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SEMI-COMPATIBLE MAPS AND COMMON FIXED POINT
THEOREMS IN NON-ARCHIMEDEAN MENGER PM-SPACE

M. ALAMGIR KHAN(1), SUMITRA(2) AND RANJETH KUMAR(3)

Abstract. The aim of this paper is to define the concept of semi-compatibility in

N. A. Menger PM-space. Our results improve and generalize the results of Amit

Singh et al [1], Ume and Kim [10], Rhoades [7] and B. Singh and S. Jain [2, 3, 4, 5].

1. Introduction

In 1942, K. Menger [12] introduced the notion of probabilistic metric spaces (briefly,

PM-space) as a generalization of metric space. Such a probabilistic generalization of

metric spaces appears to be well adapted for the investigation of physical quantities

and physiological thresholds. It is also of fundamental importance in probabilistic

functional analysis.

In 1975, Istratescu and Crivat [28] first studied the non-Archimedean PM-space.

They presented some basic topological preliminaries of N. A. PM-space and later on

Istratescu [25], [26], [27] proved some fixed point results on mappings on N. A. Menger

PM-space by generalizing the results of Sehgal and Bharucha-Reid [29]. Achari [11]

generalized the results of Istratescu and studied some fixed points of qausi-contraction

type mappings in non-Archimedean PM-space.
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In 2002 Popa [24] obtained a fixed point theorem for d-topological spaces through

semi-compatible maps. Since then various mathematicians have extended the concept

of semi compatibility in certain spaces like metric spaces, fuzzy metric spaces, 2 metric

spaces, PM-spaces etc.

In the present paper we introduce the concept of semi-compatible maps in N. A.

Menger PM-space.

2. Preliminaries

Definition 2.1. Let X be any non-empty set and D be the set of all left continuous

distribution functions. An ordered pair (X, F ) is said to be non-Archimedean prob-

abilistic metric space (briefly N. A. PM-space) if F is a mapping from satisfying the

following conditions where the value of F at (is represented by such that

(1) F (x, y; t) = 1 for all t > 0 if and only if x = y;

(2) F (x, y; t) = F (y, x; t);

(3) F (x, y; 0) = 0;

(4) If F (x, y; t1) = F (y, z; t2) = 1, then F (x, z; maxt1, t2) = 1

Definition 2.2. A t-norm is a function 4 : [0, 1]× [0, 1] → [0, 1] which is associative,

commutative, non decreasing in each coordinate and 4(a, 1) = a for all a ∈ [0, 1].

Definition 2.3. A non-Archimedean Menger PM-space is an ordered triplet (X, F,4),

where 4 is a t-norm and (X, F ), is a N.A. PM-space satisfying the following condi-

tion:

F (x, z; max t1, t2) ≥ 4(F (x, y; t), F (y, z; t)),

for all x, y, z ∈ X, t1, t2 ≥ 0.

For details of topological preliminaries on non-Archimedean Menger PM-spaces,

we refer to [28].
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Definition 2.4. A N. A. Menger PM-space (X, F,4) is said to be of type (Cg)

if there exists a g ∈ Ω such that g(F (x, z; t)) ≤ g(F (x, y; t)) + g(F (y, z; t)) for all

x, y, z ∈ X, t ≥ 0 where Ω = {g/g : [0, 1] → [0,∞) is continuous, strictly decreasing

g(1) = 0 and g(0) < ∞}.

Definition 2.5. A N. A. Menger PM-space (X, F,4) is said to be of type (Dg) if

there exists a g ∈ Ω such that g(4(t1, t2)) ≤ g(t1) + g(t2), for all t1, t2 ∈ [0, 1].

Remark 1. (1) If N. A. Menger PM-space is of type (Dg) then (X, F,4) is of type

(Cg).

(2) If (X, F,4) is N. A. Menger PM-space is and4 ≥ 4(r, s) = max(r+s−1, 1),

then (X, F,4) is of type (Dg) for g ∈ Ω and g(t) = 1− t.

