Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp.209 - 221

FUZZY SUBGROUPS COMMUTATIVITY DEGREE OF FINITE GROUPS

HASSAN NARAGHI

ABSTRACT. In this paper we introduce and study the concept of distinct fuzzy

subgroups commutativity degree of a finite group G. This quantity measures the

probability of tow random distinct fuzzy subgroups of G commuting. We determine

distinct fuzzy subgroup commutativity degree for some of finite groups.

1. Introduction

In 1965, Zadeh [9] first introduced fuzzy set. Mordeson et.al ([5]) called him "a

pioneer of work on fuzzy subsets". After that paper, several aspects of fuzzy subsets

were studied. In 1971, Rosenfled [8] introduced fuzzy sets in the realm of group theory

and formulated the concepts of fuzzy subgroups of a group. An increasing number of

properties from classical group theory have been generalized. In the last years there

has been a growing interest in the use of probability in finite group theory. One of the

most important aspects that have been studied is the probability that two elements

of a finite groups G commute. This is called the commutativity degree of G. Let G

be a group and let μ and ν be fuzzy subgroups of G. We say that μ is permuted by

 ν if for any $a,b\in G$, there exists $x\in G$ such that $\mu(x^{-1}ab)\geq \mu(a), \nu(x)\geq \nu(b)$ and

2000 Mathematics Subject Classification. 20N25, 60B15.

Key words and phrases. Commutativity degree, Group, Fuzzy, Probability.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Oct. 12, 2011

Accepted: Feb. 7, 2012.

we say μ and ν are permutable if μ is permuted by ν and ν is permuted by μ . Also we say that μ is permuted by ν mutually if for any subgroup L of ν_b that $b \in Im\nu$, we have been for any $a \in G, l \in L$, there exist l_1, l_2 of L such that $\mu(l_1^{-1}al) \geq \mu(a)$ and $\mu(lal_2^{-1}) \geq \mu(a)$ and we say μ and ν are mutually permutable if μ is permuted by ν mutually and ν is permuted by μ mutually. Let μ and ν be fuzzy subgroups of G. In [7] have been determined that μ and ν are permutable mutually permutable) if and if for any $t \in Im\mu, s \in Im\nu, \mu_t, \nu_s$ are permutable (mutually permutable) which denote by $\nu \in P(\mu)(\nu \in MP(\mu))$. Ajmal and Thomas [1] introduced the notion of a fuzzy quasinormal subgroup. Fuzzy quasinormal subgroup arising out of fuzzy normal subgroup. Also in [7] have been proved that μ is a fuzzy quasinormal subgroup of group G if and only if for every subgroup L of G, we have been that for any $a \in G, l \in L$ there exist l_1, l_2 of L such that $\mu(l_1^{-1}al) \ge \mu(a)$ and $\mu(lal_2^{-1}) \ge \mu(a)$. In the following, let G be a finite group and denote by F(G) the set of all fuzzy subgroup of a group G. Let $F_1(G)$ be the set of all fuzzy subgroups μ of G such that $\mu(e) = 1$. In this paper, we use the natural equivalence of fuzzy subgroups studied by Iranmanesh and Naraghi [3]. This is denoted by \sim and the set of all the equivalence classes \sim on $F_1(G)$ is denoted by S(G). We consider the quantity

$$sd(G) = \frac{1}{|S(G)|^2} |\{(\mu, \nu) \in S(G)^2 | \nu \in P(\mu)\}|$$

which will be called the distinct fuzzy subgroup commutativity degree of G. Clearly, sd(G) measures the probability that two distinct fuzzy subgroups of G commute. For an arbitrary finite group G, computing sd(G) is a difficult work, since it involves the counting of distinct fuzzy subgroups of G. In this paper a first step in the study of permutable fuzzy subgroups of a finite group G which in section 2 we present some

basic properties and result on the permutable fuzzy subgroups of a finite group G. Section 3 we study some basic properties and result on the natural equivalence of fuzzy subgroups studied by Iranmanesh and Naraghi [3]. Section 4 we determine the number of distinct fuzzy subgroups for some of dihedral groups. In the final section deals with distinct fuzzy subgroup commutativity degree for some of finite groups.

