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SUB COMPATIBLE AND AND SUB SEQUENTIAL 
CONTINUOUS MAPS IN NON-ARCHIMEDEAN 

MENGER PM  - SPACE 
** 
 
 

M. ALAMGIR KHAN (1), SUMITRA(2) AND RANJETH KUMAR (3) 

 

ABSTRACT:  The aim of this paper is to establish some fixed point results by using the  new  

concepts   of   sub  compatibility and  sub  sequential  continuity  in  non  Archimedean 

Menger PM-spaces ( Briefly, N. A. Menger PM-spaces).  

 
 

1. INTRODUCTION 
 

 

In 1942 K. Menger [9] introduced the notion of probabilistic metric spaces (briefly, PM- 

space) as a generalization of metric space. Such a probabilistic generalization of metric 

spaces appears to be well adapted for the investigation of physical quantities and 

physiological thresholds. It is also of fundamental importance in probabilistic functional 

analysis.  

In 1975, Istratescu and Crivat [22] first studied the non-Archimedean PM-space. They 

presented some basic topological preliminaries of N. A. PM-space and later on Istratescu 

[19], [20], [21] proved some fixed point results on mappings on N. A. Menger PM-space by 

generalizing the results of Sehgal and Bharucha-Reid [23]. Achari [8] generalized the 

results of Istratescu and studied some fixed points of qausi-contraction type mappings in 

non-Archimedean PM - space. 
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Recently Bouhadjera and Thobie [5] introduced the concept of sub compatibility and 

sub sequential continuity in metric spaces. Since then various mathematicians have 

extended the concept of sub compatibility and sub sequential continuity in certain spaces 

like   fuzzy metric spaces, 2 metric spaces and intuitionistic fuzzy metric spaces etc. 

In the present paper we introduce the concept of sub compatibility and sub sequential 

continuity in  N. A. Menger PM-space. Our results extend and generalize several known 

results in the literature. 

                                                     
2. Preliminaries  

 

Definition 2.1: Let X be any non-empty set and D be the set of all left continuous 

distribution functions. An ordered pair (X, F) is said to be non-Archimedean probabilistic 

metric space (briefly N. A. PM-space) if F is a mapping from X X int o D× satisfying the 

following conditions where the value of F at (x, y) X X∈ ×  is represented by 

x,yF or F(x, y) for all x , y X∈  such that 

      i)   F(x, y; t) = 1 for all t > 0 if and only if  x y=  

   ii)    F(x, y; t) = F(y, x; t) 

   iii)   F(x, y; 0) = 0 

   iv)   1 2 1 2If F(x, y; t ) F(y, z; t ) 1, then F(x,z ; max{t , t }) 1= = =  

Definition 2.2:  A t-norm is a function : [0,1] [0,1] [0,1]∆ × →  which is associative, 

commutative, non decreasing in each coordinate and  (a,1) a for all a [0,1]∆ = ∈ . 

 

Definition 2.3: A non-.Archimedean Menger PM-space is an ordered triplet (X, F, ∆), 

where ∆ is a t-norm and (X, F) is a N.A. PM-space satisfying the following condition;  

1 2 1 2 1 2F( x,z; max{t , t }) (F(x, y; t ) ,F(y,z; t )) for allx, y,z X, t , t 0≥ ∆ ∈ ≥  

For details of topological preliminaries on non-Archimedean Menger PM-spaces, we 

refer to [22]. 
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space (X, F, ∆) is said to be of type g(C)  if Definition 2.4:  A  N. A. Menger PM-

there exists a g∈ Ω  such that 

g(F(x, z; t)) g(F(x, y; t)) g(F(y, z; t)) for all x, y, z X, t 0≤ + ∈ ≥  

Where {g / g : [0,1] [0, )Ω = → ∞  is continuous, strictly decreasing 

g(1) 0 and g(0)= < ∞ }. 

Definition 2.5:  A  N. A. Menger PM-space (X, F, ∆) is said to be of type g(D)  if there 

exists a g∈ Ω  such that 1 2 1 2 1 2g ( (t , t )) g(t ) g(t ) t , t [0,1]∆ ≤ + ∀ ∈ . 

Remark 1  

i)  If  N. A. Menger PM-space is of type g(D)  then (X, F, ∆) is of type g(C) . 

ii) If ( ), ,X F ∆ is  N. A. Menger PM-space  and ( ) ( ), max 1,1r s r s∆ ≥ ∆ = + − , 

then (X, F, ∆) is of type g(D)  for  g∈Ω and  ( ) 1g t t= − . 

Through out this paper let ( ), ,X F ∆  be a complete N.A. Menger PM-space with a 

continuous strictly increasing t-norm ∆ . 

