
Jordan Journal of Mathematics and Statistics (JJMS) 5(2), 2012, pp.97 - 113

Mk-TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF
SINGULAR INTEGRAL OPERATOR ON SPACE OF

HOMOGENEOUS TYPE

CHENG YUE (1), HUANG CHUANGXIA (2) AND LIU LANZHE (3)

Abstract. In this paper, we prove the Mk-type inequality for multilinear com-

mutator related to singular integral operator on space of homogeneous type. By

using the Mk-type inequality, we obtain the weighted Lp-norm inequality and the

weighted estimates on the generalized Morrey spaces for the multilinear commuta-

tor.

1. Introduction and Preliminaries

As the development of singular integral operators, their commutators have been

well studied ([1][11][12][13]). Let T be the Calderón-Zygmund singular integral op-

erator, a classical result of Coifman, Rocherberg and Weiss ([9]) states that com-

mutator [b, T ](f) = T (bf)− bT (f)(where b ∈ BMO(Rn)) is bounded on Lp(Rn) for

1 < p < ∞. In ([11][12][13]), the sharp estimates for some multilinear commutators
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of the Calderón-Zygmund singular integral operators are obtained. The main pur-

pose of this paper is to prove the Mk-type inequality for the multilinear commutators

related to the singular integral operators on the space of homogeneous type. By using

the Mk-type inequality, we obtain the weighted Lp-norm inequality and the weighted

estimates on the generalized Morrey spaces for the multilinear commutator.

Given a set X, a function d : X ×X → R+
0 is called a quasi−distance on X if the

following conditions are satisfied:

(1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y, for every x and y in X,

(2) d(x, y) = d(y, x), for every x and y in X,

(3) there exists a constant K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y))

for every x, y and z in X.

We shall say that two quasi-distance d and d′ on X are equivalent if there exist two

positive constants c1 and c2 such that c1d
′(x, y) ≤ d(x, y) ≤ c2d

′(x, y) for all x, y ∈ X.

In particular, equivalent quasi-distances induce the same topology on X.

Let µ be a positive measure on the σ-algebra of subsets of X which contains the

d-balls B(x, r) = {y : d(x, y) < r}. We assume that µ satisfies a doubling condition,

that is, there exists a constant A such that

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞

holds for all x ∈ X and r > 0.

A structure (X, d, µ), with d and µ as above, is called a space of homogeneous type.

The constants K and A will be called the constants of the space.

Define the singular integral operator T by

T (f)(x) =

∫
X

K(x, y)f(y)dµ(y),
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where K(x, y) is a standard calderón-Zygmund kernel.

By the calderón-Zygmund theory ([12]), we know that T is bounded on Lp(X) for any

p with 1 < p < ∞, and is bounded from L1(X) to weak L1(X). We can also realize

that the kernel function K satisfies the standard Hölder regularity condition,with

some δ ∈ (0, 1), such that

|K(x, y)−K(x0, y)| ≤ C
(d(x, x0))

δ

µ(B(x, d(y, x)))(d(y, x))δ
, if d(y, x) ≥ 2d(x, x0).

Let b be a BMO(X) function, define the commutator of T and b by

Tb(f)(x) = b(x)T (f)(x)− T (bf)(x).

Bramanti and Christina proved the boundedness for the commutator of singular in-

tegral operator ([1][2][3][4]). And the endpoint estimate are obtained by Chen and

Sawyer in [5].

In this paper, we will study the multilinear commutator as following: Suppose

bj are the fixed locally integral functions on X and j = 1, 2, · · · , m(m ∈ N). The

multilinear commutator related to T is defined by

T~b(f)(x) =

∫
X

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dµ(y).