2. On Permutable Fuzzy Groups

In this section, whenever possible we follow the notation and terminology of [7]. We use [0,1], the real unit interval as a chain the usual ordering in R which \wedge stands for infimum(or intersection) and \vee stands for supremum (or union) for the degree of membership. A fuzzy subset of a set X is mapping $\mu: X \to [0,1]$. The union and intersection of two fuzzy subset are defined using sup and inf point wise. We denote the set of all fuzzy subset of X by I^X . Further, we denote fuzzy subsets by the Greek letters μ, ν, η , etc. Let $\mu, \nu \in I^X$. If $\mu(x) \leq \nu(x) \forall x \in X$, then we say that μ is contained in ν (or ν contains μ) and we write $\mu \subseteq \nu$. Let $\mu \in I^X$ for $a \in I$, define μ_a as follow:

 $\mu_a = \{x \mid x \in X, \mu(x) \ge a\}.$ μ_a is called a-cut(or a-level) set of μ .

It is easy to verify that for any $\mu, \nu \in I^X$:

1)
$$\mu \subseteq \nu, a \in I \Rightarrow \mu_a \subseteq \nu_a$$
.

2)
$$a \le b, a, b \in I \Rightarrow \mu_b \subseteq \mu_a$$
.

3)
$$\mu = \nu \Leftrightarrow \mu_a = \nu_a \forall a \in I$$
.

Fuzzy subset μ of G is called a fuzzy subgroup of G if

$$(G_1) \mu(xy) \ge \mu(x) \land \mu(y) \forall x, y \in G;$$

 $(G_2) \ \mu(x^{-1} \ge \mu(x) \forall x \in G.$

The set of all fuzzy subgroup of a group G is denoted by F(G).

Proposition 2.1. [6, Lemma 1.2.5] Let $\mu \in I^G$. Then μ is a fuzzy subgroup of G if and only if μ_a is a subgroup of G, $\forall a \in \mu(G) \bigcup \{b \in I \mid b \leq \mu(e)\}$.

Definition 2.2. [1] Let μ is a fuzzy subgroup of group G, μ is said to be fuzzy normal subgroup of G if $\mu(xy) = \mu(yx) \forall x, y \in G$.

Definition 2.3. [2] Let G be a group and let H and K be subgroups of G.

- (a) We say that H and K are permutable if $HK = KH = \langle H, K \rangle$.
- (b) We say that H and K are mutually permutable if H permutes with every subgroup of K and K permutes with every subgroup of H.

Definition 2.4. [7] Let G be a group and let μ and ν be fuzzy subgroups of G.

- (a) We say that μ is permuted by ν if for any $a, b \in G$, there exists $x \in G$ such that $\mu(x^{-1}ab) \ge \mu(a), \nu(x) \ge \nu(b)$.
- (b) We say that μ is permuted by ν mutually if for any subgroup L of ν_b that $b \in Im\nu$, we have been for any $a \in G, l \in L$, there exist l_1, l_2 of L such that $\mu(l_1^{-1}al) \ge \mu(a)$ and $\mu(lal_2^{-1}) \ge \mu(a)$.

Definition 2.5. [7] Let G be a group and let μ and ν be fuzzy subgroups of G.

- (a) We say μ and ν are permutable if μ is permuted by ν and ν is permuted by μ .
- (b) We say μ and ν are mutually permutable if μ is permuted by ν mutually and ν is permuted by μ mutually.

Theorem 2.6. Let μ and ν be fuzzy subgroups of G, then μ and ν are permutable if and if for any $t \in Im\mu$, $s \in Im\nu$, μ_t , ν_s are permutable.

Proof. Let μ and ν be permutable. Let $t \in Im\mu, s \in Im\nu$. If $a \in \mu_t$ and $b \in \nu_s$ then $\mu(a) \geq t, \nu(b) \geq s$. We know that μ is permuted by ν . Then there that exists $x \in G$ such that $\mu(x^{-1}ab) \geq t$ and $\nu(x) \geq s$, this means that $x^{-1}ab \in \mu_t$ and $x \in \nu_s$. So that $ab = x(x^{-1}ab)$. If $a \in \nu_s, b \in \mu_t$, then $\mu(b) \geq t, \nu(a) \geq s$. So that there exists $y \in G$ such that $\nu(y^{-1}ab) \geq \nu(a) \geq s$ and $\mu(y) \geq \mu(b) \geq t$, this means that $y^{-1}ab \in \nu_s$ and $y \in \mu_t$. So that $ab = y(y^{-1}ab)$, consequently $\mu_t\nu_s = \nu_s\mu_t$. Now let $\mu_t\nu_s = \nu_s\mu_t, \forall t \in Im\mu, s \in Im\nu$ and let a and b be two arbitrary elements of ab = a'b', then ab = a'b', then elements exist for example $a' \in \mu_t, b' \in \nu_s$ such that ab = a'b', then ab = a'b', this implies ab = a'b'. Similarly ab = a'b', then ab = a'b'. Therefore ab = a'b' is permuted by ab = a'b'. Similarly ab = a'b'. Similarly ab = a'b'. Therefore ab = a'b'. Similarly ab = a'b'.