Let  [ ) [ ): 0, 0,φ ∞ → ∞  be a function satisfying the condition( )Φ ; 

( )φΦ  is semi upper continuous from right and  ( ) 0.t t for tφ < >  

 

Definition 2.6: A sequence { }nx  in  N. A. Menger PM-space ( , , )X F ∆  converges to x , 

if and only if  for each 0, 0ε λ> >  there exists ( , )M ε λ  such that 

( ( , ; )) (1 ) ,< − ∀ >ng F x x g n n Mε λ . 

Definition 2.7: A sequence { }nx in N. A. Menger PM-space is Cauchy sequence if and 

only if for each 0, 0ε λ> >  there exists an integer  ( , )M ε λ  such that 

( ( , ; )) (1 ) , 1+ < − ∀ ≥ ≥n n pg F x x g n n M and pε λ . 
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Lemma1. If a function : [0, ) [0, )φ ∞ → ∞  satisfies the condition (Φ ) then we get:  

i) For all t > 0, n n

n
lim (t) 0, where (t)

→∞
φ = φ  is the nth iteration of φ (t). 

ii)  If {tn} is a non decreasing sequence of real numbers and tn+1 ≤ φ (tn),  

n = 1, 2, … then n
n
lim t 0

→∞
= . In particular, if t ≤ φ(t), ∀ t ≥0 then t = 0. 

Example1 ([11]). Let X be any set with at least  two elements. If we define  

( ) ( ) 0 , t 1
F x, x; t 1 for all x X , t 0 and F x, y; t when x , y X , x y

1 , t 1

≤ 
= ∈ > = ∈ ≠ > 

then,  ( , , )X F ∆  is  N. A. Menger PM-space  ( ) ( ) ( )with a,b min a,b or a.b∆ = . 

Example 2 ([11]).  Let X R= be the set of real numbers equipped with  metric defined 

as 

( )
t

( , ) set  F(x, y; t) =   
t+d x,y

d x y x y and= −
 

Then  ( , , )X F ∆  is  N. A. Menger PM-space with ∆   as continuous t-norm satisfying 

( , ) min ( , ) ( . )r s r s or r s∆ = . 

Definition 2.7: Two self maps A and B  of a N. A. Menger PM-space ( ), ,X F ∆ are said 

to be weakly compatible if At Bt=  for some t X∈  implies that ABt BAt= . 

It is well known fact that compatible maps are weak compatible but the converse is not 

true. 

Definition 2.8: Two self maps A and B of a set X are said to be owc if and only if there 

is a point x X∈ which is a coincidence point of A and B at which A and B commute. i.e., 

there exists a point x X∈ such that Ax Bx=  and ABx BAx= . 

Definition 2.9: Two self maps A and B of a N. A. Menegr PM-space ( ), ,X F ∆  are 

said sub compatible if and only if there exists a sequence { }nx  in X such that 
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satisfy ( )( )( )lim , ; 0n n ng F ABx BAx t =  for all lim limn n n nAx Bx z= =  , z X∈ and which 

0t > . 

Obviously two occasionally weakly compatible maps are sub compatible maps, 

however the converse is not true in general as shown in the  following  example. 

Example 3. ([11]).  Let X R= be the set of real numbers equipped with  metric defined 

as 

( )
t

( , ) set  F(x, y; t) =   
t+d x,y

d x y x y and= −
 

Then  ( , , )X F ∆  is  N. A. Menger PM-space with ∆   as continuous t-norm satisfying  

( , ) min ( , ) ( . )r s r s or r s∆ = . 

Define the maps , :A B X X→  by setting 

2, 1

2 1, 1

x x
Ax

x x

 <
=  − ≥ 

 ,  
3 2, 1

3, 1

x x
Bx

x x

− < 
=  + ≥ 

 

Define a sequence
1

1nx
n

= − , then
2

1
1 1nAx

n
 = − → 
 

 

1 3
3 1 2 1 1nBx

n n
 = − − = − → 
 

 

2

2

3 3 9 6
1 1 1nABx A

n n n n
   = − = − = + −   
   

       and  

2 2 2 2
1 1 1 2 1 6

1 3 1 2 3 1 2 1nBAx B
n n n n n n

         = − = − − = + − − = + −                    

         and   

lim ( ( , ; )) 0n n ng F ABx BAx t → , where g is a function defined in Def. 2.4. 

Thus, A and B are sub compatible but A and B are not owc maps as, ( ) ( )4 7 4A B= =  

and  ( ) ( ) ( )4 7 13 4 10AB A BA= = ≠ = . 
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It is also interesting to see the following one way implication. 

Commuting ⇒  Weakly commuting ⇒  Compatibility ⇒ Weak 

Compatibility⇒  Occasionally Weak Compatibility ⇒Sub Compatibility. 