Through out this paper let (X, F,4) be a complete N.A. Menger PM-space with

a continuous strictly increasing t-norm 4.

Let φ : [0,∞) → [0,∞) be a function satisfying the condition (Φ); φ is semi upper

continuous from right and φ(t) < t for t > 0.

Definition 2.6. A sequence {xn} in N. A. Menger PM-space (X,F,4) converges to

x if and only if for each ε > 0, λ > 0 there exists M(ε, λ) such that g(F (xn, x; ε)) <

g(1− λ) for all n, n > M .

Definition 2.7. A sequence {xn} in N. A. Menger PM-space (X, F,4) is Cauchy se-

quence if and only if for each ε > 0, λ > 0 there exists M(ε, λ) such that g(F (xn, xn+p; ε))

< g(1− λ) for all n, n ≥ M and p ≥ 1.

Lemma 2.1. If a function φ : [0,∞) → [0,∞) satisfies the condition (Φ) then we

get

(1) For all t > 0, limn→∞ φn(t) = 0, where φn(t) is the nth iteration of φ(t).

(2) If {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn), n =

1, 2, . . . then limn→∞ tn = 0. In particular, if t ≤ φ(t), for all t ≥ 0 then t = 0.
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Example 2.1. Let X be any set with at least two elements. If we define F (x, x; t) = 1

for all x ∈ X, t > 0 and F (x, y; t) =

 0, t ≤ 1

1, t > 1

 when x, y ∈ X, x 6= y, then,

(X,F,4) is N. A. Menger PM-space with 4(a, b) = min(a, b) or ab.

Example 2.2. Let X = R be the set of real numbers equipped with metric defined as

d(x, y) =| x− y | and set F (x, y; t) = t
t+d(x,y)

.

Then (X, F,4) is N. A. Menger PM-space with 4 as continuous t-norm satisfying

4(r, s) = min(r, s) or rs.

Definition 2.8. Two self maps A, B : X → X are said to be compatible if limn g(F

(ABxn, BAxn, t)) = 0 for all t > 0 and where {xn} is a sequence in X such that

limn Axn = limn Bxn = z for some z in X.

Definition 2.9. Two self maps A, B : X → X are said to be weak compatible if

they commute at their coincident points, that is Ax = Bx implies that ABx = BAx.

Proposition 2.1. Let A, S : X → X be mappings with A as continuous maps. If

A and S are compatible maps and Az = Sz for some z ∈ X , then AAz = ASz =

SAz = SSz.

Proof. Suppose that {xn} be a sequence in X defined by, xn = 1, 2, 3, . . . and Sz = Az

for some z ∈ X. Since A is continuous so, ASxn, AAxn → Az. Also A and S are

compatible mappings so limn g(F (ASxn, AAxn, t)) = 0.

g(F (SAz, AAz, t)) = lim
n

g(F (ASxn, AAxn, t))

≤ lim
n

[g(F (SAxn, AAxn, t)) + g(F (SAxn, ASxn, t))

+g(F (ASxn, AAxn, t))] → 0.

Therefore, SAz = AAz. But Sz = Az implies that SSz = AAz = ASz = SAz. �
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Definition 2.10. Two self maps A, B : X → X are said to be semi-compatible if

limn g(F (ABxn, Bz, t)) = 0 for all t > 0, where {xn} is a sequence in X such that

limn Axn = limn Bxn = z for some z in X.

It follows that if (A, B) is semi-compatible and Ay = By, then ABy = BAy. Thus

semi-compatibility implies weak compatibility but the converse is not always true.

In the following examples we discuss the relationship of semi compatible, weak

compatible and compatible maps.