Note that when m = 1, T~b is just the commutator what we mentioned above. It

is well known that multilinear operator are of great interest in harmonic analysis

and have been widely studied by many authors ([19][20][21]). Cohen and Gosselin

([6][7][8]) obtained the Lp(p > 1) boundedness of the multilinear singular integral

operators. Hu and Yang ([13])proved a variant shape estimate for the multilinear

singular integral operators. In[21], the authors prove some shape estimates for the

multilinear commutator. As the Morrey space may be considered as an extension

of Lebesgue space ([16]), it is natural and important to study the boundedness of

such operator on the Morrey space. The purpose of this paper has two-fold,first, we
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establish a Mk-type estimate for the multilinear commutator related to the singular

integral operators, and second, we obtain the weighted Lp-norm inequality and the

weighted estimates on the generalized Morrey space for the multilinear commutator

by using the sharp inequality.

To state our result,we first give some notions.

In this paper, B will denote a ball in X and fB = µ(B)−1
∫

B
f(x)dµ(x), we define

the sharp function of f as

f#(x) = sup
B3x

1

µ(B)

∫
B

|f(y)− fB|dµ(y).

It is well-known that ([12])

f#(x) ≈ sup
B3x

inf
c∈C

1

µ(B)

∫
B

|f(y)− C|dµ(y).

We say that f belongs to BMO(X) if f# belongs to L∞(X) and define

||f ||BMO = ||f#||L∞ .

Let M be the Hardy-Littlewood maximal operator defined by

M(f)(x) = sup
B3x

µ(B)−1

∫
B

|f(y)|dµ(y).

For 0 < p < ∞, we denote Mpf(x) by

Mp(f)(x) = [M(|f |p)(x)]1/p.

For k ∈ N , we denote by Mk the operator M iterated k times,

i.e. M1(f)(x) = M(f)(x) and

Mk(f)(x) = M(Mk−1(f))(x) when k ≥ 2.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ, we denote

that the Φ-average by, for a function f ,

||f ||Φ,B = inf

{
λ > 0 :

1

µ(B)

∫
B

Φ

(
|f(y)|

λ

)
dµ(y) ≤ 1

}
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and the maximal function associated to Φ by

MΦ(f)(x) = sup
x∈B

||f ||Φ,B.

The Young functions to be using in this paper are Φ(t) = t(1 + logt)r and

Φ̃(t) = exp(t1/r), the corresponding average and maximal functions denoted by || ·

||L(logL)r,B, ML(logL)r and || · ||expL1/r,B, MexpL1/r . Following [19][20], we know the

generalized Hölder’s inequality:

1

µ(B)

∫
B

|f(y)g(y)|dµ(y) ≤ ||f ||Φ,B||g||Φ̃,B.

And we can also obtain the following inequalities:

||f ||L(logL)1/r,B ≤ ML(logL)1/r(f) ≤ CML(logL)m(f) ≤ CMm+1(f),

||b− bB||expLr,B ≤ C||b||BMO,

|b2k+1B − b2B| ≤ Ck||b||BMO.

for r, rj ≥ 1, j = 1, 2, · · · , m with 1/r = 1/r1 + 1/r2 · · · + 1/rm, and any x ∈ X,

b ∈ BMO(X).

We say that b belongs to BMO(X) if M#(b)(x) belongs to L∞(X) and define

||b||BMO = ||b#||L∞ . It is known that([12])

||b− b2kB||BMO ≤ Ck||b||BMO.

Given a positive integer m and 1 ≤ j ≤ m, we denote by Cm
j the family of all finite

subsets σ = {σ(1), · · ·, σ(j)} of {1, · · ·, m} of j different elements and σ(i) < σ(j)

when i < j. For σ ∈ Cm
j , set σc = {1, · · ·, m} \ σ. For ~b = (b1, · · ·, bm) and

σ = {σ(1), · · ·, σ(j)} ∈ Cm
j , set ~bσ = (bσ(1), · · ·, bσ(j)), bσ =

j∏
i=1

bσ(i) and

||~bσ||BMO =
j∏

i=1

||bσ(i)||BMO.

