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ON QUASI-EINSTEIN WARPED PRODUCTS

DAN DUMITRU

Abstract. In this paper we investigate when an warped product manifold is a

quasi-Einstein manifold and we give the expressions of the Ricci tensors and scalar

curvatures for the bases and fibres. In some cases we give some obstructions to the

existence of such manifolds.

1. Introduction

Warped products were introduced in ([4]), where it served to give examples of

new Riemannian manifolds. In ([5]) it was introduced the notion of quasi-Einstein

manifold, notion that was generalize in ([3], [6]).

In this paper we will investigate when an warped product manifold is quasi-Einstein

manifold. According to ([5]) we have the following definitions.

Definition 1.1. A non-flat Riemannian manifold (M, gM) is said to be a quasi-

Einstein manifold if its Ricci tensor RicM satisfies the condition RicM(X, Y ) =

ag(X, Y ) + bA(X)A(Y ) for every X, Y ∈ Γ(TM) where a, b are real scalars and A is

a non-zero 1-form on M such that A(X) = g(X,U) for all vector field X ∈ Γ(TM),
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U being an unit vector field which is called the generator of the manifold. If b = 0

then the manifold reduces to an Einstein space.

Definition 1.2. A non-flat Riemannian manifold (Mn, g), n > 2 is called a gener-

alized quasi-Einstein manifold if its Ricci tensor RicM of type (0, 2) is non-zero and

satisfies the condition RicM(X, Y ) = ag(X, Y )+ bA(X)A(Y )+cB(X)B(Y ) for every

X, Y ∈ Γ(TM) where a, b, c are real scalars and A, B two non-zero 1-forms. The unit

vector fields U and V corresponding to the 1-forms A and respectively B are defined

by A(X) = g(X,U), B(X) = g(X, V ) and are orthogonal, i.e. g(U, V ) = 0. If c = 0

the manifold reduces to a quasi Einstein manifold.

Definition 1.3. A non-flat Riemannian manifold (Mn, g), n > 2 is called a mixed

generalized quasi-Einstein manifold if its Ricci tensor RicM of type (0, 2) is non-zero

and satisfies the condition RicM(X, Y ) = ag(X, Y )+ bA(X)A(Y )+ cB(X)B(Y )+

d[A(X)B(Y )+ A(Y )B(X)] for every X, Y ∈ Γ(TM) where a, b, c, d are real scalars

and A, B two non-zero 1-forms. The unit vector fields U and V corresponding to the

1-forms A and respectively B are defined by A(X) = g(X, U), B(X) = g(X,V ) and

are orthogonal, i.e. g(U, V ) = 0. If d = 0 the manifold reduces to a generalized quasi

Einstein manifold.

We have the following well-known definition of an warped product ([2]).

Definition 1.4. Let (N, gN), (F, gF ) be two Riemannian manifolds with

dim N = m > 0, dim F = k > 0 and f : N −→ (0,∞), f ∈ C∞(N). The warped

product M = N ×fF is the Riemannian manifold N × F furnished with the metric

gM = gN + f 2gF . B is called the base of M, F the fibre and the warped product

is called a simply Riemannian product if f is a constant function. We denote by

RicN , RicF and H f the lifts to M of the Ricci curvatures of N and F, and the

Hessian of f, respectively.
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We give the Ricci curvature of an warped product.

Proposition 1.1. ([17]) The Ricci curvature RicM of the warped product M = N

×fF satisfies :

(1) RicM(X, Y ) = RicN(X,Y )− k
f
Hf (X, Y ),

(2) RicM(X, V ) = 0,

(3) RicM(V, W ) = RicF (V, W ) − g(V, W )f#, where f# = −4f
f

+ k−1
f2 | 5 f |2 for

any vectors X, Y ∈ Γ(TN) and any vectors V, W ∈ Γ(TF ), where Hf and 4f denote

the Hessian of f and the Laplacian of f given by 4f = −Tr(H f ).

We give the scalar curvature of an warped product.