Example 2.3. Let X = [0, 1] equipped with metric defined as d(x, y) =| x − y |

and set F (x, y; t) = t
t+d(x,y)

. Then (X, F,4) is N. A. Menger PM-space with 4 as

continuous t-norm satisfying

4(r, s) = min(r, s) or (rs). Define A, B : X → X as

Ax = 1− x, Bx =

 x, 0 ≤ x ≤ 1
2
;

1, 1
2

< x ≤ 1.

 .

Consider a sequence xn =
(

1
2
− 1

n

)
for all n. Then Axn = 1 −

(
1
2
− 1

n

)
= 1

2
+ 1

n

and Bxn = 1
2
− 1

n
. Here Axn, Bxn → 1

2
for all n. Also BAxn = B

(
1
2

+ 1
n

)
→ 1 and

ABxn → 1
2
, B

(
1
2

)
= 1

2
= A

(
1
2

)
. Now, limn g(F (ABxn, B

1
2
, t)) = 0 for all t > 0,

which implies that (A, B) is semi-compatible. But limn g(F (BAxn, A
1
2
, t)) 6= 0, for

all t > 0, which implies that (B, A) is not semi-compatible.

Thus semi-compatibility of the pair (A, B) does not imply the semi-compatibility of

the pair (B, A).

Moreover, weak-compatibility need not imply the semi-compatibility. Here B and

A are weak compatible as they commute at their coincident point 1
2

but they are not

semi-compatible.

Also, semi-compatible maps need not be compatible. Here (A, B) is semi-compatible

but not compatible as,

limn g(F (ABxn, BAxn, t)) = limn g(F (1
2

+ 1
n
, 1, t)) 6= 0 for all x in X and t > 0.
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Again, weak compatibility does not imply compatibility as the maps B and A are

weak compatible but not compatible.

Example 2.4. Let X = [0, 1] equipped with metric defined as d(x, y) =| x − y |

and set F (x, y; t) = t
t+d(x,y)

. Then (X, F,4) is N. A. Menger PM-space with 4 as

continuous t-norm satisfying

4(r, s) = min(r, s) or (rs). Define A, B : X → X as

Ax = x, Bx =

 x, 0 ≤ x < 1
2
;

1, x ≥ 1
2
.

 .

Consider the sequence xn =
(

1
2
− 1

n

)
. Then Axn, Bxn → 1

2
, ABxn = A

(
1
2
− 1

n

)
=(

1
2
− 1

n

)
→ 1

2
and BAxn = B

(
1
2
− 1

n

)
=

(
1
2
− 1

n

)
→ 1

2
. Thus limn g(F (ABxn, BAxn, t)) =

0, which implies that A and B are compatible. But limn g(F (ABxn, B
1
2
, t)) 6= 0, which

implies that A and B are not semi-compatible. Hence compatibility does not imply

semi-compatibility.

3. Results and Discussions

Now, we prove our main results

Theorem 3.1. Let A, B, S and T be self maps of a complete N. A. Menger PM-space

(X, F,4) satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);

(2) The pair (A, S) is semi-compatible and (B, T ) is weak compatible;

(3) One of A or S is continuous;

(4)

(3.1) g(F (Ax, By, t)) ≤ φ

max

 g(F (Sx,Ax, t)), g(F (Ty, By, t)),

g(F (Sx, Ty, t)), g(F (Ty, Ax, t))




for all x, y ∈ X and t > 0, where φ ∈ Φ.

Then A, B, S and T have a unique common fixed point in X.
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Proof. Let x0 ∈ X be an arbitrary point. As A(X) ⊂ T (X) and B(X) ⊂ S(X) there

exist x1, x2 ∈ X such that Ax0 = Tx1 = y0, Bx1 = Sx2 = y1. Inductively we can

construct sequences {xn} and {yn} in X such that

(3.2) y2n = Ax2n = Tx2n; y2n+1 = Bx2n+1 = Sx2n+2,

for n = 0, 1, . . ..

