ON $\mathcal{I}_q^{*lpha}\text{-CLOSED}$ SETS AND $\mathcal{I}_q^{*lpha}\text{-CONTINUITY}$

M. RAJAMANI $^{(1)},$ V. INTHUMATHI $^{(2)}$ AND S. KRISHNAPRAKASH $^{(3)}$

ABSTRACT. In this paper, we introduce and study the notions of $\mathcal{I}_g^{*\alpha}$ -closed sets, $\mathcal{I}_g^{*\alpha}$ -continuity and $\mathcal{I}_g^{*\alpha}$ -normal spaces in ideal topological spaces. Also we obtain a decomposition of $*^{\alpha}$ -continuity in ideal topological spaces.

1. Introduction and Preliminaries

An $ideal \ \mathcal{I}$ on a topological space (X,τ) is a non-empty collection of subsets of X which satisfies the following properties: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$, (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space is a topological space (X,τ) with an ideal \mathcal{I} on X and is denoted by (X,τ,\mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ is called the *local function* of A with respect to \mathcal{I} and τ [3]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*$ [9]. A subset A of an ideal topological space (X,τ,\mathcal{I}) is *-closed [2], if $A^* \subseteq A$. A subset A of an ideal topological space (X,τ,\mathcal{I}) is \mathcal{I}_g -closed [1], if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in X.

A subset A of a topological space (X, τ) is α -open [7], if $A \subseteq int(cl(int(A)))$. The family of all α -open sets denoted by τ^{α} . A subset A of a topological space (X, τ) is g-closed [5], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. A subset A

 $^{2000\} Mathematics\ Subject\ Classification.\ 54A05.$

Key words and phrases. $\mathcal{I}_g^{*\alpha}$ -closed sets, $\mathcal{I}_g^{*\alpha}$ -continuity, $\mathcal{I}_g^{*\alpha}$ -normal spaces.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Aug. 9, 2011

of a topological space (X, τ) is $\alpha g\text{-}closed$ [6], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. Let A be a subset of an ideal topological space (X, τ, \mathcal{I}) . Then $A^{*\alpha}(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau^{\alpha}\{x\} \text{ is called } \alpha\text{-}local function of } A \text{ with respect to } \mathcal{I} \text{ and } \tau^{\alpha}.$ We simply write $A^{*\alpha}$ in case there is no chance for confusion. A Kuratowski α -closure operator $cl^{*\alpha}(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$ called the $\tau^{*\alpha}$ -topology, finer than τ^* , τ^{α} and τ is defined by $cl^{*\alpha}(A) = A \cup A^{*\alpha}$. A subset A of an ideal topological space (X, τ, \mathcal{I}) is $*^{\alpha}$ -closed [8], if $A^{*\alpha} \subseteq A$.

2.
$$\mathcal{I}_{q}^{*\alpha}$$
-Closed sets and $\mathcal{I}_{q}^{*\alpha}$ -Continuity

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_q^{*\alpha}$ -closed, if $A^{*\alpha} \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, \mathcal{I})

Proposition 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^{*\alpha}$, then A is $\mathcal{I}_q^{*\alpha}$ -closed if and only if A is αg -closed.

Proof. Proof is trivial, since $A \subseteq A^{*\alpha}$, $A^{*\alpha} = \alpha cl(A) = cl^{*\alpha}(A)$.

Proposition 2.3. Let A be a subset of an ideal topological space (X, τ, \mathcal{I}) and A is $\mathcal{I}_q^{*\alpha}$ -closed. If $\mathcal{I} = \{\emptyset\}$, then A is αg -closed.

Proof. Follows from the fact that $A^{*\alpha}(\{\emptyset\}) = \alpha cl(A)$. [[8], Remark 2.3 (2)]

Remark 2.4. For a subsets of an ideal topological space, the following implications hold.

$$\begin{array}{ccc} closed \Longrightarrow *\text{-}closed \Longrightarrow *^{\alpha}\text{-}closed \\ & \Downarrow & \Downarrow & \Downarrow \\ g\text{-}closed \Longrightarrow \mathcal{I}_g\text{-}closed \Longrightarrow \mathcal{I}_g^{*\alpha}\text{-}closed \end{array}$$

where none of these implications is reversible as shown in [5], [1] and the following examples.

