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A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS
OF EQUATIONS

ADEL H. AL-RABTAH

Abstract. The Jacobi and Gauss-Seidel iterative methods are among iterative

methods for solving linear system of equations. In this paper, a new iterative

method is introduced, it is based on the linear combination of old and most recent

calculated solutions. The new method can be considered as a general method,

where the Jacobi and Gauss-Seidel methods as two special cases of it. Some

convergence properties are studied, and numerical examples are given to show the

effectiveness of the new method. When Jacobi method converges, the new method

can be used to accelerate the convergence. In special cases, when one of the two

iterative methods, Jacobi or Gauss-Seidel, diverges, the new method can be used

to obtain convergence.

1. Introduction

Direct methods for solving linear systems Ax = b, based on the triangularization of

the matrix A become prohibitive in terms of computer time and storage if the

matrix A is quite large [1]. On the other hand, there are practical situations such as

the discretization of partial differential equations, where the matrix size can be as

large as several hundred thousand. For such problems, the direct methods become
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impractical. Furthermore, most large problems are sparse, and the sparsity is lost to

a considerable extent during the triangularization procedure. Thus, at the end we

have to deal with a very large matrix with too many nonzero entries, and storage

becomes a crucial issue. For such problems, iterative methods are suitable for this

situation.

The Jacobi and Gauss-Seidel iterative methods are classical iterative methods for

solving linear systems of equations. They are used primarily to solve a very large

and sparse linear system Ax = b. Iterative methods are seldom used for solving

linear system of equations of small dimension since the time required for sufficient

accuracy exceeds that required for direct methods such as Gaussian elimination.

They are used for large systems with a high percentage of zero entries, these

methods efficient in terms of both computer storage and computations. These large

systems arise from engineering applications, as in circuit analysis and in the

numerical solution of boundary-value problems and partial-differential equations [2].

There are many iterative methods such as the Successive Over-Relaxation method

(SOR), where the Gauss-Seidel method is a special case of it. GMRES [3], and

BI-CGSTAB [4] algorithms are also used to solve linear systems of equations. The

Conjugate Gradient method is used to solve symmetric positive definite systems [1].

The Jacobi and the Gauss-Seidel methods converge for diagonally dominant

matrices [1, 5]. The Gauss-Seidel method also converges for symmetric positive

definite systems [1].

For special types of matrices, some useful properties for the convergence of the

Jacobi, the Gauss-Seidel, and the SOR methods, are presented in [6].
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2. Preliminaries

The basic idea behind an iterative method is first to convert the n× n linear

equation

(2.1) Ax = b,

into an equivalent system of the form

(2.2) x = Tx + c,

for some fixed matrix T and vector c.

After an initial approximation vector x(0) of the solution vector x is selected,

generate a sequence of approximation {x(k)} by computing

(2.3) x(k) = Tx(k−1) + c, for k = 1, 2, . . .

with a hope that the sequence {x(k)} converges to the solution x of the system

Ax = b as k →∞.

To implement this process, consider the linear system of equations (2.1), where

A ∈ Rn×n, is nonsingular matrix, x and b ∈ Rn.

The method works under the assumption that aii 6= 0, for each i = 1, . . . , n, to

guarantee this, we convert the system (2.1) into an equivalent system

PAx = Pb,

where P is a permutation matrix. For simplicity, we assume that the matrix A

satisfies the assumption.

Thus, write the matrix A in the form

A = D − L− U,
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where D is the diagonal matrix whose diagonal entries are those of A, −L is the

strictly lower- triangular part of A, and −U is the strictly upper- triangular part of

A. i.e.

A =
a11 0 · · · 0

0 a22
. . .

...
...

. . . . . . 0

0 · · · 0 ann

−


0 · · · · · · 0

−a21
. . .

...
...

. . . . . .
...

−an1 · · · −an,n−1 0

−


0 −a12 · · · −a1n

...
. . . . . .

...
...

. . . −an−1,n

0 · · · · · · 0


so we obtain the equivalent system

(D − L− U)x = b.

The Jacobi iterative method is defined as

x(k) = D−1(L + U)x(k−1) + D−1b, for k = 1, 2, . . .

we call Tj = D−1(L + U) the Jacobi iterative matrix, and cj = D−1b the Jacobi

vector.