We denote the Muckenhoupt weights by Ap for 1 ≤ p < ∞([11]), that is

A1 = {w : M(w)(x) ≤ Cw(x), a.e.}
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and, for 1 < p < ∞,

Ap =

{
w : sup

B

(
1

µ(B)

∫
B

w(x)dµ(x)

)(
1

µ(B)

∫
B

w(x)−1/(p−1)dµ(x)

)p−1

< ∞

}
.

Throughout this paper, ϕ will denote a positive, increasing function on R+ and

there exists a constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let w be a weight function on X(that is w is a non-negative locally integrable function

on X) and f be a locally integrable function on X. We define the norm as:

||f ||Lp,ϕ(w) = sup
x∈X, d>0

(
1

ϕ(d)

∫
B(x,d)

|f(y)|pw(y)dµ(y)

)1/p

,

for 1 ≤ p < ∞, where B(x, d) = {y ∈ X : |x− y| < d}.

The generalized weighted Morrey spaces is defined by

Lp,ϕ(X, w) = {f ∈ L1
loc(X) : ||f ||Lp,ϕ(w) < ∞}.

If ϕ(d) = dδ, δ > 0, then Lp,ϕ(X, w) = Lp,δ(X, w), which is the classical Morrey

spaces ([17][18]).

2. Theorems and Proofs

Now we state our theorems as following.

Theorem 1. Let bj ∈ BMO(X) for j = 1, · · · , m. Then for any 0 < r < 1,

k ≥ m + 1, k ∈ N , there exists a constant C > 0 such that for any f ∈ C∞
0 (X) and

any x̃ ∈ X,

(T~b(f))#
r (x̃) ≤ C||~b||BMO

Mk(f)(x̃) +
m∑

j=1

∑
σ∈Cm

j

Mk(T~bσc
(f))(x̃)

 .

Theorem 2. Let bj ∈ BMO(X) for j = 1, · · · , m. Then T~b is bounded on Lp(w)

for 1 < p < ∞ and w ∈ Ap.
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Theorem 3. Let 1 < p < ∞, w ∈ Ap and bj ∈ BMO(X) for j = 1, · · · , m.

Suppose µ satisfies the doubling condition: there exists a constant n0 > 0 such that

µ(B(x, 2r)) ≥ 2n0µ(B(x, r)) for all x ∈ X and r > 0. Then, if 0 < D < 2n0 ,

||T~b(f)||Lp,ϕ(w) ≤ C||~b||BMO||f ||Lp,ϕ(w).

In order to prove the theorems, we need the following lemmas.

Lemma 1. Let 1 < r < ∞ and bj ∈ BMO(X) with j = 1, · · · , k and k ∈ N .

Then, we have

1

µ(B)

∫
B

k∏
j=1

|bj(y)− (bj)B|dµ(y) ≤ C
k∏

j=1

||bj||BMO,

(
1

µ(B)

∫
B

k∏
j=1

|bj(y)− (bj)B|rdµ(y)

)1/r

≤ C
k∏

j=1

||bj||BMO.

Similarly, for σ ∈ Cm
k ,when k ≤ m and m ∈ N , we have:

1

µ(B)

∫
B

|(b(y)− (bj)B)σ|dµ(y) ≤ C||bσ||BMO

and (
1

µ(B)

∫
B

|(b(y)− (bj)B)σ|rdµ(y)

)1/r

≤ C||bσ||BMO.

In fact, we just need to choose pj > 1 and qj > 1 , where 1 ≤ j ≤ k, such that

1/p1 + · · · + 1/pk = 1 and r/q1 + · · · + r/qk = 1. After that, using the Hölder’s

inequality with exponent 1/p1 + · · ·+1/pk = 1 and r/q1 + · · ·+r/qk = 1. respectively,

we may get the results.