Proposition 1.2. ([2]) Let M = N ×f F be an warped product. Then the scalar

curvature of M is given by

τM = τN + τF

f2 + 2k4f
f
− k(k − 1) |∇f |2

f2

2. Quasi-Einstein warped products

Let M = N ×f F be an warped product manifold with f : N −→ (0,∞),

f ∈ C∞(N) and the metric gM = gN + f 2gF which is also a quasi-Einstein manifold,

that means its Ricci tensor satisfies:

RicM(X, Y ) = agM(X, Y ) + bA(X)A(Y ) (1)

Starting from the above formula we want to compute the Ricci tensors of N and

F. For that we will consider the following two cases: when U is tangent to N and

when U is tangent to F.

Theorem 2.1. Let M = N ×f F be an warped product which is also a quasi-

Einstein manifold, that is its Ricci tensor satisfies (1).
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a). When U is tangent to the base N the Ricci tensors of N and F satisfy the

following equations: RicN(X, Y ) = agN(X, Y ) + k
f
Hf (X, Y ) + bgN(X, U)gN(Y, U),

RicF (X, Y ) = gF (X, Y )[−f4f + (k − 1)| 5 f |2 + af 2].
(2)

b). When U is tangent to the fibre F the Ricci tensors of N and F satisfy the

following equations:


RicN(X, Y ) = agN(X, Y ) + k

f
Hf (X, Y ),

RicF (X, Y ) = gF (X, Y )[−f4f + (k − 1)| 5 f |2 + af 2]+

bf 4gF (X, U)gF (Y, U).

(3)

Proof.

a). For X, Y ∈ Γ(TN) we have that RicM(X, Y ) = agN(X, Y )+ bgN(X, U)gN(Y, U).

Hence from proposition 1.1. we have RicM(X, Y ) = RicN(X, Y )− k
f
Hf (X,Y ). For

X, Y ∈ Γ(TF ) we have RicM(X, Y ) = af 2gF (X,Y ). Thus from proposition 1.1. we

have RicM(X, Y ) = RicF (X,Y )− f 2gF (X,Y )[−4f
f

+ k−1
f2 | 5 f |2].

b). For X,Y ∈ Γ(TN) we have that RicM(X, Y ) = agN(X, Y ).

Hence from proposition 1.1.we have RicM(X,Y ) = RicB(X, Y )− k
f
Hf (X, Y ).

For X, Y ∈ Γ(TF ) we have RicM(X, Y ) = af 2gF (X,Y ) + bf 4gF (X,U)gF (Y, U).

Thus from proposition 1.1. we have RicM(X, Y ) = RicF (X, Y )− f 2gF (X, Y )[−4f
f

+

k−1
f2 | 5 f |2].

We can give now the scalar curvatures of M, N and F .

Corollary 2.1. a). Taking the traces in theorem 2.1., point a) we obtain:
τM = (m + k)a + b,

τN = ma− k4f
f

+ b,

τF = k[−f4f + (k − 1)| 5 f |2 + af 2].

(4)
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b). Taking the traces in theorem 2.1., point b) we obtain:
τM = (m + k)a + b,

τN = ma− k4f
f

,

τF = k[−f4f + (k − 1)| 5 f |2 + af 2] + bf 4.

(5)

3. Obstructions to the existence of

quasi-Einstein warped products

In this section we prove some obstructions to the existence of quasi-Einstein warped

products. We consider two cases depending on U tangent to the base N or U tangent

to the fibre F.

1). When U is tangent to F.

Theorem 3.1. Let M = N ×fF be an warped product with N compact and

connected, dim N = m ≥ 1, dim F = k ≥ 1 which is also a quasi-Einstein manifold

with RicM(X, Y ) = agM(X,Y )+ bA(X)A(Y ), a, b ∈ R, A(X) = gM(X, U) for every

X, Y ∈ Γ(TM) with U an unitary vector field tangent to F. If m = 1 or k = 1, then

M is a simply Riemannian product.