Example 2.5. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then (1) $A = \{a\}$ is $\mathcal{I}_g^{*\alpha}$ -closed but not \mathcal{I}_g -closed.

- (2) $A = \{c\}$ is $\mathcal{I}_q^{*\alpha}$ -closed but not αg -closed.
- (3) $A = \{a, c\}$ is $\mathcal{I}_q^{*\alpha}$ -closed but not g-closed.

Example 2.6. Let $X = \{a, b, c, d\}, \ \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \ and \ \mathcal{I} = \{\emptyset, \{c\}\}\}.$ Then in $(X, \tau, \mathcal{I}), \ A = \{a, c\} \ is \ \mathcal{I}_q^{*\alpha}\text{-closed but not } *^{\alpha}\text{-closed}.$

Theorem 2.7. If a subset A of (X, τ, \mathcal{I}) is $\mathcal{I}_g^{*\alpha}$ -closed, then $A^{*\alpha} - A$ contains no nonempty closed set.

Proof. Let A be an $\mathcal{I}_g^{*\alpha}$ -closed set and U be a closed subset of $A^{*\alpha} - A$, then $A \subseteq U^c$. Since A is $\mathcal{I}_g^{*\alpha}$ -closed, we have $A^{*\alpha} \subseteq U^c$. Consequently, $U \subseteq (A^{*\alpha})^c$. Hence $U \subseteq A^{*\alpha} \cap (A^{*\alpha})^c = \emptyset$.

Theorem 2.8. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- (1) A is $\mathcal{I}_q^{*\alpha}$ -closed.
- (2) $cl^{*\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (3) For all $x \in cl^{*\alpha}(A)$; $cl(\{x\}) \cap A \neq \emptyset$.

Proof. (1) \Rightarrow (2): If A is $\mathcal{I}_g^{*\alpha}$ -closed, then $A^{*\alpha} \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, \mathcal{I}) . Therefore, $cl^{*\alpha}(A) = A \cup A^{*\alpha} \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, \mathcal{I}) .

 $(2)\Rightarrow (3)$: Suppose $x\in cl^{*\alpha}(A)$. If $cl(\{x\})\cap A=\emptyset$, then $A\subseteq (cl(\{x\}))^c$ and $(cl(\{x\}))^c$ is open. By assumption, we obtain $cl^{*\alpha}(A)\subseteq (cl(\{x\}))^c$. This is contrary to $x\in cl^{*\alpha}(A)$.

(3) \Rightarrow (1): Suppose that A is not a $\mathcal{I}_g^{*\alpha}$ -closed set. Then there exists an open set U such that $A \subseteq U$ and $A^{*\alpha} \nsubseteq U$. Then there exists a point $x \in A^{*\alpha}$ such that $x \notin U$. Then we have $\{x\} \cap U = \emptyset$ and hence $cl(\{x\}) \cap U = \emptyset$. Since $A \subseteq U$, $cl(\{x\}) \cap A = \emptyset$. This is a contradiction and hence A is $\mathcal{I}_q^{*\alpha}$ -closed.

Corollary 2.9. A subset A of (X, τ, \mathcal{I}) is $\mathcal{I}_g^{*\alpha}$ -closed if and only if $\alpha cl(A^{*\alpha}) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Proof. Follows from the fact that $A^{*\alpha} = \alpha cl(A^{*\alpha})$.

Corollary 2.10. If a subset A of (X, τ, \mathcal{I}) is $\mathcal{I}_g^{*\alpha}$ -closed, then $cl^{*\alpha}(A) - A$ contains no nonempty closed set.

Proof. Since $cl^{*\alpha}(A) - A = A^{*\alpha} - A$, This is obvious from Theorem 2.7.

Lemma 2.11. [see Lemma 2.4 of [1]] Let $\{A_{\gamma} : \gamma \in \Omega\}$ be a locally finite family of sets in (X, τ, \mathcal{I}) . Then $\bigcup_{\gamma \in \Omega} (A_{\gamma})^{*\alpha} = (\bigcup_{\gamma \in \Omega} A_{\gamma})^{*\alpha}$.

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space. If $\{A_{\gamma} : \gamma \in \Omega\}$ is a locally finite family of sets and each A_{γ} is $\mathcal{I}_q^{*\alpha}$ -closed, then $\bigcup_{\gamma \in \Omega} A_{\gamma}$ is $\mathcal{I}_q^{*\alpha}$ -closed.