Lemma 2.([11],p.485) Let 0 < p < q < ∞ and for any function f ≥ 0. We define

that, for 1/r = 1/p− 1/q

||f ||WLq = sup
λ>0

λ|{x ∈ X : f(x) > λ}|1/q, Np,q(f) = sup
B
||fχB|Lp/||χB||Lr ,

where the sup is taken for all measurable sets B with 0 < µ(B) < ∞. Then

||f ||WLq ≤ Np,q(f) ≤ (q/(q − p))1/p||f ||WLq .
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Lemma 3.([11]) Let 0 < p, η < ∞ and w ∈ ∪1≤r<∞Ar. Then

||Mη(f)||Lp(w) ≤ C||f#
η (f)||Lp(w).

Lemma 4. Let 1 < p < ∞, w ∈ A1 and 1 ≤ q < p. Suppose µ satisfies the

doubling condition: there exists a constant n0 > 0 such that

µ(B(x, 2r)) ≥ 2n0µ(B(x, r)) for all x ∈ X and r > 0. Then, if 0 < D < 2n0 ,

||Mq(f)||Lp,ϕ(ω) ≤ C||f ||Lp,ϕ(w).

Proof. Let f ∈ Lp,ϕ(X,w). Note that 1 ≤ q < p and for any u ∈ A1,

∫
X

|Mq(f)(y)|pu(y)dµ(y) ≤ C

∫
X

|f(y)|pu(y)dµ(y).

For a ball B = B(x, d) ⊂ X, we get∫
B

|Mq(f)(y)|pw(y)dµ(y)

≤
∫

X

|Mq(f)(y)|pM(wχB)(y)dµ(y)

≤ C

∫
X

|f(y)|pM(wχB)(y)dµ(y)

= C

[∫
B

|f(y)|pM(wχB)(y)dµ(y) +
∞∑

k=0

∫
2k+1B\2kB

|f(y)|pM(wχB)(y)dµ(y)

]

≤ C

[∫
B

|f(y)|pw(y)dµ(y) +
∞∑

k=0

∫
2k+1B\2kB

|f(y)|p w(y)

µ(2k+1B)
dµ(y)

]

≤ C

[∫
B

|f(y)|pw(y)dµ(y) +
∞∑

k=0

∫
2k+1B

|f(y)|p M(w)(y)

2n0(k+1)
dµ(y)

]
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≤ C

[∫
B

|f(y)|pw(y)dµ(y) +
∞∑

k=0

∫
2k+1B

|f(y)|p w(y)

2n0k
dµ(y)

]

≤ C||f ||pLp,ϕ(w)

∞∑
k=0

2−n0kϕ(2k+1d)

≤ C||f ||pLp,ϕ(w)

∞∑
k=0

(2−n0D)kϕ(d)

≤ C||f ||pLp,ϕ(w)ϕ(d).

thus,

||Mq(f)||Lp,ϕ(ω) ≤ C||f ||Lp,ϕ(w).

Lemma 5. Let 1 < p < ∞, 0 < D < 2n, w ∈ A1. Then, for f ∈ Lp,ϕ(X, w),

||M(f)||Lp,ϕ(w) ≤ C||f#||Lp,ϕ(w).

The proof of the Lemma is similar to that of Lemma 4 by Lemma 3, we omit the

details.

Proof of Theorem 1. It suffices to prove for f ∈ C∞
0 (X) and some constant C0,

the following inequality holds:(
1

µ(B)

∫
B

|T~b(f)(x)− C0|rdµ(x)

)1/r

≤ C||~b||BMO

Mk(f)(x̃) +
m∑

j=1

∑
σ∈Cm

j

Mk(T~bσc
(f))(x̃)

 .

Fix a ball B = B(x0, d) and x̃ ∈ B, we write f1 = fχ2B and f2 = fχ(2B)c . Following

[P–P], we will consider the cases m = 1 and m > 1, and choose

C0 = T (((b1)2B − b1)f2)(x0) and C0 = T (
∏m

j=1(bj − (bj)2B)f2)(x0), respectively.

