölder’s inequality (cf. [16]) and (2.3), we have[∫ c

b

f(x)

(1 + v(n)u(x))λ
dx

]p
=

{∫ c

b

1

(1 + v(n)u(x))λ

[
[u(x)](1−

λ
2
)/q

[v(n)](1−
λ
2
)/p

[v′(n)]1/p

[u′(x)]1/q
f(x)

]

×

[
[v(n)](1−

λ
2
)/p

[u(x)](1−
λ
2
)/q

[u′(x)]1/q

[v′(n)]1/p

]
dx

}p

≤
∫ c

b

v′(n)

(1 + v(n)u(x))λ
[u(x)](1−

λ
2
)(p−1)

[v(n)]1−
λ
2 [u′(x)]p−1

fp(x)dx

×

{∫ c

b

u′(x)

(1 + v(n)u(x))λ
[v(n)](1−

λ
2
)(q−1)

[u(x)]1−
λ
2 [v′(n)]q−1

dx

}p−1

=
[B(λ

2
, λ

2
)]p−1

[v(n)]
pλ
2
−1v′(n)

∫ c

b

v′(n)fp(x)

(1 + v(n)u(x))λ
[u(x)](1−

λ
2
)(p−1)

[v(n)]1−
λ
2 [u′(x)]p−1

dx.

Then by Lebesgue term by term integration theorem (cf. [17]), we have

J1 ≤ [B(
λ

2
,
λ

2
)]

1
q

{
∞∑

n=n0

∫ c

b

v′(n)fp(x)

(1 + v(n)u(x))λ
[u(x)](1−

λ
2
)(p−1)

[v(n)]1−
λ
2 [u′(x)]p−1

dx

} 1
p

= [B(
λ

2
,
λ

2
)]

1
q

{∫ c

b

∞∑
n=n0

v′(n)fp(x)

(1 + v(n)u(x))λ
[u(x)](1−

λ
2
)(p−1)

[v(n)]1−
λ
2 [u′(x)]p−1

dx

} 1
p

= [B(
λ

2
,
λ

2
)]

1
q

{∫ c

b

$(x)
[u(x)]p(1−

λ
2
)−1

[u′(x)]p−1
fp(x)dx

} 1
p

,

and (2.5) follows. Still by Hölder’s inequality, we have[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q

=

{
∞∑

n=n0

1

(1 + u(x)v(n))λ

[
[u(x)](1−

λ
2
)/q

[v(n)](1−
λ
2
)/p

[v′(n)]1/p

[u′(x)]1/q

]

×

[
[v(n)](1−

λ
2
)/p

[u(x)](1−
λ
2
)/q

[u′(x)]1/q

[v′(n)]1/p
an

]}q
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≤

{
∞∑

n=n0

1

(1 + u(x)v(n))λ
[u(x)](1−

λ
2
)(p−1)

[v(n)]1−
λ
2

v′(n)

[u′(x)]p−1

}q−1

×
∞∑

n=n0

1

(1 + u(x)v(n))λ
[v(n)](1−

λ
2
)(q−1)

[u(x)]1−
λ
2

u′(x)

[v′(n)]q−1
aqn

=
[u(x)]1−

qλ
2

[$(x)]1−qu′(x)

∞∑
n=n0

[u(x)]
λ
2
−1u′(x)[v(n)]

λ
s

(1 + u(x)v(n))λ
[v(n)]q(1−

λ
2
)−1

[v′(n)]q−1
aqn.

Then we have

L1 ≤

{∫ c

b

{
∞∑

n=n0

[u(x)]
λ
2
−1u′(x)[v(n)]

λ
2

(1 + u(x)v(n))λ
[v(n)]q(1−

λ
2
)−1

[v′(n)]q−1
aqn}dx

} 1
q

=

{
∞∑

n=n0

[
[v(n)]

λ
2

∫ c

b

[u(x)]
λ
2
−1u′(x)

(1 + u(x)v(n))λ
dx

]
[v(n)]q(1−

λ
2
)−1

[v′(n)]q−1
aqn

} 1
q

≤

{
∞∑

n=n0

ω(n)
[v(n)]q(1−

λ
2
)−1

[v′(n)]q−1
aqn

} 1
q

,

and then in view of (2.3), since ω(n) = B(λ
2
, λ

2
), inequality (2.6) follows.

