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CHARACTERIZATIONS OF DIMENSION FUNCTIONS OF
WAVELET PACKETS

ABDULLAH

Abstract. This paper deals with the characterizations of dimension functions of

wavelet packets. As a corollary, I prove that if ωn are orthonormal wavelet packets

such that |ω̂n| is continuous and |ω̂n(ξ)| = O
(
|ξ|−1/2−α

)
at ∞ for some α > 0, then

ωn are MRA wavelet packets.

1. Introduction

A wavelet is a function ψ ∈ L2(R) such that
{
ψj,k = 2j/2ψ (2j · −k)

}
forms an

orthonormal basis for L2(R). The dimension function of an orthonormal wavelet

ψ ∈ L2(R) is defined as

Dψ(ξ) =
∞∑
j=1

∑
k∈Z

∣∣∣ψ̂ (2j(ξ + 2kπ)
)∣∣∣2 .

The function Dψ is well defined and is finite a.e. The importance of the dimension

function was discovered by Lemarié, who used it to prove that certain wavelets are

associated with a MRA of L2(R) [16,17]. Auscher [5] proved that if ψ is a wavelet,

then the function Dψ is the dimension of certain closed subspaces of the sequence

`2(Z) (hence the name dimension function, a term coined by Guido Weiss). This
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result, in particular, proves that Dψ is integer valued a.e. Gripenberg [13] and Wang

[20], independently, characterized all wavelets of L2(R) associated with an MRA.

This well known characterization states that a wavelet ψ of L2(R) is associated with

an MRA if and only if Dψ = 1 a.e. In [6], Bownik studied characterizations of all

dimension functions.

Wavelet packet analysis is an important generalization of wavelet analysis, pi-

oneered by Coifman, Meyer, Wickerhauser and other researchers [10, 11, 12, 21].

Discrete Wavelet packets have been thoroughly studied by M.V. Wickerhauser [22]

who has also developed computer programmes and implemented them. Well known

Daubechies orthogonal wavelets are a special case of wavelet packets. Wavelet pack-

ets are organized naturally into collections, and each collection is an orthogonal basis

for L2(R).

Wavelet packet functions are generated by scaling and translating a family of basic

function shapes, which include father wavelet ϕ and mother wavelet ψ. In addition

to ϕ and ψ there is a whole range of wavelet packet functions ωn. These functions are

parametrized by an oscillation or frequency index n. A father wavelet corresponds

to n = 0, so ϕ = ω0. A mother wavelet corresponds to n = 1, so ψ = ω1. Larger

values of n correspond to wavelet packets with more oscillations and higher frequency.

Very recently Ahmad and Kumar have studied band-limited wavelet packets in [1]

and pointwise convergence of wavelet packet series in [2]. Jarrah, Kumar and Ahmad

have studied certain characterization of wavelet packets in [15]. Fourier transforms

of wavelet packets have been studied by Ahmad, Kumar and Debnath in [3]. Ahmad,

Kumar and Debnath have also studied existence of unconditional wavelet packet

bases in [4]. In the present, paper I study characterizations of dimension functions of
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wavelet packets. Results in the paper are generalizations of the results of Gripenberg

[13], Hernández and Weiss [14].

2. Preliminaries

Let Z and R denote the set of integers and real numbers, respectively and T denote

the unit circle in the complex plane, which can be identified with the interval [−π, π).

For basic ideas, results on wavelets, wavelet packets and multiresolution analysis, we

refer to [1, 2, 3, 4, 7, 8, 9, 14, 15, 18].

Lemma 2.1 [19]. Let ϕ ∈ L2(R) be a scaling function. Then {ϕ(. − k)}k∈Z is an

orthonormal basis of V0 if and only if

∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 = 1 for a.e. ξ ∈ R.

Lemma 2.2 [3]. If ωn ∈ L2(R) are wavelet packets associated with the scaling

function ϕ = ω0, then

(2.1)
2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2 = 1 for a.e. ξ ∈ R,

where ` = j − u, u = 0 if j < 0 and u = 0, 1, 2, ..., j if j ≥ 0.

Lemma 2.3 [3]. For orthonormal wavelet packets ωn ∈ L2(R) the expression

D(ξ) =
2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2 ,

where ` = j−u, u = 0, 1, 2, ..., j if j > 0, j ∈ Z+ is well defined and finite for almost

every ξ ∈ R. Moreover,

(2.2)

∫
I

D(ξ)dξ = 2π
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for any interval I of length 2π in R.