We first consider the Case m = 1. For C0 = T (((b1)2B − b1)f2)(x0), we write

Tb1(f)(x) = (b1(x)− (b1)2B)T (f)(x)− T ((b1 − (b1)2B)f)(x).
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Then

|Tb1(f)(x)− C0|

= |(b1(x)− (b1)2B)T (f)(x) + T (((b1)2B − 1f65b1)f)(x)− T (((b1)2B − b1)f2)(x0)|

≤ |(b1(x)− (b1)2B)T (f)(x)|+ |T (((b1)2B − b1)f1)(x)|

+|T (((b1)2B − b1)f2)(x)− T (((b1)2B − b1)f2)(x0)|

= A(x) + B(x) + C(x).

For A(x), we get

(
1

µ(B)

∫
B

|A(x)|rdµ(x)

)1/r

≤ 1

µ(B)

∫
B

|A(x)|dµ(x)

≤ 1

µ(B)

∫
B

|(b1(x)− (b1)2B)T (f)(x)|dµ(x)

≤ ||b1 − (b1)2B||exp L,2B||T (f)||L(log L),2B

≤ C||b1||BMOM2(T (f))(x̃).

For B(x), by the weak type (1,1) of T and Lemma 2 , we obtain

(
1

µ(B)

∫
B

|B(x)|rdµ(x)

)1/r

≤ 1

µ(B)

∫
B

|B(x)|dµ(x)

=
1

µ(B)

∫
B

|T (((b1)2B − b1)f1)(x)|dµ(x)

≤
(

1

µ(B)

∫
2B

|T ((b1 − (b1)2B)fχ2B)(x)|pdµ(x)

)1/p

=
1

µ(B)

1

µ(B)
1
p
−1
||T ((b1)2B − b1)(fχ2B)(x))||Lp
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≤ C
1

µ(B)
||T ((b1)2B − b1)(fχ2B)(x)||WL1

≤ C
1

µ(B)
||((b1)2B − b1)(fχ2B)(x)||L1

≤ C
1

µ(B)

∫
2B

|((b1)2B − b1(x))||f(x)|dµ(x)

≤ C||(b1)2B − b1(x)||expL,2B||f ||L(log L),2B

≤ C||b1||BMOM2(f)(x̃).

For C(x), we have, for x ∈ B,

|T (b1 − (b1)2B)(f2)(x)− T (b1 − (b1)2B)(f2)(x0)|

=

∣∣∣∣∫
(2B)c

(b1(y)− (b1)2B)f2(y)(K(x, y)−K(x0, y))dµ(y)

∣∣∣∣
≤

∫
(2B)c

|(b1(y)− (b1)2B)||f(y)||(K(x, y)−K(x0, y))|dµ(y)

≤ C
∞∑

k=1

∫
2k+1B/2kB

(d(x, x0))
δ

µ(B(x, d(x, y)))(d(x, y))δ
|f(y)||b1(y)− (b1)2B|dµ(y)

≤ C
∞∑

k=1

r0
δ

µ(2kB)

1

(2kr0)δ

∫
2k+1B

|f(y)||b1(y)− (b1)2B|dµ(y)

≤ C
∞∑

k=1

2−kδ 1

µ(2k+1B)

∫
2k+1B

|f(y)||b1(y)− (b1)2B|dµ(y)

≤ C
∞∑

k=1

2−kδ||b1(y)− (b1)2B||expL,2k+1B||f ||L(log L),2k+1B

≤ C||b1||BMOM2(f)(x̃).

thus,we can obtain:

(
1

µ(B)

∫
B

|C(x)|rdx

)1/r

≤ C||b1||BMOM2(f)(x̃).
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Now, we consider the Case m ≥ 2. we have, for b = (b1, · · · , bm),