Proof: If m = 1, then τN = 0 and from the second equation of (5) we get that:

0 = ma− k4f
f

=⇒4f = f · ma
k

Then the Laplacian has constant sign and hence f is constant.

If k = 1, then τF = 0 and from the third equation of (5) we have that:

0 = −f4f + af 2 + bf 2 =⇒4f = f(a + b)
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Thus the Laplacian has constant sign and hence f is constant.

Theorem 3.2. Let M = N ×fF be an warped product with dim N = m ≥

2, dim F = k ≥ 2 which is also a quasi-Einstein manifold with RicM(X, Y ) =

agM(X,Y )+ bA(X)A(Y ), a, b ∈ R, A(X) = gM(X, U) for every X, Y ∈ Γ(TM)

with U an unitary vector field tangent to F. If b 6= 0 then M reduces to a simply

Riemannian product.

Proof: Consider in the second equation of (3) that X, Y are orthogonal vectod

fields tangent to F such that gM(X, U) 6= 0 and gM(Y, U) 6= 0. Then taking in

consideration the different domains of definition of the functions that appear in the

second equation of (3), we obtain that f is constant.

Remark 3.1. Since for b = 0 we obtain that M is an Einstein space, we conlude

that there does not exist any warped product which is quasi-Einstein in the case

when U is tangent to F.

2). When U is tangent to N.

Remark 3.2. From now on we consider in the second equation of (2) that:

−f4f + (k − 1)| 5 f |2 + af 2 = c (6)

Remark 3.3. So the Ricci tensors from (2) become:
RicN(X, Y ) = agN(X,Y ) + k

f
Hf (X, Y ) + bgN(X, U)gN(Y, U),

RicF (X, Y ) = cgF (X, Y )

−f4f + (k − 1)| 5 f |2 + af 2 = c

(7)

Theorem 3.3. Let M = N ×fF be an warped product with N compact and

connected, dim N = m ≥ 1, dim F = k ≥ 1 which is also a quasi-Einstein manifold
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with RicM(X, Y ) = agM(X, Y )+ bA(X)A(Y ), a, b ∈ R, A(X) = gM(X, U) for every

X, Y ∈ Γ(TM) with U an unitary vector field tangent to N . If m = 1 or k = 1

then M is a simply Riemannian product.

Proof: If m = 1, then we have that τN = 0 and from the second equation of (4) it

follows that:

0 = ma− k4f
f

+ b =⇒4f = f · ma+b
k

Hence the Laplacian has constant sign on a compact manifold, thus f is constant.

If k = 1, then 4f = af and thus the Laplacian has constant sign. So f is constant.

Theorem 3.4. Let M = N ×fF be an warped product with N compact and

connected, dim N = m ≥ 2, dim F = k ≥ 2 which is also a quasi-Einstein manifold

with RicM(X, Y ) = agM(X, Y )+ bA(X)A(Y ), a, b ∈ R, A(X) = gM(X, U) for every

X, Y ∈ Γ(TM) with U an unitary vector field tangent to N . If a ≤ 0 then M reduces

to a simply Riemannian product.

Proof: Let z ∈ N such that f(z) is the maximum of f on N. Then 5f(z) = 0 and

4f(z) ≥ 0. Writing the equation (6) in the point z we obtain:

−f(z)4f(z) + af 2(z) = c (8)

Now, from (6) and (8) we obtain that:

−f(z)4f(z) + af 2(z) = −f4f + (k − 1)| 5 f |2 + af 2 =⇒

f4f = (k − 1)| 5 f |2 + af 2 + f(z)4f(z)− af 2(z) =⇒

f4f = (k − 1)| 5 f |2 + f(z)4f(z) + a[f 2 − f 2(z)] ≥ 0 =⇒4f ≥ 0

Thus f is constant.