(ii) By the reverse Holder’s inequality (cf. [16]) and the same way, for q < 0, we

have the reverses of (2.5) and (2.6). �

3. Main Results

Setting Φ(x) := [u(x)]p(1−λ
2 )−1

[u′(x)]p−1 , Φ̃(x) := (1− θλ(x))Φ(x)(x ∈ (b, c)),

Ψ(n) :=
[v(n)]q(1−

λ
2
)−1

[v′(n)]q−1
(n ∈ N, n ≥ n0),

we have [Φ(x)]1−q = u′(x)

[u(x)]1−
qλ
2

, [Ψ(n)]1−p = v′(n)

[v(n)]1−
pλ
2

and

Theorem 3.1. Let the assumptions of Lemma 2.1 be fulfilled and additionally,

p > 1, 1
p

+ 1
q

= 1, f(x) ≥ 0(x ∈ (b, c)), an ≥ 0, n ≥ n0(n ∈ N),



ON A BEST EXTENSION OF A HALF-DISCRETE HILBERT-TYPE INEQUALITY 273

f ∈ Lp,Φ(b, c), a = {an}∞n=n0
∈ lq,Ψ, 0 < ||f ||p,Φ = {

∫ c

b
Φ(x)fp(x)dx}

1
p <∞ and

0 < ||a||q,Ψ = {
∞∑

n=n0

Ψ(n)aqn}
1
q <∞.

Then we have the following equivalent inequalities:

I : =
∞∑

n=n0

∫ c

b

anf(x)dx

(1 + v(n)u(x))λ
=

∫ c

b

∞∑
n=n0

anf(x)dx

(1 + u(x)v(n))λ

< B(
λ

2
,
λ

2
)||f ||p,Φ||a||q,Ψ,(3.1)

J : =

{
∞∑

n=n0

[Ψ(n)]1−p
[∫ c

b

f(x)

(1 + v(n)u(x))λ
dx

]p} 1
p

< B(
λ

2
,
λ

2
)||f ||p,Φ,(3.2)

and

L : =

{∫ c

b

[Φ(x)]1−q

[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q
dx

} 1
q

< B(
λ

2
,
λ

2
)||a||q,Ψ,(3.3)

where the same constant factor B(λ
2
, λ

2
) in the above inequalities is the best possible.

Proof. By Lebesgue term by term integration theorem (cf. [17]), there are two ex-

pressions for I in (3.1). In view of (2.3) and (2.5), for $(x) < B(λ
r
, λ
s
), we have (3.2).

By Hölder’s inequality, we have

(3.4) I =
∞∑

n=n0

[Ψ
−1
q (n)

∫ c

b

f(x)dx

(1 + v(n)u(x))λ
][Ψ

1
q (n)an] ≤ J ||a||q,Ψ.

Then by (3.2), we have (3.1). On the other-hand, assuming that (3.1) is valid, setting

an := [Ψ(n)]1−p
[∫ c

b

f(x)

(1 + v(n)u(x))λ
dx

]p−1

, n ≥ n0,
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then Jp−1 = ||a||q,Ψ. By (2.5), we find J <∞. If J = 0, then (3.2) is naturally valid;

if J > 0, then by (3.1), we have

||a||qq,Ψ = Jp = I < B(
λ

2
,
λ

2
)||f ||p,Φ||a||q,Ψ,

||a||q−1
q,Ψ = J < B(

λ

2
,
λ

2
)||f ||p,Φ,

and we have (3.2), which is equivalent to (3.1).

In view of (2.3) and (2.6), for [$(x) ]1−q > [B(λ
2
, λ

2
)]1−q, we have (3.3). By Hölder’s

inequality, we find

(3.5) I =

∫ c

b

[Φ
1
p (x)f(x)][Φ

−1
p (x)

∞∑
n=n0

an
(1 + u(x)v(n))λ

]dx ≤ ||f ||p,ΦL.

Then by (3.3), we have (3.1). On the other-hand, assuming that (3.1) is valid, setting

f(x) := [Φ(x)]1−q

[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q−1

, x ∈ (b, c),

then Lq−1 = ||f ||p,Φ. By (2.6), we find L <∞. If L = 0, then (3.3) is naturally valid;

if L > 0, then by (3.1), we have

||f ||pp,Φ = Lq = I < B(
λ

2
,
λ

2
)||f ||p,Φ||a||q,Ψ,

||f ||p−1
p,Φ = L < B(

λ

2
,
λ

2
)||a||q,Ψ,

and we have (3.3) which is equivalent to (3.1).

Hence, inequalities (3.1), (3.2) and (3.3) are equivalent.