Lemma 2.4 [1]. Let ωn ∈ L2(R) are wavelet packets for all n = 0, 1, 2, ... Then

(2.3)
∑
k∈Z

|ω̂n(ξ + 2kπ)|2 = 1 for a.e. ξ ∈ R,

and

(2.4)
∑
k∈Z

ω̂t
(
2`(ξ + 2kπ)

)
ω̂n(ξ + 2kπ) = 0 for a. e. ξ ∈ R, ` ≥ 1,

are necessary and sufficient conditions for the orthonormality of the system

{ω`,n,k : n = 2u, 2u + 1, ..., 2u+1 − 1, ` = j − u, j, k ∈ Z}, where u = 0 if j < 0 and

u = 0, 1, 2, ..., j if j ≥ 0.

Lemma 2.5 [15]. Let {ωn}n∈N be a normal sequence of wavelet packets of L2(R)

and ω`,n,k are given by
{
ωl,n,k(x)} = 2l/2ωn

(
2lx− k

)}
. Then, the function ωn is an

orthonormal wavelet packet if and only if

(2.5)
∑
`∈Z

2u+1−1∑
n=2u

∣∣ω̂n(2`ξ)∣∣2 = 1 for a.e. ξ ∈ R,

where ` = j − u, u = 0 if j ≤ 0 and u = 0, 1, 2, ..., j if j > 0, j ∈ Z and

(2.6)
∞∑
`=0

2u+1−1∑
n=2u

ω̂n(2
`ξ) ω̂n (2`(ξ + 2mπ)) = 0 for a.e. ξ ∈ R, m ∈ 2Z + 1.

Lemma 2.6 [14: p. 359]. Let C be a positive integer and let {vj : j ≥ 1} be a

family of vectors in a Hilbert space H such that

(1)
∞∑
n=1

‖vn‖2 = C and

(2) vn =
∞∑
m=1

〈vn, vm〉vm for all n ≥ 1
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Let F = span{vj : j ≥ 1}. Then, dim F =
∑∞

j=1 ‖vj‖2 = C (Number of basis

elements of F ).

3. Characterizations of dimension functions

The dimension functions of wavelet packets ωn ∈ L2(R) associated with a dilation

by 2 is the function Dωβ
given by

(3.1) Dωβ
(ξ) =

2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2 ,

where β = u+ 1 and ` = j − u, u = 0, 1, 2, ..., j if j > 0, j ∈ Z+.

Theorem 3.1. The functions ωn ∈ L2(R) are MRA wavelet packets if and only if

Dωβ
(ξ) = 1 for almost every ξ ∈ R.

Proof. From Lemma 2.2, we have

2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2 = 1 ⇒ Dωβ

(ξ) = 1, a.e.

where ωn are MRA wavelet packets. Now, to complete the proof of Theorem 3.1 it is

sufficient to show that Dωβ
(ξ) = 1 a.e., so that the wavelet packets are MRA wavelet

packets. I shall break up the proof of this into several lemmas.

Lemma 3.2. If ωn are orthonormal wavelet packets, then

(3.2) ω̂t(2
mξ) =

2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

ω̂t (2
m(ξ + 2kπ)) ω̂n (2`(ξ + 2kπ)) ω̂n

(
2`ξ
)

a.e. for all m ≥ 1 and t = 2u, 2u + 1, ..., 2u+1− 1, where ` = j− u, u = 0 if j ≤ 0 and

u = 0, 1, 2, ..., j if j > 0, j ∈ Z.
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Proof. First of all we show that the series in (3.2) is well defined. By using Schwarz’s

inequality and (2.3), we obtain

2u+1−1∑
n=2u

∑
k∈Z

∣∣∣ω̂t (2m(ξ + 2kπ)) ω̂n (2`(ξ + 2kπ))
∣∣∣

≤

(∑
k∈Z

|ω̂t (2m(ξ + 2kπ))|2
) 1

2 2u+1−1∑
n=2u

(∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2

≤

(∑
s∈Z

|ω̂t (2mξ + 2sπ)|2
) 1

2
(

2u+1−1∑
n=2u

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2

=

(
2u+1−1∑
n=2u

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2

.