T~b(f)(x) =

∫
X

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dµ(y)

=

∫
X

m∏
j=1

[(bj(x)− (bj)2B)− (bj(y)− (bj)2B)]K(x, y)f(y)dµ(y)

=
m∑

j=0

∑
σ∈Cm

j

(−1)m−j(b(x)− (b)2B)σ

∫
X

(b(y)− (b)2B)σcK(x, y)f(y)dµ(y)

=
m∏

j=1

(bj(x)− (bj)2B)

∫
X

K(x, y)f(y)dµ(y)

+(−1)m

∫
X

m∏
j=1

(bj(y)− (bj)2B)K(x, y)f(y)dµ(y)

+
m−1∑
j=1

∑
σ∈Cm

j

(−1)m−j(bj(x)− (bj)2B)σ

∫
X

(bj(y)− (bj)2B)σcK(x, y)f(y)dµ(y)

=
m∏

j=1

(bj(x)− (bj)2B)T (f)(x) + (−1)mT (
m∏

j=1

(bj(y)− (bj)2B)f)(x)

+
m−1∑
j=1

∑
σ∈Cm

j

(−1)m−j((bj(x)− (bj)2B)σT (bj − (bj)2B)σc(f)(x)

thus, recall that C0 = T (
∏m

j=1(bj(y)− (bj)2B)f2)(x0),

|T~b(f)(x)− T (
m∏

j=1

(bj(y)− (bj)2B)f2)(x0)|

≤ |
m∏

j=1

(bj(x)− (bj)2B)T (f)(x)|

+|T (
m∏

j=1

(bj(y)− (bj)2B)f1)(x)|

+|
m−1∑
j=1

∑
σ∈Cm

j

((bj(x)− (bj)2B)σT (bj − (bj)2B)σc(f)(x)|

enas
Text Box
CHENG YUE, HUANG CHUANGXIA  AND LIU LANZHE



Mk-TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR 109

+|T (
m∏

j=1

(bj(y)− (bj)2B)f2)(x)− T (
m∏

j=1

(bj(y)− (bj)2B)f2)(x0)|

= I1(x) + I2(x) + I3(x) + I4(x).

For I1(x), we get,

(
1

µ(B)

∫
B

|I1(x)|rdµ(x)

)1/r

≤ 1

µ(x)

∫
B

|I1(x)|dµ(x)

≤ 1

µ(B)

∫
B

|
m∏

j=1

(bj(x)− (bj)2B)||T (f)(x)|dµ(x)

≤ C||
m∏

j=1

(bj(x)− (bj)2B)||
exp L1/rj ,2B

||T (f)||L(log L)r,2B

≤ C
m∏

j=1

||bj||BMOMm+1(T (f))(x̃)

≤ C||~b||BMOMk(T (f))(x̃).

For I2(x), by the boundness of T on Lp(X) and similar to the proof of B(x), using

Lemma 2 , we get

(
1

µ(B)

∫
B

|I2(x)|rdµ(x)

)1/r

≤ 1

µ(B)

∫
B

|I2(x)|dµ(x)

=
1

µ(B)

∫
B

|T (
m∏

j=1

(bj(y)− (bj)2B)f1)(x)|dµ(x)

≤

(
1

µ(B)

∫
B

|T (
m∏

j=1

(bj − (bj)2B)f1)(x)|pdµ(x)

)1/p

=
1

µ(B)

1

µ(B)
1
p
−1
||T (

m∏
j=1

(bj − (bj)2B)f1)(x))||Lp
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≤ 1

µ(B)
||T (

m∏
j=1

(bj − (bj)2B)f1)(x))||WL1

≤ 1

µ(B)
||(

m∏
j=1

(bj − (bj)2B)f1)(x))||L1

≤ 1

µ(B)

∫
B

|
m∏

j=1

(bj − (bj)2B)||f1(x)|dµ(x)

≤ C

m∏
j=1

||(bj − (bj)2B)||
exp L1/rj ,2B

||f ||L(log L)r,2B

≤ C||~b||BMOMm+1(f)(x̃)

≤ C||~b||BMOMk(f)(x̃).