There exists an unified constant d ∈ (b, c), satisfying u(d) = 1. For 0 < ε < qλ
2
, set-

ting f̃(x) = [u(x)]
λ
2
+ ε

p
−1u′(x), x ∈ (b, d); f̃(x) = 0, x ∈ [d, c), ãn = [v(n)]

λ
2
− ε

q
−1v′(n),

n ≥ n0, if there exists a positive number k(≤ B(λ
2
, λ

2
)), such that (3.1) is still valid
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as we replace B(λ
2
, λ

2
) by k, then in particular, we have

Ĩ : =

∫ c

b

∞∑
n=n0

ãnf̃(x)dx

(1 + u(x)v(n))λ
< k||f̃ ||p,Φ||ã||q,Ψ

= k(
1

ε
)

1
p{v(n0)v

′(n0) +
∞∑

n=n0+1

[v(n)]−ε−1v′(n)}
1
q

≤ k(
1

ε
)

1
p{v(n0)v

′(n0) +

∫ ∞

n0

[v(y)]−ε−1v′(y)dy}
1
q

=
k

ε
{εv(n0)v

′(n0) + [v(n0)]
−ε}

1
q .(3.6)

In view of the decreasing property of 1
(1+u(x)v(y))λ [v(y)]

λ
2
− ε

q
−1v′(y), we find

Ĩ =

∫ d

b

[u(x)]
λ
2
+ ε

p
−1u′(x)

∞∑
n=n0

[v(n)]
λ
2
− ε

q
−1v′(n)

(1 + u(x)v(n))λ
dx

≥
∫ d

b

[u(x)]
λ
2
+ ε

p
−1u′(x)

[∫ ∞

n0

[v(y)]
λ
s
− ε

q
−1v′(y)

(1 + u(x)v(y))λ
dy

]
dx

t=u(x)v(y)
=

∫ d

b

[u(x)]−ε−1u′(x)

[∫ ∞

u(x)v(n0)

t
λ
2
− ε

q
−1

(1 + t)λ
dt

]
dx

=

∫ d

b

[u(x)]ε−1u′(x)

[∫ ∞

0

t
λ
2
− ε

q
−1

(1 + t)λ
dt−

∫ u(x)v(n0)

0

t
λ
2
− ε

q
−1

(1 + t)λ
dt

]
dx

=
1

ε
B(

λ

2
− ε

q
,
λ

2
+
ε

q
)− A(x),

where

(3.7) A(x) :=

∫ d

b

[u(x)]ε−1u′(x)

[∫ u(x)v(n0)

0

t
λ
2
− ε

q
−1

(1 + t)λ
dt

]
dx.

Since we find

0 < A(x) <

∫ d

b

[u(x)]ε−1u′(x)[

∫ u(x)v(n0)

0

t
λ
2
− ε

q
−1dt]dx

=
[v(n0)]

λ
2
− ε

q

(λ
2
− ε

q
)(λ

2
+ ε

p
)
,
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then it follows A(x) = O(1)(ε→ 0+). By (3.6) and (3.7), we have

B(
λ

2
− ε

q
,
λ

2
+
ε

q
)− εO(1) < k{εv(n0)v

′(n0) + [v(n0)]
−ε}

1
q ,

and then B(λ
2
, λ

2
) ≤ k(ε→ 0+). Hence k = B(λ

2
, λ

2
) is the best value of (3.1).

We conform that the constant factor B(λ
2
, λ

2
) in (3.2) ((3.3)) is the best possible,

otherwise we can came to a contradiction by (3.4) ((3.5)) that the constant factor in

(3.1) is not the best possible. �

Remark 1. Set two weight normal spaces as follows:

Lp,Φ(b, c) = {f |||f ||p,Φ < ∞}, lq,Ψ = {a|||a||q,Ψ < ∞}.(i) Define a half-discrete

Hilbert’s operator T : Lp,Φ(b, c) → lp,Ψ1−p as follows: For f ∈ Lp,Φ(b, c), there ex-

ists an unified representation Tf ∈ lp,Ψ1−p , satisfying Tf(n) =
∫ c

b
f(x)

(1+v(n)u(x))λdx,

n ≥ n0. Then by (3.1), it follows ||Tf ||p.Ψ1−p < B(λ
2
, λ

2
)||f ||p,Φ and T is bounded

with ||T || ≤ B(λ
2
, λ

2
). Since the constant factor in (3.2) is the best possible, we have

||T || = B(λ
2
, λ

2
).