Taking the sum over all ` ≥ 1, using Schwarz’s inequality and (2.5), we obtain

2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣∣ω̂t (2m(ξ + 2kπ)) ω̂n (2`(ξ + 2kπ)) ω̂n
(
2`ξ
)∣∣∣

≤
∞∑
`=1

2u+1−1∑
n=2u

(∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2 (∣∣ω̂n (2`ξ)∣∣)

≤

(
2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2
(

2u+1−1∑
n=2u

∞∑
`=1

∣∣ω̂n (2`ξ)∣∣2)
1
2

≤

(
2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2

.1 =
√
Dωβ

(ξ).
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But all the above inequalities are true for a.e. ξ ∈ R. Therefore, the series in (3.2) is

well defined almost everywhere. Let Gm(ξ) be the RHS of (3.2). Then, we show that

Gm(ξ) = ω̂t (2
mξ) for a.e. ξ ∈ R. First of all we show that Gm(ξ) = Gm−1(2ξ), and,

then, that G1(ξ) = ω̂t (2ξ). Clearly, this gives (3.2).

Replacing ` by m in (2.4) and then using it, we get

Gm(ξ) =
∑
k∈Z

ω̂t (2
m(ξ + 2kπ))

2u+1−1∑
n=2u

∞∑
`=1

ω̂n (2`(ξ + 2kπ)) ω̂n
(
2`ξ
)

=
2u+1−1∑
n=2u

∑
k∈Z

ω̂t (2
m(ξ + 2kπ)) ω̂n(ξ + 2kπ) ω̂n(ξ)

+
∑
k∈Z

ω̂t (2
m(ξ + 2kπ))

2u+1−1∑
n=2u

∞∑
`=1

ω̂n (2`(ξ + 2kπ)) ω̂n
(
2`ξ
)

=
∑
k∈Z

ω̂t (2
m(ξ + 2kπ))

2u+1−1∑
n=2u

∞∑
`=0

ω̂n (2`(ξ + 2kπ)) ω̂n
(
2`ξ
)
.

By (2.6), the terms in the summation over ` where k is odd are zero a.e. Therefore,

on replacing k by 2s, we get
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Gm(ξ) =
∑
s∈Z

ω̂t (2
m(ξ + 4sπ))

2u+1−1∑
n=2u

∞∑
`=0

ω̂n (2`(ξ + 4sπ)) ω̂n
(
2`ξ
)

=
∑
s∈Z

ω̂t

(
2m+1

(
ξ

2
+ 2sπ

)) 2u+1−1∑
n=2u

∞∑
`=0

ω̂n

(
2`+1

(
ξ

2
+ 2sπ

))
×ω̂n

(
2`+1 ξ

2

)
=

∑
s∈Z

ω̂t

(
2m+1

(
ξ

2
+ 2sπ

)) 2u+1−1∑
n=2u

∞∑
`=1

ω̂n

(
2`
(
ξ

2
+ 2sπ

))
×ω̂n

(
2`
ξ

2

)
= Gm+1

(
ξ

2

)
.

This shows that Gm(ξ) = Gm−1(2ξ) almost everywhere.

We, now, calculate G1(ξ). Changing variables in the sum over `, we obtain

G1(ξ) =
∑
k∈Z

ω̂t (2(ξ + 2kπ))
2u+1−1∑
n=2u

∞∑
`=1

ω̂n (2`(ξ + 2kπ)) ω̂n
(
2`ξ
)

=
∑
k∈Z

ω̂t (2ξ + 4kπ)
2u+1−1∑
n=2u

∞∑
`=0

ω̂n (2` (2ξ + 4kπ))ω̂n
(
2`2ξ

)
.

Further, in the last sum over k we add all the corresponding terms with 2k replaced

by 2k + 1, which are zero by (2.6). This gives us

G1(ξ) =
∑
k∈Z

ω̂t(2ξ + 2kπ)
2u+1−1∑
n=2u

∞∑
`=0

ω̂n (2`(2ξ + 2kπ)) ω̂n
(
2`2ξ

)
.

Interchanging the order of summation, using (2.4) when ` ≥ 1 and (2.3) when ` = 0

we obtain G1(ξ) = ω̂t(2ξ).