Now, we aim at our second objective which is to introduce a new notion called sub 

sequential continuity in  N. A. Menger PM-space ( ), ,X F ∆  by weakening the concept of 

reciprocal continuity introduced by Pant [18]. 

 

Definition 2.10: Two self maps A and S of a N. A. Menegr PM-space ( ), ,X F ∆  are 

called reciprocal continuous if  limn nASx At=  and limn nSAx St=  for some t X∈  

whenever { }nx  is a sequence in X such that lim limn n n nAx Sx t X= = ∈ . 

Definition 2.11: Two self maps A and B of a N. A. Menegr PM-space ( ), ,X F ∆  are 

said to be sub sequentially continuous   if and only if there exists a sequence { }nx  in X 

such that lim limn n n nAx Bx t= =  for some t X∈  and satisfy limn nABx At=  and 

lim n nBAx Bt= . 

Remark 2. If A and B are both continuous or reciprocally continuous then they are 

obviously sub sequentially continuous. 

The next example shows that there exist sub sequentially continuous pairs of maps 

which are neither continuous nor reciprocally continuous. 

Example 4. ([11]).  Let X R= be the set of real numbers equipped with  metric defined 

as 

( )
t

( , ) set  F(x, y; t) =   
t+d x,y

d x y x y and= −
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Then  ( , , )X F ∆  is  N. A. Menger PM-space with ∆   as continuous t-norm satisfying  

( , ) min ( , ) ( . )r s r s or r s∆ = . 

Define , :A B X X→  as; 

2, 3

, 3

x
Ax

x x

< 
=  ≥ 

  ,   
2 4, 3

3, 3

x x
Bx

x

− ≤ 
=  > 

 

 

Consider a sequence 
1

3nx
n

= +  , then  
1

3 3nAx
n

 = + → 
 

 , 3nBx =  

( )1
3 3 3 2nBAx B B

n
 = + = ≠ = 
 

. 

Thus A and B are not reciprocally continuous but if we consider a sequence 

1
3nx

n
= − , then  2nAx =   ,  

1 2
2 3 4 2 2nBx

n n
   = − − = − →   
   

 

( )2
2 2 2nABx A A

n
 = − = = 
 

  ,  ( ) ( )2 0 2nBAx B B= = = . 

Therefore, A and B are sub sequentially continuous. 

 

3. Results and Discussion 
 

Now, we prove our main result. 

Theorem 1. Let , ,A B S  and T be four self maps of a N. A. Menger PM-space( , , )X F ∆ . 

If the pairs ( ),A S  and ( ),B T  are sub compatible and sub sequentially continuous,  then 

 (i) A  and S  have a coincidence point, 

(ii) B  and T  have a coincidence point. 
 

Further, If (1.1)  
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( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

g F Sx Ty t g F Ax Sx t g F By Ty t
g F Ax By t

g F Sx By t g F Ty Ax t
φ
    ≤  
    

 

for all ,x y X∈ , t > 0 , where φ ∈Φ  such that [ ) [ ): 0, 0,φ ∞ → ∞ . Then , ,A B S  

and T  have a unique common fixed point in X. 

Proof. Since the pairs ( ),A S and ( ),B T are sub compatible and sub sequentially 

continuous, therefore,  there exist  two sequences { }nx  and { }ny in X such that  

lim limn n n nAx Sx u= = for  some u X∈ and which satisfy  

( )( ) ( )( )lim , ; , ; 0n n ng F ASx SAx t g F Au Su t= = , 

lim limn n n nBy Ty v= =  For some v X∈  and which satisfy   

( )( )lim , ; ( ( , ; )) 0n n ng F BTy TBy t g F Bv Tv t= = . 

Therefore, Au Su= and Bv Tv= . i.e., u  is the coincidence point of A and S  and  v  is 

a coincidence point of B and T . 

Now, using (1.1) for nx x=  and ny y=  , we get 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

n n n n n n

n n

n n n n

g F Sx Ty t g F Ax Sx t g F By Ty t
g F Ax By t

g F Sx By t g F Ty Ax t
φ
    ≤  
    

 

Letting n → ∞ , 

( )( ) ( )( ) ( )( ) ( )( ){ }, ; max , ; , 0 , 0 , , ; , , ;g F u v t g F u v t g F u v t g F u v tφ  ≤    

i.e.,  ( )( ) ( )( ) ( )( ), ; , ; , ;g F u v t g F u v t g F u v tφ  ≤ <  , a contradiction. 

Hence u v= . 