Proof. Let $\bigcup_{\gamma \in \Omega} (A_{\gamma}) \subseteq U$, where U is open in X. Since A_{γ} is $\mathcal{I}_g^{*\alpha}$ -closed for each $\gamma \in \Omega$, then $(A_{\gamma})^{*\alpha} \subseteq U$. Hence $\bigcup_{\gamma \in \Omega} (A_{\gamma})^{*\alpha} \subseteq U$. By Lemma 2.11., $(\bigcup_{\gamma \in \Omega} A_{\gamma})^{*\alpha} \subseteq U$. Hence $\bigcup_{\gamma \in \Omega} A_{\gamma}$ is $\mathcal{I}_g^{*\alpha}$ -closed.

Remark 2.13. The following example shows that finite intersection of $\mathcal{I}_g^{*\alpha}$ -closed sets need not be $\mathcal{I}_g^{*\alpha}$ -closed.

Example 2.14. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}\}$. For $A = \{a, b, c\}$ and $B = \{a, b, d\}$, X is the only open set containing A and B hence A and B are $\mathcal{I}_g^{*\alpha}$ -closed but $A \cap B = \{a, b\}$ is open and $(A \cap B)^{*\alpha} = X \nsubseteq \{a, b\}$. Therefore $A \cap B$ is not an $\mathcal{I}_g^{*\alpha}$ -closed set.

Theorem 2.15. If A is an $\mathcal{I}_g^{*\alpha}$ -closed set of (X, τ, \mathcal{I}) such that $A \subseteq B \subseteq A^{*\alpha}$, then B is also $\mathcal{I}_g^{*\alpha}$ -closed.

Proof. Let U be any open set of X such that $B \subseteq U$. Then $A \subseteq U$, since A is $\mathcal{I}_g^{*\alpha}$ -closed, $A^{*\alpha} \subseteq U$. Since $B \subseteq A^{*\alpha}$, $B^{*\alpha} \subseteq (A^{*\alpha})^{*\alpha} \subseteq A^{*\alpha} \subseteq U$ and hence B is $\mathcal{I}_g^{*\alpha}$ -closed.

Theorem 2.16. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is $\mathcal{I}_q^{*\alpha}$ -closed if and only if every open set is $*^{\alpha}$ -closed.

Proof. Suppose that every subset of X is $\mathcal{I}_g^{*\alpha}$ -closed. If U is open, then U is $\mathcal{I}_g^{*\alpha}$ -closed and so $U^{*\alpha} \subseteq U$. Hence U is $*^{\alpha}$ -closed. Conversely, suppose that every open set is $*^{\alpha}$ -closed. If $A \subseteq X$ and U is open such that $A \subseteq U$, then $A^{*\alpha} \subseteq U^{*\alpha} \subseteq U$ and so A is $\mathcal{I}_g^{*\alpha}$ -closed.

Definition 2.17. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_q^{*\alpha}$ -open if and only if A^c is $\mathcal{I}_q^{*\alpha}$ -closed.

Theorem 2.18. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is $\mathcal{I}_q^{*\alpha}$ -open if and only if $F \subseteq int^{*\alpha}(A)$ whenever $F \subseteq A$ and F is closed.

Proof. Suppose A is $\mathcal{I}_g^{*\alpha}$ -open. If F is closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $cl^{*\alpha}(X - A) \subseteq X - F$. Therefore $F \subseteq int^{*\alpha}(A)$. Conversely, let U be an open set such that $X - A \subseteq U$, then $X - U \subseteq A$ and so $X - U \subseteq int^{*\alpha}(A)$ which implies that $cl^{*\alpha}(X - A) \subseteq U$. Therefore X - A is $\mathcal{I}_g^{*\alpha}$ -closed and hence A is $\mathcal{I}_g^{*\alpha}$ -open.

Definition 2.19. A subset A of an ideal topological space (X, τ, \mathcal{I}) is an $\mathcal{I}^{*\alpha}$ -locally closed (briefly $\mathcal{I}^{*\alpha}$ -LC)-set, if $A = U \cap V$, where $U \in \tau$ and V is $*^{\alpha}$ -closed.

Theorem 2.20. A subset A of an ideal topological space (X, τ, \mathcal{I}) is $*^{\alpha}$ -closed if and only if it is $\mathcal{I}^{*\alpha}$ -LC-set and $\mathcal{I}_{g}^{*\alpha}$ -closed.