The Gauss-Seidel method is a modification of the Jacobi method, which can be

defined as

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for k = 1, 2, . . .

we call Tg = (D − L)−1U the Gauss-Seidel iterative matrix, and cg = (D − L)−1b

the Gauss-Seidel vector.
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3. A New Iterative Method For Solving Linear Systems Of Equations

Consider the linear system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn,

where aii 6= 0, for each i = 1, . . . , n. To implement the new method, solve the ith

equation of the above system for xi, and generating each x
(k)
i from components of

x(k−1), and the most recently calculated values of x(k), for k ≥ 1. That is,

x
(k)
i =

1

aii

(
−

i−1∑
j=1

(
aij

(
µx

(k)
j + (1− µ)x

(k−1)
j

))
−

n∑
j=i+1

aijx
(k−1)
j + bi

)
,

for each i = 1, . . . , n. Where µ ∈ [0, 1].

To write the method in matrix notations; consider the linear system Ax = b,

where A is a nonsingular matrix with nonzero diagonal entries, and let

A = D − L− U as described earlier. The new iterative method can be written as

(3.1) x(k) = Tµx
(k−1) + cµ , for k = 1, 2, . . .

where

Tµ = (D − µL)−1 [(1− µ)L + U ]

and cµ = (D − µL)−1b.

Notice that the matrix (D − µL)−1 exists since (D − µL) is a lower triangular

matrix with nonzero diagonal entries. Note that if µ = 0, then the iterative

method (3.1) results in the Jacobi iterative method, and if µ = 1, then it results in

the Gauss-Seidel iterative method.
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Definition 3.1. The quantity ρ(A) defined by

ρ(A) = max
i
|λi| ,

where λ1, . . . , λn are the eigenvalues of A, is called the spectral radius of A.

Theorem 3.1. If the spectral radius ρ(T ) satisfies ρ(T ) < 1, then (I − T )−1 exists,

and

(I − T )−1 = I + T + T 2 + . . . =
∞∑

j=0

T j .

Theorem 3.2. For any x(0) ∈ Rn, the sequence
{
x(k)
}∞

k=0
defined by

x(k) = Tx(k−1) + c, for k ≥ 1 ,

converges to the unique solution of x = Tx + c if and only if ρ(T ) < 1.

Definition 3.2. An n× n matrix A is said to be strictly row diagonally dominant

(SRDD) if

|aii| >
n∑

j=1,j 6=i

|aij| , i = 1, . . . , n .

Theorem 3.3. If A is a strictly row diagonally dominant matrix, then the iterative

method (3.1) converges for any arbitrary choice of x(0).

Proof. Let x be a nonzero vector such that Tµx = λx, where λ is an eigenvalue of

Tµ. This gives

((1− µ)L + U) x = (D − µL) λx,

or, equivalently,

i−1∑
j=1

−(1− µ)aijxj +
n∑

j=i+1

−aijxj = λaiixi −
i−1∑
j=1

−µλaijxj .

Then,

λaiixi = −λ
i−1∑
j=1

µaijxj −
i−1∑
j=1

(1− µ)aijxj −
n∑

j=i+1

aijxj .

Let xk be the largest component (having the magnitude 1) of the vector x. Then
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|λ||akk| ≤ |λ|
k−1∑
j=1

µ|akj|+ (1− µ)
k−1∑
j=1

|akj|+
n∑

j=k+1

|akj|.

Thus

(3.2) |λ| ≤

(
(1− µ)

k−1∑
j=1

|akj|+
n∑

j=k+1

|akj|

)
/

(
|akk| − µ

k−1∑
j=1

|akj|

)
.

Since A is strictly diagonally dominant, then

|akk| >
n∑

j=1,j 6=k

|akj| = (µ + (1− µ))
k−1∑
j=1

|akj|+
n∑

j=k+1

|akj|, and

|akk| − µ
k−1∑
j=1

|akj| > (1− µ)
k−1∑
j=1

|akj|+
n∑

j=k+1

|akj| .

From the inequality (3.2) we conclude |λ| < 1, then ρ(Tµ) < 1, which implies that

Tµ is a convergent matrix. Therefore, the iterative method (3.1) converges by

theorem (3.2). �

Theorem 3.4. If A is a symmetric positive definite matrix. Then the iterative

method (3.1), in the case µ = 1, converges for any arbitrary choice of x(0).

Proof. Since A is symmetric, then A = D − L− U = D − L− LT .

We need to show that ρ(Tµ) < 1, where

Tµ = (D − µL)−1 [(1− µ)L + U ] = (D − µL)−1
[
(1− µ)L + LT

]
.

Let −λ be an eigenvalue of Tµ, and u its associated eigenvector. Then

(D − µL)−1
[
(1− µ)L + LT

]
u = −λu, and

[
(1− µ)L + LT

]
u = −λ(D − µL)u .

Using the equation LT = D − L− A, the last equation becomes

[D − µL− A] u = −λ(D − µL)u .
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By multiplying both sides by u?, we can write

(3.3) u?Au = (1 + λ)u?(D − µL)u.