This completes the proof of Lemma 3.2.
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Now, consider `2(Z), and denote its (usual) norm by ‖ ·‖`2 and the inner product

by 〈·, ·〉`2 . If ωn are orthonormal wavelet packets, we define the vector

Ψn,`(ξ) =
{
ω̂n
(
2`(ξ + 2kπ)

)
: n = 2u, 2u + 1, ..., 2u+1 − 1; ` = j − u;

j, k ∈ Z; } , ` ≥ 1.

But (2.3) implies that

‖Ψn,`(ξ)‖`2 =

(∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2) 1

2

≤

(∑
s∈Z

∣∣ω̂n (2`ξ + 2sπ
)∣∣2) 1

2

= 1 for a.e.ξ ∈ R.

Therefore, for almost every ξ the vector Ψn,`(ξ) ∈ `2(Z).

Let Fωβ
(ξ) be the closure of the span of the set of vectors {Ψn,`(ξ) : ` ≥ 1;

n = 2u, 2u + 1, ..., 2u+1 − 1}. Then, Fωβ
(ξ) is a well defined subspace of `2(Z) for

almost every ξ ∈ R. We can rewrite (3.2) in terms of the above notation as

ω̂t(2
mξ) =

2u+1−1∑
n=2u

∞∑
`=1

〈Ψt,m(ξ), Ψn,`(ξ)〉`2ω̂n(2`ξ) for a.e. ξ ∈ R,

for all t = 2u, 2u + 1, ..., 2u+1 − 1. In the above replacing ξ by ξ + 2sπ we obtain, for

n ≥ 1,

ω̂t(2
m(ξ + 2sπ)) =

2u+1−1∑
n=2u

∞∑
`=1

〈Ψt,m(ξ), Ψn,`(ξ)〉`2ω̂n(2`(ξ + 2sπ)) a.e.
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But 〈Ψt,m(ξ), Ψn,`(ξ)〉`2 is 2π-periodic. Therefore, we can write this equality vectori-

ally as

(3.3) Ψt,m(ξ) =
2u+1−1∑
n=2u

∞∑
`=1

〈Ψt,m(ξ), Ψn,`(ξ)〉`2Ψn,`(ξ).

Further, since Dωβ
(ξ) is finite a.e., simple calculation shows that

(3.4) Dωβ
(ξ) =

2u+1−1∑
n=2u

∞∑
`=1

‖Ψn,`(ξ)‖2
`2 .

Let S be the subset of T on which Dωβ
(ξ) <∞. Then, the vectors Ψn,`(ξ), l ≥ 1,

are well defined on S (observe that |S| = 2π). For ξ ∈ S, let Fωβ
(ξ) be closure, in

`2(Z), of the span of {Ψn,`(ξ) : ` ≥ 1;n = 2u, 2u + 1, ..., 2u+1 − 1} . Then the hypoth-

esis of Lemma 2.6 are satisfied if v` = Ψn,`(ξ). This gives us

(3.5) dimFωβ
(ξ) = Dωβ

(ξ) on S.

Now, we are now ready to prove the sufficient part of Theorem 3.1. Let ωn ∈

L2(R) be wavelet packets for which Dωβ
(ξ) = 1 for a.e. ξ ∈ R. Then, by (3.5),

dimFωβ
(ξ) = 1 for a.e. ξ ∈ T. This shows that, for each ξ ∈ S, Fωβ

(ξ) is generated

by a single unit vector U(ξ). We now choose a particular one. For ` ≥ 1, let

E` =
{
ξ ∈ S : Ψn,`(ξ) 6= ~0 and Ψn,r(ξ) = ~0 for all r < `

}
.

The sets E`, for ` ≥ 1, are mutually disjoint and together with

E0 =
{
ξ ∈ T : Dωβ

(ξ) = 0
}
,
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form a partition of S. Hence, for ξ ∈ S\E0, there exists a unique ` ≥ 1 such that

ξ ∈ E`. But E0 has measure 0. Therefore

U(ξ) =
1

‖Ψt,`(ξ)‖`2
Ψt,`(ξ), ξ ∈ E` for some ` ≥ 1,

is well defined and ‖U(ξ)‖`2 = 1 for almost every ξ ∈ T. Write

U(ξ) = {uk : k ∈ Z} .

If we find the scaling function ϕ = ω0, in view of Lemma 2.1, we hope that uk(ξ) =

ω̂0(ξ + 2kπ). Thus, we let

ω̂0(ξ) = uk(ξ − 2kπ) if ξ ∈ T + 2kπ for some k ∈ Z.