(ii) Define a half-discrete Hilbert’s operator T̃ : lq,Ψ → Lq,Φ1−q(b, c) as follows: For

a ∈ lq,Ψ, there exists an unified representation T̃ a ∈ Lq,Φ1−q(b, c), satisfying

(T̃ a)(x) =
∑∞

n=n0

an

(1+u(x)v(n))λ , x ∈ (b, c). Then by (3.2), it follows

||T̃ a||q.Φ1−q < B(λ
2
, λ

2
)||a||q,Ψ and T̃ is bounded with ||T̃ || ≤ B(λ

2
, λ

2
).Since the constant

factor in (3.3) is the best possible, we have ||T̃ || = B(λ
2
, λ

2
) = ||T ||.

In the following theorem, for 0 < p < 1, we still use the formal symbols of ||f ||p,Φ̃
and ||a||q,Ψ et al.

Theorem 3.2. Let the assumptions of Lemma 2.1 be fulfilled and additionally,

0 < p < 1, 1
p

+ 1
q

= 1, f(x) ≥ 0(x ∈ (b, c)), an ≥ 0(n ≥ n0, n ∈ N),

0 < ||f ||p,Φ̃ = {
∫ c

b
(1− θλ(x))Φ(x)fp(x)dx}

1
p <∞ and
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0 < ||a||q,Ψ = {
∑∞

n=n0
Ψ(n)aqn}

1
q <∞. Then we have the following equivalent inequal-

ities:

I =
∞∑

n=n0

∫ c

b

anf(x)dx

(1 + v(n)u(x))λ
=

∫ c

b

∞∑
n=n0

anf(x)dx

(1 + u(x)v(n))λ

> B(
λ

2
,
λ

2
)||f ||p,Φ̃||a||q,Ψ,(3.8)

J =

{
∞∑

n=n0

[Ψ(n)]1−p
[∫ c

b

f(x)

(1 + v(n)u(x))λ
dx

]p} 1
p

> B(
λ

2
,
λ

2
)||f ||p,Φ̃,(3.9)

and

L̃ : =

{∫ c

b

[Φ̃(x)]1−q

[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q
dx

} 1
q

> B(
λ

2
,
λ

2
)||a||q,Ψ.(3.10)

Moreover, if there exists a constant δ0 > 0, such that for any δ ∈ [0, δ0), [v(y)]
λ
2
+δ−1v′(y)

is decreasing in (n0 − 1,∞), then the same constant factor B(λ
2
, λ

2
) in the above in-

equalities is the best possible.

Proof. In view of (2.3) and the reverse of (2.5), for $(x) > B(λ
2
, λ

2
)(1 − θλ(x)),we

have (3.9). By the reverse Hölder’s inequality, we have

(3.11) I =
∞∑

n=n0

[
Ψ

−1
q (n)

∫ c

b

f(x)dx

(1 + v(n)u(x))λ

]
[Ψ

1
q (n)an] ≥ J ||a||q,Ψ.

Then by (3.9), we have (3.8). On the other-hand, assuming that (3.8) is valid, setting

an as Theorem 1, then Jp−1 = ||a||q,Ψ. By the reverse of (2.5), we find J > 0. If J = ∞,
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then (3.9) is naturally valid; if J <∞, then by (3.8), we have

||a||qq,Ψ = Jp = I > B(
λ

2
,
λ

2
)||f ||p,Φ̃||a||q,Ψ,

||a||q−1
q,Ψ = J > B(

λ

2
,
λ

2
)||f ||p,Φ̃,

and we have (3.9) which is equivalent to (3.8).

In view of (2.3) and the reverse of (2.6), for [$(x)]1−q > [B(λ
r
, λ
s
)(1−θλ(x))]1−q(q <

0), we have (3.10). By the reverse Hölder’s inequality, we have

(3.12) I =

∫ c

b

[Φ̃
1
p (x)f(x)]

[
Φ̃

−1
p (x)

∞∑
n=n0

an
(1 + u(x)v(n))λ

]
dx ≥ ||f ||p,Φ̃L̃.

Then by (3.10), we have (3.8). On the other-hand, assuming that (3.8) is valid,

setting

f(x) := [Φ̃(x)]1−q

[
∞∑

n=n0

an
(1 + u(x)v(n))λ

]q−1

, x ∈ (b, c),

then L̃q−1 = ||f ||p,Φ̃. By the reverse of (2.6), we find L̃ > 0. If L̃ = ∞, then (3.10) is

naturally valid; if L̃ <∞, then by (3.8), we have

||f ||p
p,Φ̃

= L̃q = I > B(
λ

2
,
λ

2
)||f ||p,Φ̃||a||q,Ψ,

||f ||p−1

p,Φ̃
= L̃ > B(

λ

2
,
λ

2
)||a||q,Ψ,

and we have (3.10) which is equivalent to (3.8).