Taking conjugate transpose, we obtain

(3.4) u?Au = (1 + λ̄)u?(D − µLT )u.

From equations (3.3) and (3.4), we obtain(
1

(1 + λ)
+

1(
1 + λ̄

))u?Au = (2− µ)u?Du + µu?Au.

If µ = 1 (Gauss-Seidel method), then(
1

(1 + λ)
+

1(
1 + λ̄

))u?Au > u?Au.

This implies (
1

(1 + λ)
+

1(
1 + λ̄

)) > 1, or
2 + λ + λ̄

(1 + λ)
(
1 + λ̄

) > 1.

Let λ = α + iβ, then λ̄ = α− iβ, so the last inequality becomes

2(1+α)

(1+α)2+β2 > 1 ,

from which it follows that α2 + β2 < 1. That is, ρ(Tg) < 1, because |λ| =
√

α2 + β2.

Therefore, the iterative method (3.1), in the case µ = 1, converges for any arbitrary

choice of x(0) by theorem (3.2). �

Definition 3.3. A real matrix A of order N is an L-matrix if

ai,i > 0, i = 1, 2, . . . , N ,

and ai,j ≤ 0, i 6= j, i, j = 1, 2, . . . , N .

In the next theorem, we let |B| denote the matrix whose elements are the moduli of

the corresponding elements of B.
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Theorem 3.5. If A ≥ |B|, then ρ(A) ≥ ρ(B).

Proof of theorem (3.5) is given by Oldenberger [7].

Theorem 3.6. If A ≥ 0, then ρ(A) is an eigenvalue of A, and there exists a

nonnegative eigenvector of A associated with ρ(A).

Proof of theorem (3.6) is given by Frobenius [8].

Theorem 3.7. If A is an L-matrix, then

a. If ρ(Tj) < 1 and ρ(Tµ) < 1, then

ρ(Tµ) ≤ ρ(Tj) < 1.

b. If ρ(Tj) ≥ 1 and ρ(Tµ) ≥ 1, then

ρ(Tµ) ≥ ρ(Tj) ≥ 1.

Proof. Let L̃ = D−1L, and Ũ = D−1U , so we can rewrite the Jacobi, and the new

method iterative matrices, respectively as,

Tj = L̃ + Ũ ,

Tµ = (I − µL̃)−1
[
(1− µ)L̃ + Ũ

]
.

Since L̃ is a strictly lower triangular matrix, then L̃N = 0, for some positive integer

N , and since A is an L-matrix, and 0 ≤ µ ≤ 1, we have

(I − µL̃)−1 = I + µL̃ + µ2L̃2 + . . . + µN−1L̃N−1 ≥ 0, and

Tµ = (I − µL̃)−1
[
(1− µ)L̃ + Ũ

]
≥ 0.

Let λ̄ = ρ(Tµ), and λ̃ = ρ(Tj).

By theorem (3.6), λ̄ is an eigenvalue of Tµ, and for some w 6= 0, we have Tµw = λ̄w,

and [
(1− µ + µλ̄)L̃ + Ũ

]
w = λ̄w.
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Since λ̄ is an eigenvalue of (1− µ + µλ̄)L̃ + Ũ , we have

λ̄ ≤ ρ
(
(1− µ + µλ̄)L̃ + Ũ

)
.

If λ̄ ≤ 1, then ρ
(
(1− µ + µλ̄)L̃ + Ũ

)
≤ ρ(L̃ + Ũ) = λ̃ , by theorem (3.5), and

λ̄ ≤ λ̃.

On the other hand, if λ̄ ≥ 1, then

λ̄ ≤ ρ
(
(1− µ + µλ̄)L̃ + Ũ

)
≤ ρ

(
(λ̄− µλ̄ + µλ̄)L̃ + λ̄Ũ

)
= λ̄ρ(L̃ + Ũ) = λ̄λ̃, and

λ̃ ≥ 1.

We have thus shown

(i) If λ̄ ≤ 1, then λ̄ ≤ λ̃.

(ii) If λ̄ ≥ 1, then λ̃ ≥ 1.

which implies

(iii) If λ̃ < 1, then λ̄ < 1.

Since Tj = (L̃ + Ũ) ≥ 0, it follows by theorem (3.6) that λ̃ is an eigenvalue of Tj.

Therefore, for some x 6= 0, we have (L̃ + Ũ)x = λ̃x, and(
I − (µ/λ̃)L̃

)−1 [
(1− µ)L̃ + Ũ

]
x = λ̃x,

then

λ̃ ≤ ρ

((
I − (µ/λ̃)L̃

)−1 [
(1− µ)L̃ + Ũ

])
.