Again using (1.1) for x u=  , ny y=  , we obtain  

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

n n n

n

n n

g F Su Ty t g F Au Su t g F By Ty t
g F Au By t

g F Su By t g F Ty Au t
φ
    ≤  
    

 

Letting n → ∞ , 
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( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

g F Su v t g F Au Su t g F v v t
g F Au v t

g F Su v t g F v Au t
φ
    ≤  
    

 

 

( )( ) ( )( ) ( )( ) ( )( ){ }, ; max , ; ,0,0, , ; , , ;g F Au v t g F Su v t g F Su v t g F v Au tφ  ≤  
 

i.e. ( )( ) ( )( ) ( )( ), ; , ; , ;g F Au v t g F Au v t g F Au v tφ  = <  , which yields Au v u= = . 

Therefore, u v=  is a common fixed point of A , B  , S  and T . 

For uniqueness, let w u≠  be another fixed point of  A , B  , S  and T . Then 

from (1.1), we have 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

g F Su Tw t g F Au Su t g F Bw Tw t
g F Au Bw t

g F Su Bw t g F Tw Au t
φ
    ≤  
    

 

=  ( )( ) ( )( ) ( )( ){ }max , ; ,0,0, , ; , , ;g F Au Bw t g F Au Bw t g F Au Bw tφ  
   

= ( )( ) ( )( ), ; , ;g F Au Bw t g F Au Bw tφ   <   which yields w u=  and hence      

the theorem. 

If we put A B=  and S T= , in above theorem , we get the following result. 

Corollary 1. Let A  and S  be self maps of a N. A. Menger PM-space ( ), ,X F ∆  such 

that the  pairs ( ),A S  is sub compatible and sub sequentially continuous, then: 

 (i) A  and S  have a coincidence point, 

Further, If (1.1) 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

g F Sx Sy t g F Ax Sx t g F Ay Sy t
g F Ax Ay t

g F Sx Ay t g F Sy Ax t
φ
    ≤  
    
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for all ,x y X∈ , t > 0 , where φ ∈Φ . Then A  and S  have a unique common fixed 

point in X. 

If we put  S T= , in above corollary, we get the following result. 

Corollary 2. Let  ,A B  and S  be self maps of a N. A. Menger PM-space ( ), ,X F ∆ . 

Suppose that the pairs  ( ),A S  and ( ),B S  are sub compatible and sub sequentially 

continuous, then 

(i) A  and S  have a coincidence point. 

(ii) B  and S  have a coincidence point. 

Further, If (1.1)  

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

, ; , , ; , , ;
, ; max

, ; , , ;

g F Sx Sy t g F Ax Sx t g F By Sy t
g F Ax By t

g F Sx By t g F Sy Ax t
φ
    ≤  
    

 

for all ,x y X∈ , t  > 0 ,  where φ ∈Φ . ThenA , B  and S  have a unique common fixed 

point in X. 

Now, we furnish our theorem with example. 

Example 5([11]).  Let X R=  be the set of real numbers equipped with  metric defined 

as 

( )
t

( , ) set  F(x, y, t) =   
t+d x,y

d x y x y and= −
 

Then  ( , , )X F ∆  is  N. A. Menger PM-space with ∆   as continuous t-norm satisfying  

( , ) min ( , ) ( . )r s r s or r s∆ = . 
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Define the maps A , B  , S  and  T : X X→ as  

( ) , 1

3 1, 1

x x
A x

x x

≤ 
=  + > 

       ,        ( ) 2 1, 1

5 1, 1

x x
S x

x x

− ≤ 
=  − > 

 

 

 

( ) 3 2 , 1

3, 1

x x
B x

x

− ≤ 
=  > 

      ,         ( ) 3 2, 1

2, 1

x x
T x

x

− ≤ 
=  > 

 

 

Define [ ) [ ): 0, 0,φ ∞ → ∞  as ( ) :[0,1] [0, )t t and gφ = → ∞ is continuous, strictly 

decreasing and g(1) 0 and g(0)= < ∞ }. 

Consider the sequences { } { } 1
1n nx y

n
= = − . 

Then, clearly  nAx  , nBx  , nSx  and nTx  1→ . 

( ) ( )1 1
1 1 1 1nAS x A A

n n
   = − = − → =   
   

 and  ( ) ( )1 1
1 1 1 1nSA x S S

n n
   = − = − → =   
   

 

Thus ( ),A S  is sub compatible and sub sequentially continuous. 

Again, ( ) ( )3 3 6
1 3 2 1 1 1 1nBT x B B

n n n
     = − = − − = + → =     
     

 

( ) ( )2 2 6
1 3 1 2 1 1 1nTB x T T

n n n
     = + = + − = + → =     
     

,  

which shows that ( ),B T  is sub compatible and sub sequentially continuous. 

Also the condition (1.1) of our theorem is satisfied and '1' is unique common fixed point 

of  A , B  , S  and T . 
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