3. ON THE NATURAL EQUIVALENCE OF FUZZY SUBGROUPS OF A FINITE GROUP
Whenever possible we follow the notation and terminology of [3].

The dihedral group D_{2n} $(n \geq 2)$ is the symmetry group of a regular polygon with n sides and it has the order 2n. The most convenient abstract description of D_{2n} is obtained by using its generators:

a rotation α of order n and a reflection β of order 2. Under these notations, we have

$$D_{2n} = \langle \alpha, \beta | \alpha^n = \beta^2 = 1, \beta \alpha \beta = \alpha^{-1} \rangle.$$

Definition 3.1. Let G be a group and $\mu \in F(G)$. The set $\{x \in G | \mu(x) > 0\}$ is called the support of μ and denoted by $supp\mu$.

Let G be a group and $\mu \in F(G)$. We shall write $Im\mu$ for the image set of μ and F_{μ} for the family $\{\mu_t | t \in Im\mu\}$.

Theorem 3.2. [10]. Let G be a fuzzy group. If μ is a fuzzy subset of G, then $\mu \in F(G)$ if and only if for all $\mu_t \in F_{\mu}$, μ_t is a subgroup of G.

Let $F_1(G)$ be the set of all fuzzy subgroups μ of G such that $\mu(e) = 1$ and let \sim_R be an equivalence relation on $F_1(G)$. We denote the set $\{\nu \in F_1(G) | \nu \sim_R \mu\}$ by $\frac{\mu}{\sim_R}$ and the set $\{\frac{\mu}{\sim_R} | \mu \in F_1(G)\}$ by $\frac{F_1(G)}{\sim_R}$.

Definition 3.3. [4]. Let G be a group, and $\mu, \nu \in F(G)$. μ is equivalent to ν , written as $\mu \sim \nu$ if

- (1) $\mu(x) > \mu(y) \Leftrightarrow \nu(x) > \nu(y)$ for all $x, y \in G$.
- (2) $\mu(x) = 0 \Leftrightarrow \nu(x) = 0 \text{ for all } x \in G.$

The number of the equivalence classes \sim on $F_1(G)$ is denoted by s(G). We means the number of distinct fuzzy subgroups of G is s(G).

Theorem 3.4. [3]. Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is $\frac{s(G)+1}{2}$.

Proof. Let

$$U(G) = \{ \frac{\mu}{\sim} | \mu \neq \mu^*, \mu \in F(G), supp \mu = G \}$$

where μ^* is a fuzzy subgroup of G and $\mu^*(x) = 1$ for all $x \in G$.

$$V(G) = \{\frac{\mu}{\sim} | \mu \in F_1(G), supp \mu \subset G\}.$$

Since G is finite, we can define $\frac{\mu}{\sim}$ as follow:

$$\frac{\mu}{\sim} = \underbrace{(1\cdots 1) \underbrace{\lambda_1 \cdots \lambda_1}_{n_1} \cdots \underbrace{\lambda_r \cdots \lambda_r}_{n_r})\varphi}_{\sim}$$

where
$$Im\mu=\{1,\mu_1,\cdots,\mu_r\},\ 1>\lambda_1>\cdots>\lambda_r>0$$
 and
$$\varphi:G_0=(e)\subset G_1\subset\ldots\subset G_{n_0}=\mu_1$$

$$\subset G_{n_0+1}\subset\cdots\subset G_{n_1}=\mu_{\alpha_1}$$

$$\subset G_{n_1+1}\subset\cdots\subset G_{n_2}=\mu_{\alpha_2}$$

$$\vdots$$

$$\subset G_{n_{(r-1)}+1}\subset\cdots\subset G_{n_r}=\mu_{\alpha_r}=G$$
 and $n_0'=n_0,n_1'=n_1-n_0$ and for all $i\in\{2,\cdots,r\},\ n_i'=n_i-\sum\limits_{k=1}^{i-1}n_k.$