This defines ω̂0 on R. We claim ω̂0 ∈ L2(R) :

‖ω̂0‖2
2 =

∑
k∈Z

∫
T
|ω̂0(ξ + 2kπ)|2dξ =

∑
k∈Z

∫
T
|uk(ξ)|2dξ =

∫
T
‖U(ξ)‖2

`2dξ = 2π

since U(ξ) is a unit vector. We also have

(3.6)
∑
k∈Z

|ω̂0(ξ + 2kπ)|2 =
∑
k∈Z

|uk(ξ)|2 = ‖U(ξ)‖2
`2 = 1 for a.e. ξ ∈ R,

which, is equivalent to the fact that {ω0(.− k) : k ∈ Z} is an orthonormal system in

L2(R). Define V #
0 as the closed subspace of L2(R) generated by {ϕ(. − k) : k ∈ Z}.

We claim that

(3.7) V #
0 = V0 =

⊕
j<0

Wj.

From this it follows that {Vj : j ∈ Z} is the desired MRA.

For each ` ≥ 1, there exists a measurable function ν`, defined on T, such that

Ψt,`(ξ) = νt,`(ξ)U(ξ) for a.e. ξ ∈ T.
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Componentwise,

ω̂t
(
2`(ξ + 2kπ)

)
= νt,`(ξ) ω̂0(ξ + 2kπ) for a.e. ξ ∈ T, k ∈ Z.

Hence, by (3.6), for a.e. ξ ∈ T,

(3.8)
∑
k∈Z

∣∣ω̂t (2`(ξ + 2kπ)
)∣∣2 =

∑
k∈Z

|νt,`(ξ)|2 |ω̂0(ξ + 2kπ)|2 = |νt,`(ξ)|2,

which shows that νt,` ∈ L2(T) with ‖νt,`‖2
L2(T) = 2−`(2π). Write the Fourier series of

νt,`, ` ≥ 1, as

νt,`(ξ) =
∑
k∈Z

at,`k e−ikξ for a.e. ξ ∈ T,

with convergence in the L2(T)-norm, and {at,`k }k∈Z ∈ `2(Z). Extending νt,`, 2π-

periodically, we obtain

(3.9) ω̂t
(
2`ξ
)

= νt,`(ξ)ω̂0(ξ) for a.e. ξ ∈ R, ` ≥ 1.

Taking inverse Fourier transform on both sides, we obtain

ω−`,t,0(x) = 2−`/2ωt(2
−`x) = 2`/2

∑
k∈Z

at,`k ω0(x− k), ` ≥ 1.

Hence, ω−`,t,0 ∈ V #
0 for ` ≥ 1. Since V #

0 is invariant under integral translations

and ω−`,t,k(x) = 2−`/2ωt
(
2−`
(
x− 2`k

))
, we have ω−`,t,k ∈ V #

0 for all t = 2u, 2u +

1, ..., 2u+1 − 1, k ∈ Z and ` ≥ 1. Thus, W−` ⊆ V #
0 for all ` ≥ 1 and, hence V0 ⊆ V #

0 .

Now, we need to show that V #
0 ⊆ V0. We do this by showing ω0 is perpendicular

to Wj for all j ≥ 0. For j ≥ 0 and s ∈ Z, the Plancherel theorem, a change of

variables and a periodization argument allow us to write
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2π
2u+1−1∑
n=2u

〈ω0 ω`,n,s〉 =
2u+1−1∑
n=2u

〈ω̂0 (ω`,n,s)̂ 〉

=
2u+1−1∑
n=2u

2−
`
2

∫
R
ω̂0(ξ)ω̂n (2−`ξ)ei2

−`sξ dξ

=
2u+1−1∑
n=2u

2
`
2

∫
R
ω̂0

(
2`ξ
)
ω̂n(ξ)e

isξ dξ

(3.10)
= 2

`
2

∫
T

(
2u+1−1∑
n=2u

∑
k∈Z

ω̂0

(
2`(ξ + 2kπ)

)
ω̂n(ξ + 2kπ)

)
×eisξ dξ.