Proof. Necessity is trivial. We prove only sufficiency. Let A be an $\mathcal{I}^{*\alpha}$ -LC-set and $\mathcal{I}_g^{*\alpha}$ -closed. Since A is an $\mathcal{I}^{*\alpha}$ -LC-set, $A = U \cap V$, where U is open and V is $*^{\alpha}$ -closed. So, we have $A = U \cap V \subseteq U$. Since A is $\mathcal{I}_g^{*\alpha}$ -closed, $A^{*\alpha} \subseteq U$. Also $A = U \cap V \subseteq V$ and V is $*^{\alpha}$ -closed, then $A^{*\alpha} \subseteq V^{*\alpha} \subseteq V$. Consequently, we have $A^{*\alpha} \subseteq U \cap V = A$ and hence A is $*^{\alpha}$ -closed.

Remark 2.21. The following examples shows that notions of an $\mathcal{I}^{*\alpha}$ -LC-set and $\mathcal{I}_q^{*\alpha}$ -closed are independent.

Example 2.22. Let $X = \{a, b, c, d\}, \ \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \ and \ \mathcal{I} = \{\emptyset, \{c\}\}\}.$ Then

- (1) $A = \{a\}$ is an $\mathcal{I}^{*\alpha}$ -LC-set but not $\mathcal{I}_q^{*\alpha}$ -closed.
- (2) $A = \{a, b, c\}$ is $\mathcal{I}_q^{*\alpha}$ -closed but not an $\mathcal{I}^{*\alpha}$ -LC-set.

Definition 2.23. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be $*^{\alpha}$ -continuous (resp. $\mathcal{I}_g^{*\alpha}$ -continuous, $\mathcal{I}^{*\alpha}$ -LC-continuous), if $f^{-1}(V)$ is $*^{\alpha}$ -closed (resp. $\mathcal{I}_g^{*\alpha}$ -closed, an $\mathcal{I}^{*\alpha}$ -LC-set) in (X,τ,\mathcal{I}) for every closed set V in (Y,σ) .

Theorem 2.24. For a function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$, the following are equivalent.

- (1) $*^{\alpha}$ -continuous.
- (2) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \tau^{*\alpha}(\mathcal{I})$ containing x such that $f(U) \subseteq V$.
- (3) inverse image of every closed set is $*^{\alpha}$ -closed.

Theorem 2.25. Let $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\mu)$, be any two functions. Then

- (1) $g \circ f$ is $*^{\alpha}$ -continuous, if f is $*^{\alpha}$ -continuous and g is continuous.
- (2) $g \circ f$ is $\mathcal{I}_g^{*\alpha}$ -continuous, if f is $\mathcal{I}_g^{*\alpha}$ -continuous and g is continuous.

Corollary 2.26. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is $*^{\alpha}$ -continuous if and only if it is $\mathcal{I}^{*\alpha}$ -LC-continuous and $\mathcal{I}_q^{*\alpha}$ -continuous.

Proof. This is an immediate consequence of Theorem 2.20.

3.
$$\mathcal{I}_q^{*\alpha}$$
-NORMAL SPACES

Definition 3.1. An ideal topological space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_g^{*\alpha}$ -normal, if for any two disjoint closed sets A and B in (X, τ, \mathcal{I}) , there exist disjoint $\mathcal{I}_g^{*\alpha}$ -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following are equivalent.

(1) (X, τ, \mathcal{I}) is $\mathcal{I}_g^{*\alpha}$ -normal.

(2) For each closed set A and for each open set V containing A, there exists an $\mathcal{I}_q^{*\alpha}$ -open set U such that $A \subseteq U \subseteq cl^{*\alpha}(U) \subseteq V$.

Proof. (1) \Rightarrow (2): Let A be a closed subset of X and B be an open set such that $A \subseteq B$. Since A and X - B are disjoint closed sets in X, there exists disjoint $\mathcal{I}_g^{*\alpha}$ -open sets U and V such that $A \subseteq U$ and $X - B \subseteq V$. Thus $A \subseteq U \subseteq X - V \subseteq B$. Since B is open and X - V is $\mathcal{I}_g^{*\alpha}$ -closed, $A \subseteq U \subseteq cl^{*\alpha}(U) \subseteq cl^{*\alpha}(X - V) \subseteq B \subseteq V$. (2) \Rightarrow (1): Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an $\mathcal{I}_g^{*\alpha}$ -open set U such that $A \subseteq U \subseteq cl^{*\alpha}(U) \subseteq X - B$. If $W = X - cl^{*\alpha}(U)$, then U and W are the required disjoint $\mathcal{I}_g^{*\alpha}$ -open sets containing A and B respectively. So, (X, τ, \mathcal{I}) is $\mathcal{I}_g^{*\alpha}$ -normal.