If λ̃ ≥ 1, and since (µ/λ̃) ≤ 1, then we have(
I − (µ/λ̃)L̃

)−1

= I + (µ/λ̃)L̃ + . . . + (µ/λ̃)N−1L̃N−1

≤ I + µL̃ + . . . + µN−1L̃N−1 =
(
I − µL̃

)−1

, and(
I − (µ/λ̃)L̃

)−1 [
(1− µ)L̃ + Ũ

]
≤
(
I − µL̃

)−1 [
(1− µ)L̃ + Ũ

]
.

Hence



A NEW ITERATIVE METHOD 179

λ̃ ≤ λ̄.

Thus we have shown,

(iv) If λ̃ ≥ 1, then λ̃ ≤ λ̄.

By (i) and (iii) we have (a). By (ii) and (iv) we have (b). �

Theorem 3.8. If A is an L-matrix, then

a. If ρ(Tg) < 1 and ρ(Tµ) < 1, then

ρ(Tg) ≤ ρ(Tµ) < 1.

b. If ρ(Tg) ≥ 1 and ρ(Tµ) ≥ 1, then

ρ(Tg) ≥ ρ(Tµ) ≥ 1.

Proof. Let L̃ = D−1L, and Ũ = D−1U , so we can rewrite the Gauss-Seidel, and the

new method iterative matrices, respectively as,

Tg = (I − L̃)−1Ũ ,

Tµ = (I − µL̃)−1
[
(1− µ)L̃ + Ũ

]
.

And, as in the proof of theorem (3.7), we have

Tµ = (I − µL̃)−1
[
(1− µ)L̃ + Ũ

]
≥ 0.

Let λ̄ = ρ(Tµ), and λ̂ = ρ(Tg).

By theorem (3.6), λ̄ is an eigenvalue of Tµ, and for some v 6= 0, we have Tµv = λ̄v,

and [
I −

(
µ + (1− µ)/λ̄

)
L̃
]−1

Ũv = λ̄v,

therefore

λ̄ ≤ ρ

([
I −

(
µ + (1− µ)/λ̄

)
L̃
]−1

Ũ

)
.
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if λ̄ < 1, and since
(
µ + (1− µ)/λ̄

)
≥ 1, then we have[

I −
(
µ + (1− µ)/λ̄

)
L̃
]−1

= I +
(
µ + (1− µ)/λ̄

)
L̃ + . . . +

(
µ + (1− µ)/λ̄

)N−1
L̃N−1

≥ I + L̃ + . . . + L̃N−1 =
(
I − L̃

)−1

, and[
I −

(
µ + (1− µ)/λ̄

)
L̃
]−1

Ũ ≥
(
I − L̃

)−1

Ũ ,

and hence,

λ̄ ≥ λ̂.

Thus, we have shown

(i) If λ̄ < 1, then λ̂ ≤ λ̄ < 1.

But, if λ̄ ≥ 1, and since
(
µ + (1− µ)/λ̄

)
≤ 1, then we have[

I −
(
µ + (1− µ)/λ̄

)
L̃
]−1

= I +
(
µ + (1− µ)/λ̄

)
L̃ + . . . +

(
µ + (1− µ)/λ̄

)N−1
L̃N−1

≤ I + L̃ + . . . + L̃N−1 =
(
I − L̃

)−1

, and[
I −

(
µ + (1− µ)/λ̄

)
L̃
]−1

Ũ ≤
(
I − L̃

)−1

Ũ ,

and hence,

λ̄ ≤ λ̂.

We have thus shown,

(ii) If λ̄ ≥ 1, then λ̂ ≥ λ̄ ≥ 1.

By (i) we have (a). By (ii) we have (b). �

Corollary 3.1. If A is an L-matrix, then

a. If ρ(Tj) < 1, ρ(Tµ) < 1, and ρ(Tg) < 1, then

ρ(Tg) ≤ ρ(Tµ) ≤ ρ(Tj) < 1.

b. If ρ(Tj) ≥ 1, ρ(Tµ) ≥ 1, and ρ(Tg) ≥ 1, then

ρ(Tg) ≥ ρ(Tµ) ≥ ρ(Tj) ≥ 1.
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Proof. The proof follows from theorems (3.7), and (3.8). �

4. Numerical examples

Example 4.1. Consider the following linear system:

x1 + 2x2 − 2x3 = 7

x1 + x2 + x3 = 2

2x1 + 2x2 + x3 = 5

The exact solution is (1, 2,−1)t. The Gauss-Seidel method does not converge in this

case, since ρ(Tg) = 2 > 1. On the contrary, the method (3.1) with µ = 0.15

converges, where ρ(Tµ) = 0.9378, we can choose any value for µ close to zero. It is

clear that the convergence is slow, but it avoids the problem with the Gauss-Seidel

method. See Table 1. The stopping criterion ‖x− x(k)‖∞ ≤ 10−5 was used, and the

initial solution was taken to be the zero vector, the approximation is rounded and

the norm criterion is met at iteration 204.