We define the map f:

$$f: U(G) \to V(G)$$

such that

$$f(\frac{\mu}{\sim}) = \underbrace{(1\cdots 1) \overbrace{\lambda_1 \cdots \lambda_1}^{n'_0} \cdots \overbrace{\lambda_{r-1} \cdots \lambda_{r-1}}^{n'_{r-1}} \underbrace{0\cdots 0}^{n'_r}) \varphi}_{\sim}$$

It is easy to see that f is one to one and onto. So |U(G)| = |V(G)| and s(G) = |U(G)| + |V(G)| + 1, therefore s(G) = 2|U(G)| + 1. Thus $|U(G)| = |V(G)| = \frac{s(G)-1}{2}$ and hence $|U(G)| + 1 = \frac{s(G)+1}{2}$.

Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is denoted by $s^*(G)$.

Theorem 3.5. Let G be a finite group. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of G is $\frac{s(G)-1}{2}$.

Proof. By proof of theorem 3.4,
$$|U(G)| = |V(G)| = \frac{s(G)-1}{2}$$
.

Theorem 3.6. [3]. Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly equal to H is $\frac{s(H)+1}{2}$.

Proof. We can easily see that the number of distinct fuzzy subgroups of the group G which their supports is exactly H is equal to number of distinct fuzzy subgroups of H which their supports is exactly H and this number with the previous theorem is equal to $\frac{s(H)+1}{2}$.

Corollary 3.7. [3]. Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of H is $\frac{s(H)-1}{2}$.

Proposition 3.8. [4]. Let $n \in \mathbb{N}$. Then there are $2^{n+1}-1$ distinct equivalence classes of fuzzy subgroups of \mathbb{Z}_{p^n} .

4. Counting of the distinct fuzzy subgroups for some of dihedral

GROUPS

Now we determine the number of distinct fuzzy subgroups for some of the dihedral

group D_{2^n} .

Example 4.1. Let G be the dihedral group of order 4 (see below), then s(G) = 15.

Figure 1. Hasse diagram of D_4

We know that $\frac{s(G)-1}{2} = s^*(\{1\}) + 3s^*(\mathbb{Z}_2)$, therefore $\frac{s(G)-1}{2} = 7$. Thus s(G) = 15.

Example 4.2. Let G be the dihedral group of order 8

FIGURE 2. Hasse diagram of D_8

Then s(G) = 63. We know that

$$\frac{s(G) - 1}{2} = s^{\star}(\{1\}) + s^{\star}(\mathbb{Z}_4) + 5s^{\star}(\mathbb{Z}_2) + 2s^{\star}(D_4)$$

Therefore $\frac{s(G)-1}{2} = 31$. Thus s(G) = 63.

Example 4.3. Let $S_3 = \langle \alpha, \beta | \alpha^3 = \beta^2 = (\alpha \beta)^2 = 1 \rangle$. By Hasse diagram of S_3 ,

FIGURE 3. Hasse diagram of S_3

we have $\frac{s(S_3)-1}{2} = s^*(\{1\}) + s^*(\langle \alpha \rangle) + s^*(\langle \beta \rangle) + s^*(\langle \alpha \beta \rangle) + s^*(\langle \alpha^2 \beta \rangle)$. Therefore $s(S_3) = 19$.

5. Distinct fuzzy subgroup commutativity for some of dihedral

GROUPS

Remark 5.1. We count distinct fuzzy subgroups of a finite group G on its Hasse diagram for identity cases following: left to right on subgroups chains increasingly.

Let G be a finite group. First of all, remark that the distinct fuzzy subgroup commutativity degree sd(G) satisfies the following relation:

$$0 < sd(G) \le 1.$$

Obviously, the equality sd(G) = 1 holds if and only if all distinct fuzzy subgroups of G are permutable. Next, for every fuzzy subgroup μ of G, let us denote by C(H) the set consisting of all distinct fuzzy subgroups of G which commute with μ , that is

$$C(H) = \{ \nu \in S(G) | \nu \in P(\mu) \}.$$

Then

$$sd(G) = \frac{1}{|S(G)|^2} \sum_{\mu \in S(G)} |C(\mu)|.$$

It is clear that the fuzzy normal subgroups of G are contained in each set $C(\mu)$ (see [4]), which implies that

$$\frac{|N(G)|}{|S(G)|} \le sd(G)$$

such that a remarkable modular sublattice of S(G) is the distinct fuzzy normal subgroup lattice N(G), which consists of all distinct fuzzy normal subgroups of G. Note that we have $sd(G) = \frac{|N(G)|}{|S(G)|}$ if and only if N(G) = S(G).