The convergence of the last series in L2(T) is guaranteed by the fact that ωn ∈

L2(R), n = 0, 1, 2, ... From (3.8) and our assumption Dωβ
(ξ) = 1 a.e. we obtain

2u+1−1∑
n=2u

∞∑
`=1

|νn,`(ξ)|2 =
2u+1−1∑
n=2u

∞∑
`=1

∑
k∈Z

∣∣ω̂n (2`(ξ + 2kπ)
)∣∣2

= 1 for a.e. ξ ∈ R.

Hence, for such ξ and for each ` ≥ 0, there exists `0 ≡ `0(2
`ξ) ≥ 1 such that

νt,`0(2
`ξ) 6= 0. This and (3.9) imply, for such ξ,

ω̂0

(
2`(ξ + 2kπ)

)
=

1

νt,`0(2
`ξ)

ω̂t
(
2`+`0(ξ + 2kπ)

)
, k ∈ Z.
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We now use (2.4) to obtain (observe that `+ `0 ≥ 1)

2u+1−1∑
n=2u

∑
k∈Z

ω̂0

(
2`(ξ + 2kπ)

)
ω̂n(ξ + 2kπ)

=
1

νt,`0(2
`ξ)

2u+1−1∑
n=2u

∑
k∈Z

ω̂t
(
2`+`0(ξ + 2kπ)

)
ω̂n(ξ + 2kπ)

= 0,

for a.e. ξ ∈ T and for all t = 2u, 2u+1, ..., 2u+1−1, ` ≥ 0. Therefore, from this result

and (3.10), we obtain

〈ω0, ω`,n,s〉 = 0 for all n = 2u, 2u + 1, ..., 2u+1 − 1, s ∈ Z and ` ≥ 0.

This shows that ω0 is orthogonal to Wj is invariant under integral translation, we

deduce that V #
0 ⊥ Wj for all j ≥ 0. Hence V #

0 ⊆ V0, and the proof of the Theorem

3.1 is finished.

Theorem 3.3. For orthonormal wavelet packets ωn ∈ L2(R), the following state-

ments are equivalent:

(1). ωn are MRA wavelet packets;

(2). Dωβ
(ξ) = 1 for a.e. ξ ∈ T;

(3). Dωβ
(ξ) > 0 for a.e. ξ ∈ T;

(4). dimFωβ
(ξ) = 1 for a.e. ξ ∈ T,

where Fωβ
(ξ) is the closure, in `2(Z), of the span of {Ψn,`(ξ) : ` ≥ 1} and Ψn,`(ξ) is

the vector
{
ω̂n
(
2`(ξ + 2kπ)

)
: k ∈ Z;n = 2u, 2u + 1, ..., 2u+1 − 1; ` = j − u} .
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Proof. The equivalence between (1), (2) and (4) has already been proved (see The-

orem 3.1 and Equality (3.5)). But (2) implies (3), it is Sufficient to prove that (3)

implies (2). If Dωβ
(ξ) > 0 for a.e. ξ ∈ T, the fact that Dωβ

(ξ) is an integer a.e.

implies that Dωβ
(ξ) ≥ 1 almost everywhere. But this and the equality

∫
T
Dωβ

(ξ) dξ = 2π.

Corollary 3.4. If ωn are orthonormal wavelet packets such that |ω̂n| is continuous

and |ω̂n(ξ)| = O
(
|ξ|− 1

2
−α
)

at ∞ for some α > 0, then ωn are MRA wavelet packets.

Proof. The behavior at infinity of |ω̂n| tells us that the series

s(ξ) =
2u+1−1∑
n=2u

∞∑
`=1

∣∣ω̂n (2`ξ)∣∣2 ,
where ` = j − u, u = 0, 1, 2, ..., j if j > 0, j ∈ Z+, converges uniformly on compact

subsets of R\{0}. Moreover, an easy calculation shows that s(ξ) = O (|ξ|−1−2α) at

∞. It follows that

∑
k∈Z

s(ξ + 2kπ) = Dωβ
(ξ)

converges uniformly on compact subsets of T. Thus, Dωβ
(ξ) is continuous on (0, 2π).

Since Dωβ
(ξ) is integer-valued and

∫
TDωβ

(ξ) dξ = 2π (see Lemma 2.3), we must have

Dωβ
(ξ) = 1 a.e. on T.

Corollary 3.5. If ωn are band-limited wavelet packets such that |ω̂n| are continuous,

then ωn are MRA wavelet packets
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