Now using (3.1) with x = x2n, y = x2n+1, we get

g(F (y2n, y2n+1, t)) = g(F (Ax2n, Bx2n+1, t))

≤ φ

max

 g(F (Sx2n, Ax2n, t)), g(F (Tx2n+1, Bx2n+1, t)),

g(F (Sx2n, Tx2n+1, t)), g(F (Tx2n+1, Ax2n, t))


(3.3)

= φ

max

 g(F (y2n−1, y2n, t)), g(F (y2n, y2n+1, t)),

g(F (y2n−1, y2n, t)), g(F (y2n, y2n, t))


(3.4)

If g(F (y2n, y2n+1, t)) ≥ g(F (y2n−1, y2n, t)), then (3.4) gives

g(F (y2n, y2n+1, t)) ≤ φ[g(F (y2n, y2n+1, t))] < g(F (y2n, y2n+1, t)), a contradiction.

If g(F (y2n−1, y2n, t)) ≥ g(F (y2n, y2n+1, t)), then (3.4) gives

g(F (y2n, y2n+1, t)) ≤ φ[g(F (y2n−1, y2n, t))].

Similarly , we can have

g(F (y2n+1, y2n+2, t)) ≤ φ[g(F (y2n, y2n+1, t))].

Therefore, for all n even or odd , we have

g(F (yn, yn+1, t)) ≤ φ[g(F (yn−1, yn, t))].

Then by Lemma (2.1), we get

limn g(F (yn, yn+1, t)) = 0 and therefore , {yn} is a Cauchy sequence. Since (X, F,4)

is complete , the sequence {yn} converges to a point z ∈ X and so the subsequences

{Ax2n}, {Bx2n+1}, {Sx2n} and {Tx2n+1} of {yn} also converge to a point z ∈ X.

Case I: Let S is continuous SAx2n, SSx2n → Sz. The semi-compatibility of the

pair (A, S) gives limn ASx2n = Sz.
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Step 1. By putting x = Sx2n, y = x2n+1 in (3.1), we get

g(F (ASx2n, Bx2n+1, t)) ≤ φ

max

 g(F (SSx2n, ASx2n, t)), g(F (Tx2n+1, Bx2n+1, t)),

g(F (SSx2n, Tx2n+1, t)), g(F (Tx2n+1, ASx2n, t))


 .

Letting n →∞, we have

g(F (Sz, z, t)) ≤ φ

max

 g(F (Sz, Sz, t)), g(F (z, z, t)),

g(F (Sz, z, t)), g(F (z, Sz, t))


 ,

which implies that z = Sz.

Step 2. By putting x = z, y = x2n+1 in (3.1), we have

g(F (Az, Bx2n+1, t)) ≤ φ

max

 g(F (Sz, Az, t)), g(F (Tx2n+1, Bx2n+1, t)),

g(F (Sz, Tx2n+1, t)), g(F (Tx2n+1, Az, t))


 .

Taking n →∞, we get Az = z. Hence Sz = Az = z.

Step 3. As A(X) ⊂ T (X), there exists w ∈ X such that Az = Sz = z = Tw.

By putting x = x2n, y = w in (3.1), we get

g(F (Ax2n, Bw, t)) ≤ φ

max

 g(F (Sx2n, Ax2n, t)), g(F (Tw,Bw, t)),

g(F (Sx2n, Tw, t)), g(F (Tw,Ax2n, t))


 .

Letting n →∞, we get z = Bw. Hence Bw = Tw = z.

Since (B, T ) is weak compatible, we get TBw = BTw. That is Bz = Tz.

Step 4. By putting x = y = z in (3.1) and assuming Az 6= Bz, we get

g(F (Az, Bz, t)) ≤ φ

max

 g(F (Sz,Az, t)), g(F (Tz, Bz, t)),

g(F (Sz, Tz, t)), g(F (Tz, Az, t))


 .

Which implies that Az = Bz = z.

Combining all the result, we get Sz = Az = Bz = Tz = z, which implies that z is

a common fixed point of A, B, S and T .