Example 5.2. Let
$$S_3 = \langle \alpha, \beta | \alpha^3 = \beta^2 = (\alpha \beta)^2 = 1 \rangle$$
.

Let \mathcal{A}_1 be the set of all distinct nontrivial fuzzy subgroups of S_3 such that are in Hasse subdiagram of S_3 (chain $\{1\} \subset \langle \alpha \rangle \subset S_3$) following:

Figure 4. Hasse subdiagram of S_3

Let \mathcal{A}_2 be the set of all distinct nontrivial fuzzy subgroups of S_3 on the chain $\{1\} \subset \langle \beta \rangle \subset S_3$ of S_3 , \mathcal{A}_3 be the set of all distinct nontrivial fuzzy subgroups of S_3 on the chain $\{1\} \subset \langle \alpha\beta \rangle \subset S_3$ of S_3 and \mathcal{A}_4 be the set of all distinct nontrivial

fuzzy subgroups of S_3 on the chain $\{1\} \subset \langle \alpha^2 \beta \rangle \subset S_3$ of S_3 . Thus $|\mathcal{A}_1| = 6$ and $|\mathcal{A}_2| = |\mathcal{A}_3| = |\mathcal{A}_4| = 4$. (For details see [4]). It is clear that for every two subgroups H and K of S_3 , their product $HK = \{hk|h \in H, k \in K\}$ is a subgroup in S_3 except $\langle \beta \rangle \langle \alpha \beta \rangle$, $\langle \beta \rangle \langle \alpha^2 \beta \rangle$, $\langle \alpha \beta \rangle \langle \beta \rangle$, $\langle \alpha \beta \rangle \langle \alpha^2 \beta \rangle$, $\langle \alpha^2 \beta \rangle \langle \beta \rangle$ and $\langle \alpha^2 \beta \rangle \langle \alpha \beta \rangle$. If μ be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \beta \rangle$ and ν be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \alpha \beta \rangle$ or $\langle \alpha^2 \beta \rangle$ then μ and ν are not permutable. If μ be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \beta \rangle$ or $\langle \alpha^2 \beta \rangle$ then μ and ν are not permutable and if μ be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \beta \rangle$ or $\langle \alpha^2 \beta \rangle$ then μ and ν are not permutable and if μ be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \beta \rangle$ or $\langle \alpha^2 \beta \rangle$ and ν be a fuzzy subgroup of S_3 such that its support is exactly equal to $\langle \beta \rangle$ or $\langle \alpha \beta \rangle$ then μ and ν are not permutable. Therefore by theorem 3.6 and proposition 3.8, $s^*(\langle \beta \rangle) = s^*(\langle \alpha \beta \rangle) = s^*(\langle \alpha^2 \beta \rangle) = s^*(\langle \alpha \rangle) = 2$.

$$sd(S_3) = \frac{1}{|S(S_3)|^2} (|\mathcal{A}_1||S(S_3)| + |\mathcal{A}_2|(|\mathcal{A}_1| + |\mathcal{A}_2| + 1) + |\mathcal{A}_3|(|\mathcal{A}_1| + |\mathcal{A}_3| + 1) + |\mathcal{A}_4|(|\mathcal{A}_1| + 1) + |\mathcal{A}_4|(|\mathcal{A}_$$

Example 5.3. Let $D_8 = \langle \alpha, \beta | \alpha^4 = \beta^2 = 1, \beta \alpha \beta = \alpha^{-1} \rangle$, it is clear that for every two subgroups H and K of D_8 , their product $HK = \{hk | h \in H, k \in K\}$ is a subgroup in D_8 except $\langle \beta \rangle \langle \alpha \beta \rangle$, $\langle \beta \rangle \langle \alpha^{-1} \beta \rangle$, $\langle \alpha^2 \beta \rangle \langle \alpha \beta \rangle$, $\langle \alpha^2 \beta \rangle \langle \alpha^{-1} \beta \rangle$, $\langle \alpha \beta \rangle \langle \beta \rangle$, $\langle \alpha \beta \rangle \langle \alpha^2 \beta \rangle$, $\langle \alpha^{-1} \beta \rangle \langle \beta \rangle$ and $\langle \alpha^{-1} \beta \rangle \langle \alpha^2 \beta \rangle$. If μ be a fuzzy subgroup of D_8 such that its support is exactly equal to $\langle \beta \rangle$ or $\langle \alpha^2 \beta \rangle$ and ν be a fuzzy subgroup of D_8 such that its support is exactly equal to $\langle \alpha \beta \rangle$ or $\langle \alpha^{-1} \beta \rangle$ then μ and ν are not permutable. Let \mathcal{A}_1 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain $\{1\} \subset \langle \beta \rangle \subset \langle \alpha^2, \beta \rangle \subset D_8$ of D_8 ,