Theorem 3.3. Let (X, τ, \mathcal{I}) be an $\mathcal{I}_q^{*\alpha}$ -normal space.

- (1) If F is closed and A is a g-closed set such that $A \cap F = \emptyset$, then there exist disjoint $\mathcal{I}_q^{*\alpha}$ -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.
- (2) If A is closed and B is a g-open set containing A, then there exist $\mathcal{I}_g^{*\alpha}$ -open set U such that $A \subseteq int^{*\alpha}(U) \subseteq U \subseteq B$.
- (3) If A is g-closed and B is an open set containing A, then there exist $\mathcal{I}_g^{*\alpha}$ -open set U such that $A \subseteq U \subseteq cl^{*\alpha}(U) \subseteq B$.

Proof (1). Since $A \cap F = \emptyset$ implies that $A \subseteq X - F$, where X - F is open. Therefore by hypothesis, $cl(A) \subseteq X - F$. Since $cl(A) \cap F = \emptyset$ and X is $\mathcal{I}_g^{*\alpha}$ -normal, there exist $\mathcal{I}_g^{*\alpha}$ -open sets U and V such that $cl(A) \subseteq U$ and $F \subseteq V$. Hence the proof. The proof of (2) and (3) are similar.

Definition 3.4. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ is said to be $\mathcal{I}_g^{*\alpha}$ -irresolute, if $f^{-1}(V)$ is $\mathcal{I}_g^{*\alpha}$ -open in (X,τ,\mathcal{I}) for every $\mathcal{J}_g^{*\alpha}$ -open set V in (Y,σ,\mathcal{J}) .

Theorem 3.5. Let $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ be a function. If f is an $\mathcal{I}_g^{*\alpha}$ -irresolute (resp. $\mathcal{I}_g^{*\alpha}$ -continuous) closed injection and Y is $\mathcal{I}_g^{*\alpha}$ -normal (resp. normal), then X is $\mathcal{I}_g^{*\alpha}$ -normal.

Proof. Let A and B are disjoint closed sets of X. Since f is closed injection, f(A) and f(B) are disjoint closed sets of Y. By the $\mathcal{I}_g^{*\alpha}$ -normality (resp. normality) of Y, there exist disjoint $\mathcal{I}_g^{*\alpha}$ -open (resp. open) sets U and V of Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is $\mathcal{I}_g^{*\alpha}$ -irresolute (resp. $\mathcal{I}_g^{*\alpha}$ -continuous), $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $\mathcal{I}_g^{*\alpha}$ -open sets containing A and B respectively. It follows from Theorem 3.2 that X is $\mathcal{I}_g^{*\alpha}$ -normal.

Acknowledgment

We would like to thank the referee for his valuable suggestions and comments which improved the paper.

REFERENCES

- [1] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed via topological ideals, Math. Japonica, 49(1999), 395-401.
- [2] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, (4)(1990), 295-310.
- [3] K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
- [4] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(2010), 36-42.
- [5] N. Levine, Generalized closed sets in topology, Rend Circ. Mat. Palermo, (1970), 89-96.
- [6] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed part III, 42(1993), 13-21.
- [7] O. Njastad, On some classes of nearly open sets, Pascific J. Math., 15(1965), 961-970.
- [8] M. Rajamani, V. Inthumathi and S. Krishnaprakash, Some stronger local functions via ideals,
 J. Adv. Res. Pure Math., 2(2010), 48-52
- [9] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.
 - M. RAJAMANI, V. INTHUMATHI AND S. KRISHNAPRAKASH

Department of Mathematics, NGM College, Pollachi - 642 001, Tamil Nadu, India.

E-mail address: (1) rajkarthy@yahoo.com

E-mail address: (2)inthugops@yahoo.com

E-mail address: (3)mskrishnaprakash@gmail.com