Case II: Let A is continuous ASx2n → Az. The semi-compatibility of the pair

(A, S) gives ASx2n → Sz. By uniqueness of limit we get Sz = Az.
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Step 1. By putting x = z, y = x2n+1 in (3.1), we get

g(F (Az, Bx2n+1, t)) ≤ φ

max

 g(F (Sz, Az, t)), g(F (Tx2n+1, Bx2n+1, t)),

g(F (Sz, Tx2n+1, t)), g(F (Tx2n+1, Az, t))


 .

Letting n →∞, we get Az = z and rest of the proof follows from Step 3 onwards

of the previous case.

Uniqueness of the fixed point can be easily proved by using (3.1) and hence the

theorem. �

Example 3.1. Let X = R equipped with metric defined as d(x, y) =| x− y | and set

F (x, y; t) = t
t+d(x,y)

. Then (X, F,4) is N. A. Menger PM-space with 4 as continuous

t-norm satisfying 4(r, s) = min(r, s) or (rs). Define A, B, S, T : X → X as

A(x) =

 1, if x < 1;

x, if x ≥ 1.
B(x) =

 1, if x ≤ 1;

3
2
, if x > 1.

S(x) =

 3− 2x, if x ≤ 1;

x, if x > 1.
T (x) =

 2− x, if x ≤ 1;

x + 1, if x > 1.

Consider a sequence xn =
(
1− 1

n

)
for all n.

Here, Axn, Sxn → 1 for all n. Also ASxn = A
(
1 + 2

n

)
→ 1 and S(1) = 1.

Thus limn g(F (ASxn, S(1), t)) = 0 for all t > 0, which implies that (A, S) is semi-

compatible. Also, B(1) = T (1) = 1 = BT (1) = TB(1) ⇒ (B, T ) is weakly compatible.

Hence all the conditions of our theorem are satisfied and 1 is common fixed point of

A, B, S and T .

Theorem 3.2. Let A, B, S and T be self maps of a complete N. A. Menger PM-space

(X,F,4) satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);

(2) One of A or S is continuous;
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(3)

(3.5) g(F (Ax, By, t)) ≤ φ

max

 g(F (Sx,Ax, t)), g(F (Ty, By, t)),

g(F (Sx, Ty, t)), g(F (Ty, Ax, t))




for all x, y ∈ X and t > 0, where φ ∈ Φ;

(4) The pairs (A, S) and (B, T ) are semi-compatible.

Then A, B, S and T have a unique common fixed point in X.

Proof. As semi-compatibility implies weak compatibility, so the proof follows from

Theorem 3.1. �

On taking A = B in Theorem 3.1, we have the following theorem.

Theorem 3.3. Let A, S and T be self maps of a complete N. A. Menger PM-space

(X,F,4) satisfying

(1) A(X) ⊂ S(X) ∩ T (X);

(2) One of A or S is continuous;

(3)

(3.6) g(F (Ax, Ay, t)) ≤ φ

max

 g(F (Sx,Ax, t)), g(F (Ty, Ay, t)),

g(F (Sx, Ty, t)), g(F (Ty, Ax, t))




for all x, y ∈ X and t > 0, where φ ∈ Φ;

(4) The pairs (A, S) and (A, T ) are semi-compatible.

Then A, S and T have a unique common fixed point in X.

Theorem 3.4. Let A, B, S and T be self maps of a complete N. A. Menger PM-space

(X,F,4) satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);

(2) One of A or S is continuous;
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(3)

(3.7) g(F (Ax, By, t)) ≤ φ

max

 g(F (Sx,Ax, t)), g(F (Ty, By, t)),

g(F (Sx, Ty, t)), g(F (Ty, Ax, t))




for all x, y ∈ X and t > 0, where φ ∈ Φ;

(4) The pair (A, S) is compatible and (B, T ) is weak compatible.

Then A, B, S and T have a unique common fixed point in X.