 \mathcal{A}_2 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha^2 \beta \rangle \subset \langle \alpha^2, \beta \rangle \subset D_8 \text{ of } D_8,$$

 \mathcal{A}_3 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha^2 \rangle \subset \langle \alpha^2, \beta \rangle \subset D_8 \text{ of } D_8,$$

 \mathcal{A}_4 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha^2 \rangle \subset \langle \alpha \rangle \subset D_8 \text{ of } D_8,$$

 \mathcal{A}_5 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha^2 \rangle \subset \langle \alpha^2, \alpha\beta \rangle \subset D_8 \text{ of } D_8,$$

 \mathcal{A}_6 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha\beta \rangle \subset \langle \alpha^2, \alpha\beta \rangle \subset D_8 \text{ of } D_8,$$

and A_7 be the set of all distinct nontrivial fuzzy subgroups of D_8 on the chain

$$\{1\} \subset \langle \alpha^{-1}\beta \rangle \subset \langle \alpha^2, \alpha\beta \rangle \subset D_8 \text{ of } D_8.$$

Clearly, $|\mathcal{A}_1| = 14$, $|\mathcal{A}_2| = 10$, $|\mathcal{A}_3| = |\mathcal{A}_5| = |\mathcal{A}_6| = |\mathcal{A}_7| = 8$, $|\mathcal{A}_4| = 6$ and $|\mathcal{A}_5| = 10$. (For details see [4]). Thus by example 4.2 $sd(D_8) = \frac{1}{63^2}(|\mathcal{A}_1|(s(D_8) - |\mathcal{A}_6| - |\mathcal{A}_7|) + |\mathcal{A}_2|(s(D_8) - |\mathcal{A}_6| - |\mathcal{A}_7|) + |\mathcal{A}_3|s(D_8) + |\mathcal{A}_4|s(D_8) + |\mathcal{A}_5|s(D_8) + |\mathcal{A}_6|(s(D_8) - |\mathcal{A}_1| - |\mathcal{A}_2|) + |\mathcal{A}_7|(s(D_8) - |\mathcal{A}_1| - |\mathcal{A}_2|) + s^*(\{1\})s(S_8)$. So $sd(D_8) = \frac{3201}{3060}$.

References

- [1] N. AJMAL, K. V. THOMAS, The join of fuzzy algebra substructures of a group and their lattices, Fuzzy sets and system. 99(1998)213–224.
- [2] A. Ballester-Bolinches, M. D. Pe'rez-Ramos and M. C. Pedraza-Aguilera, Mutually Permutable Products of Finite Groups, Journal of Algebra. 213(1999)369–377.
- [3] A. Iranmanesh and H. Naraghi, The relation between of some equivalence relations on fuzzy subgroups, Iranian Journal of Fuzzy Systems. 8(5)(2011)69–80.
- [4] JOHN N. MORDESON, KIRAN R. BHUTANI AND AZRIEL ROSENFELD, Fuzzy Group Theory, Springer-Verlag Berlin Heidelberg, (2005).
- [5] John N. Mordeson, Kiran R. Bhutani and Azriel Rosenfeld, Fuzzy Group Theory, StudFuzz. **182**(2005)1–39.
- [6] J.N. MORDESON, D.S. MALIK, Fuzzy Commutative Algebra, World Science publishing Co.Pte.Ltd., (1995).
- [7] H. NARAGHI, On Permutable and Mutually Permutable Fuzzy Groups, Int. J. Appl. Math. Stat. 15(D09)(2009)73-78.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971)512–517
- [9] L. A. Zadeh, Fuzzy sets, information and control. 8(1965) 338–353.
- [10] Zhang Yunji and Kaiqizou, A not on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems. 95(1998)243–247.

DEPARTMENT OF MATHEMATICS, ASHTIAN BRANCH, ISLAMIC AZAD UNIVERSITY, IRAN.,

E-mail address: naraghi@mail.aiau.ac.ir