Iteration i

x 1 2 3 · · · 203 204

x
(i)
1 7.00000 10.33000 4.86970 · · · 1.00000 1.00000

x
(i)
2 0.95000 -8.11450 1.66870 · · · 2.00001 1.99999

x
(i)
3 2.61500 -9.17965 -0.72787 · · · -0.99999 -1.00001

Table 1. Solution of Example 4.1 using the method (3.1) with µ = 0.15.
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Example 4.2. Consider the following linear system:

2x1 − x2 + x3 = −1

2x1 + 2x2 + 2x3 = 4

−x1 − x2 + 2x3 = −5

The exact solution is (1, 2,−1)t. The Jacobi method does not converge in this case,

since ρ(Tj) =
√

5/2 > 1. On the contrary, the method (3.1) with µ = 0.5 converges,

where ρ(Tµ) = 0.7588, we can choose any value for µ close to one. We obtained an

excellent approximation in 45 iterations. See Table 2. The stopping criterion

‖x− x(k)‖∞ ≤ 10−5 was used, and the initial solution was taken to be the zero

vector, the approximation is rounded and the norm criterion is met at iteration 45.

Iteration i

x 1 2 3 · · · 44 45

x
(i)
1 -0.50000 1.65625 1.63086 · · · 0.99999 1.00000

x
(i)
2 2.25000 3.48438 1.13379 · · · 1.99999 2.00000

x
(i)
3 -2.06250 -0.77734 -0.52368 · · · -1.00000 -1.00000

Table 2. Solution of Example 4.2 using the method (3.1) with µ = 0.5.

Example 4.3. Consider the following linear system:

4x1 − x2 − x3 = 5

−x1 + 4x2 − x4 = −3

−x1 + 4x3 − x4 = −7

− x2 − x3 + 4x4 = 9

The exact solution is (1, 0,−1, 2)t. The Jacobi method converges in 18 iterations,

where ρ(Tj) = 0.5, while the method (3.1), with µ = 0.7, converges in 12 iterations,
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where ρ(Tµ) = 0.375, we can choose any value for µ in (0, 1). See Table 3, and

Table 4. The stopping criterion ‖x− x(k)‖∞ ≤ 10−5 was used, and the initial

solution was taken to be the zero vector. Notice that the coefficient matrix A is a

strictly row diagonally dominant, symmetric positive definite, and it is an L-matrix.

Iteration i

x 1 2 3 · · · 11 12

x
(i)
1 1.25000 0.73438 0.97227 · · · 0.99998 0.99999

x
(i)
2 -0.53125 -0.05547 -0.04955 · · · -0.00002 -0.00001

x
(i)
3 -1.53125 -1.05547 -1.04955 · · · -1.00002 -1.00001

x
(i)
4 1.88906 1.90090 1.97434 · · · 1.99999 2.00000

Table 3. Solution of Example 4.3 using the method (3.1) with µ = 0.7.

Iteration i

x 1 2 3 · · · 17 18

x
(i)
1 1.25000 0.62500 1.06250 · · · 1.00000 0.99999

x
(i)
2 -0.75000 0.12500 -0.18750 · · · -0.00001 0.00000

x
(i)
3 -1.75000 -0.87500 -1.18750 · · · -1.00001 -1.00000

x
(i)
4 2.25000 1.62500 2.06250 · · · 2.00000 1.99999

Table 4. Solution of Example 4.3 using the Jacobi method.

5. Conclusions

A new general iterative method, by linear combination of old and most recent

calculated solutions, was introduced. It works as a general method where the Jacobi

and Gauss-Seidel methods are special cases of it. We have proved some convergence

properties. some numerical examples where presented to show the effectiveness of
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the new method. In special cases, where the matrix A is an L-matrix, we have

shown theoretically and numerically that the new method converged faster than the

Jacobi method when the spectral radius of both iteration matrices is less than one.

And when it compared with the Gauss-Seidel method, in the case of divergence, we

have seen that the divergence was more pronounced for the Gauss-Seidel method.

When Jacobi method converges, the new method can be used to accelerate the

convergence. In special cases, when one of the two iterative methods, Jacobi or

Gauss-Seidel, diverges, the new method can be used to obtain convergence.
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