Proof. It is sufficient to prove the result when A is continuous. By the proof of

Theorem 3.1, the sequences {Ax2n}, {Bx2n+1}, {Tx2n+1} and {Sx2n} converges to

z ∈ X.

As A is continuous, therefore, ASxn, AAxn → Az.

Since (A, S) is compatible, so limn SAxn = limn ASxn = Az.

Step 1. By putting x = Ax2n, y = x2n+1 in (3.7), we get

g(F (AAx2n, Bx2n+1, t)) ≤ φ

max

 g(F (SAx2n, AAx2n, t)), g(F (Tx2n+1, Bx2n+1, t)),

g(F (Tx2n+1, AAx2n, t)), g(F (SAx2n, Tx2n+1, t))


 .

Letting n →∞, we get

g(F (Az, z, t)) ≤ φ

max

 g(F (Az, Az, t)), g(F (z, z, t)),

g(F (z, Az, t)), g(F (Az, z, t))


 .

Which gives Az = z.

Step 2. As, A(X) ⊂ T (X), there exists w ∈ X such that Az = z = Tw.

By putting x = x2n, y = w in (3.7), we get

g(F (Ax2n, Bw, t)) ≤ φ

max

 g(F (Sx2n, Ax2n, t)), g(F (Tw,Bw, t)),

g(F (Tw,Ax2n, t)), g(F (Sx2n, Tw, t))


 .

Taking n →∞, we get Bw = z. Hence Tw = Bw. Since (B, T ) is weak compatible,

we get BTw = TBw, i.e., Bz = Tz.
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Step 3. By putting x = x2n, y = z in (3.7), we get

g(F (Ax2n, Bz, t)) ≤ φ

max

 g(F (Sx2n, Ax2n, t)), g(F (Tz, Bz, t)),

g(F (Tz, Ax2n, t)), g(F (Sx2n, T z, t))


 .

Taking n →∞, we get Bz = z = Tz.

Step 4. As, B(X) ⊂ S(X), there exists v ∈ X such that Bz = z = Sv.

By putting x = v, y = z in (3.7), we get

g(F (Av, Bz, t)) ≤ φ

max

 g(F (Sv,Av, t)), g(F (Tz, Bz, t)),

g(F (Tz, Av, t)), g(F (Sv, Tz, t))




g(F (Av, z, t)) ≤ φ

max

 g(F (z, Av, t)), g(F (z, z, t)),

g(F (z, Av, t)), g(F (z, z, t))


 .

Which gives Av = z = Sv. By proposition 2.1, we get AAv = ASv = SSv = SAv.

Which implies that Az = Sz.

Step 5. By putting x = z, y = z in (3.7), we get

g(F (Az, Bz, t)) ≤ φ

max

 g(F (Sz, Az, t)), g(F (Tz, Bz, t)),

g(F (Tz, Az, t)), g(F (Sz, Tz, t))


 .

Which gives Az = Bz. Thus Sz = Az = Bz = Tz = z. That is z is a common

fixed point of A, B, S and T .

Uniqueness of the fixed point can be proved by using condition (3.7). �

Theorem 3.5. Let A, B, S and T be self maps of a complete N. A. Menger PM-space

(X, F,4) satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);

(2) One of A or S is continuous;

(3)

(3.8) g(F (Ax, By, t)) ≤ φ

max

 g(F (Sx,Ax, t)), g(F (Ty, By, t)),

g(F (Sx, Ty, t)), g(F (Ty, Ax, t))



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for all x, y ∈ X and t > 0 and φ ∈ Φ where φ : [0, 1] → [0, 1] is some

continuous function such that φ(t) < t and φ(1) = 1;

(4) The pairs (A, S) and (B, T ) are compatible.

Then A, B, S and T have a unique common fixed point in X.

Proof. As compatibility implies weak compatibility, so Theorem 3.5 follows directly

from Theorem 3.4. �
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