For I3(x), by Lemma 2 ,(
1

µ(B)

∫
B

|I3(x)|rdµ(x)

)1/r

≤ 1

µ(B)

∫
B

|I3(x)|dµ(x)

≤
m−1∑
j=1

∑
σ∈Cm

j

1

µ(B)

∫
B

|(bj(x)− (bj)2B)σ||T (bj − (bj)2B)σc(f)(x)|dµ(x)

≤ C
m−1∑
j=1

∑
σ∈Cm

j

||(bj(x)− (bj)2B)σ||exp L1/rj ,2B
||T (bj − (bj)2B)σc(f)||L(log L)r,2B

≤ C
m−1∑
j=1

∑
σ∈Cm

j

||bσ||BMOMm+1(T~bσc
(f))(x̃)

≤ C
m−1∑
j=1

∑
σ∈Cm

j

||~b||BMOMk(T~bσc
(f))(x̃).

For I4(x), similar to the proof of C(x) in the Case m = 1. We have :

|T (
m∏

j=1

(bj(y)− (bj)2B)f2)(x)− T (
m∏

j=1

(bj(y)− (bj)2B)f2)(x0)|

= |
∫

(2B)c

m∏
j=1

(bj(y)− (bj)2B)f(y)(K(x, y)−K(x0, y))dµ(y)|

enas
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≤
∫

(2B)c

|
m∏

j=1

(bj(y)− (bj)2B)||f(y)||(K(x, y)−K(x0, y))|dµ(y)

≤ C
∞∑

k=1

∫
2k+1B/2kB

(d(x, x0))
δ

µ(B(x, d(x, y)))(d(x, y))δ
|f(y)||

m∏
j=1

(bj(y)− (bj)2B)|dµ(y)

≤ C

∞∑
k=1

r0
δ

µ(2kB)

1

(2kr0)δ

∫
2k+1B

|f(y)||
m∏

j=1

(bj(y)− (bj)2B)|dµ(y)

≤ C

∞∑
k=1

2−kδ 1

µ(2k+1B)

∫
2k+1B

|f(y)||
m∏

j=1

(bj(y)− (bj)2B)|dµ(y)

≤ C

∞∑
k=1

2−kδ||
m∏

j=1

(bj(y)− (bj)2B)||
exp L1/rj ,2B

||f ||L(log L)r,2B

≤ C||~b||BMOMm+1(f)(x̃),

thus (
1

µ(B)

∫
B

|I4(x)|rdµ(x)

)1/r

≤ ||~b||BMOMk(f)(x̃).

This completes the proof of the theorem.

Proof of Theorem 2. By Theorem 1 and the Lp(w)-boundedness of Mk, we

may obtain the conclusion of Theorem 2 by induction.

Proof of Theorem 3. We first consider the case m=1. Taking 0 < r < 1 in

Theorem 1, by Lemma 4 and Lemma 5, we obtain

||T~b(f)||Lp,ϕ(w) ≤ ||M(T~b(f))||Lp,ϕ(w) ≤ C||(T~b)
#
r (f)||Lp,ϕ(w)

≤ C||~b||BMO

(
||Mk(f)||Lp,ϕ(w) + ||Mk(T (f))||Lp,ϕ(w)

)
≤ C||~b||BMO

(
||f ||Lp,ϕ(w) + ||T (f))||Lp,ϕ(w)

)
≤ C||~b||BMO

(
||f ||Lp,ϕ(w) + ||f ||Lp,ϕ(w)

)
≤ C||~b||BMO||f ||Lp,ϕ(w).

When m ≥ 2, we may get the conclusion of Theorem 3 by induction.

This completes the proof of Theorem 3.
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