Hence inequalities (3.8), (3.9) and (3.10) are equivalent.

For 0 < ε < min{ |q|λ
2
, |q|δ0}, setting f̃(x) = [u(x)]

λ
2
+ ε

p
−1u′(x), x ∈ (b, d);

f̃(x) = 0, x ∈ [d, c), ãn = [v(n)]
λ
2
− ε

q
−1v′(n), n ≥ n0, if there exists a positive num-

ber k(≥ B(λ
2
, λ

2
)), such that (3.8) is still valid as we replace B(λ

2
, λ

2
) by k, then in

particular, for q < 0, we have

Ĩ :=

∫ c

b

∞∑
n=n0

ãnf̃(x)dx

(1 + u(x)v(n))λ
> k||f̃ ||p,Φ̃||ã||q,Ψ
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= k{
∫ d

b

(1−O([u(x)]
λ
2 ))[u(x)]−ε−1u′(x)dx}

1
p

{
∞∑

n=n0

[v(n)]−ε−1v′(n)

} 1
q

= k{1

ε
−O(1)}

1
p

{
[v(n0)]

−ε−1v′(n0) +
∞∑

n=n0+1

[v(n)]−ε−1v′(n)

} 1
q

≥ k{1

ε
−O(1))}

1
p{[v(n0)]

−ε−1v′(n0) +

∫ ∞

n0

[v(y)]−ε−1v′(y)dy}
1
q

=
k

ε
{1− εO(1)}

1
p{ε[v(n0)]

−ε−1v′(n0) + [v(n0)]
−ε}

1
q .(3.13)

In view of the decreasing property of [v(y)]
λ
2−

ε
q−1

v′(y)
(1+u(x)v(y))λ , setting t = u(x)v(y), we find

Ĩ =

∫ d

b

[u(x)]
λ
2
+ ε

p
−1u′(x)

∞∑
n=n0

[v(n)]
λ
2
− ε

q
−1v′(n)

(1 + u(x)v(n))λ
dx

≤
∫ d

b

[u(x)]
λ
2
+ ε

p
−1u′(x)

[∫ ∞

n0−1

[v(y)]
λ
2
− ε

q
−1v′(y)

(1 + u(x)v(y))λ
dy

]
dx

=

∫ d

b

[u(x)]ε−1u′(x)dx

∫ ∞

0

t
λ
2
− ε

q
−1

(1 + t)λ
dt

=
1

ε
B(

λ

2
− ε

q
,
λ

2
+
ε

q
).(3.14)

By (3.13) and (3.14), we have

B(
λ

2
− ε

q
,
λ

2
+
ε

q
) > k{1− εO(1)}

1
p{ε[v(n0)]

−ε−1v′(n0) + [v(n0)]
−ε}

1
q ,

and then B(λ
2
, λ

2
) ≥ k(ε→ 0+). Hence k = B(λ

2
, λ

2
) is the best value of (3.8).

We confirm that the constant factor B(λ
2
, λ

2
) in (3.9) ((3.10)) is the best possible,

otherwise we can came to a contradiction by (3.11) ((3.12)) that the constant factor

in (3.8) is not the best possible. �

Remark 2. (i) If α > 0, u(x) = xα, b = 0, c = ∞, v(n) = nα, n0 = 1, then for

0 < αλ ≤ 2, [v(x)]
λ
2
−1v′(x) = αx

αλ
2
−1 is decreasing. In particular, for

α = 1, 0 < λ ≤ 2, u(x) = x(x ∈ (0,∞)), v(n) = n(n ∈ N) in (3.1), (3.2) and (3.3), we
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have the following equivalent inequalities:

I =
∞∑
n=1

∫ ∞

0

anf(x)dx

(1 + nx)λ
=

∫ ∞

0

∞∑
n=1

anf(x)dx

(1 + nx)λ

(3.15) < B(
λ

2
,
λ

2
)||f ||p,φ||a||q,ψ,

(3.16)

{
∞∑
n=1

n
pλ
2
−1

[∫ ∞

0

f(x)

(1 + nx)λ
dx

]p} 1
p

< B(
λ

2
,
λ

2
)||f ||p,φ,

and

(3.17)

{∫ ∞

0

x
qλ
2
−1

[
∞∑
n=1

an
(1 + nx)λ

]q
dx

} 1
q

< B(
λ

2
,
λ

2
)||a||q,ψ.

(ii) For p = q = 2, b = n0 − 1 = 0, c = ∞, v(x) = u(x) in (3.1), we have (1.5).

Hence, (3.1) is a best extension of (1.5).
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