From now on we will consider that a > 0.
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Theorem 3.5. Let M = N ×fF be an warped product with N compact and

connected, dim N = m ≥ 2, dim F = k ≥ 2 which is also a quasi-Einstein manifold

with RicM(X, Y ) = agM(X, Y )+ bA(X)A(Y ), a, b ∈ R, A(X) = gM(X, U) for every

X, Y ∈ Γ(TM) with U an unitary vector field tangent to N. If F has negative scalar

curvature, then M reduces to a simply Riemannian product.

Proof: From the third equation of (4) and (6) we get that τF = kc. Since τF ≤ 0

it follows that c ≤ 0. Then (6) becomes:

−f4f + (k − 1)| 5 f |2 + af 2 = c =⇒

−f4f + af 2 = c− (k − 1)| 5 f |2 ≤ 0 =⇒

f4f ≥ af 2 > 0 =⇒4f > 0

Thus f is constant.

From now on we will also consider that c > 0.

Theorem 3.6. Let M = N ×fF be an warped product with N compact and F

an Einstein space of constant c, dim N = m ≥ 2, dim F = k ≥ 2 which is also

a quasi-Einstein manifold with RicM(X, Y ) = agM(X, Y )+ bA(X)A(Y ), a, b ∈ R,

A(X) = gM(X,U) for every X, Y ∈ Γ(TM), with U an unitary vector field tangent

to N. Then M reduces to a simply Riemannian product if at least one of the following

condition is true:

a). | 5 f |2 ≥ c
k−1

,

b). τM ≤ τN ,

c). τM ≥ τN + τF and c ≥ a,

d). τN ≤ 0 and b ≥ 0,

e). τN ≥ mc
f2 + b and m ≥ k,

f). τM ≥ τN + τF

f2 .
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Proof: a) From (6) we have that:

−f4f + (k − 1)| 5 f |2 + af 2 = c =⇒

−f4f + af 2 = c− (k − 1)| 5 f |2 ≤ 0 =⇒

f4f ≥ af 2 =⇒4f ≥ 0

Thus f is constant.

b) From the second equation of (4) we have that:

τN = ma− k4f
f

+ b =⇒ τN + ak = a(m + k)− k4f
f

+ b = τM − k4f
f

=⇒

τM − τN = ak + k4f
f

= k
f
[af +4f ] ≤ 0 =⇒4f ≤ −af < 0

Thus f is constant.

c) From the third equation of (4) and (6) we get that:

τF = kc ≥ ka =⇒ τF + τN ≥ ka + ma− k4f
f

+ b = τM − k4f
f

=⇒

k4f
f
≥ τM − (τF + τN) ≥ 0 =⇒4f ≥ 0

Thus f is constant.

d) From the second equation of (4) we have that:

τN = ma− k4f
f

+ b =⇒ k4f
f

= ma− τN + b ≥ 0 =⇒4f ≥ 0

Thus f is constant.

e) From the second equation of (4) and (6) we have that:

τN = ma− k4f
f

+ b =⇒

τN · f 2 = maf2 − kf4f + bf 2 = m(c + f4f − (k − 1)| 5 f |2)− kf4f + bf 2 =

(m− k)f4f + mc−m(k − 1)| 5 f |2 + bf 2 =⇒

τN · f 2 −mc− bf 2 = (m− k)f4f −m(k − 1)| 5 f |2 ≥ 0
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i) m = k implies −m(m− 1)| 5 f |2 ≥ 0 =⇒ m(m− 1)| 5 f |2 ≤ 0

=⇒ |5 f |2 = 0 =⇒5f = 0.

ii). m > k implies (m− k)f 4 f ≥ m(k − 1)| 5 f |2 ≥ 0 =⇒4f ≥ 0.

Thus, f is constant.

f) From proposition 1.2. it follows directly that:

τM − (τN + τF

f2 ) = 2k4f
f
− k(k − 1) |∇f |2

f2 ≥ 0 =⇒4f ≥ k−1
2
· |∇f |2

f
≥ 0

Thus f is constant.

Remark 3.4. Similar obstructions can be obtained when the warped product is

a generalized quasi Einstein space or a mixed generalized quasi Einstein space.
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