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AN APPROACH FOR SIMULTANEOUSLY DETERMINING THE

OPTIMAL TRAJECTORY AND CONTROL OF A VIBRATING

SHELL

S. EBRAHIMI(1) , A. FAKHARZADEH J.(2) AND H. R. SAHEBI(3)

Abstract. In this article, for a two-dimensional wave control system, we are going

to present a new combinational solution path. First, by considering all necessary

conditions, the problem is represented in a variational format in which the trajectory

is shown by a trigonometric series with the unknown coefficients. Then the problem

is converted into a new one that the unknowns are the mentioned coefficients and

a positive Radon measure. It is proved that the optimal solution is existed and it

is also explained how the optimal pair would be identified from the results deduced

by a finite linear programming problem simultaneously. Two numerical examples

are also given.

1. Introduction

Base on an idea of L. C. Young, in 1986 Rubio in [9] introduced a new method

for solving optimal control problems, by transferring the problem into a theoretical

measure optimization. The important properties of the method, like the global so-

lution, the automatic existence theorem and introducing a linear treatment even for

extremely nonlinear problems caused it to be applied for the wide variety of prob-

lems. Even in the recent decade, a considerable number of optimal control problems
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have been solved successfully based on the properties of the measures, like [1],[2],[3]

and [4], but at least two important points have been not considered yet. Generally

the method was not able to produce the acceptable optimal trajectory and control

directly at the same time; moreover, the classical format of the system solution, usu-

ally is not taken into account. Therefore, it is not possible to use this important fact

and its related literature in analysis of the system.

In this article, we try to bring the attention to these two facts, by introducing a

new solution method for an optimal control problem governed by a two-dimensional

wave equation system (a vibrating shell) with initial and boundary conditions and an

integral criterion. Regarding a general classical trigonometric series format for the

solution, the problem is presented in a variational form; then, by doing a deformation,

it is converted into a measure theoretical one with some positive unknown coefficients.

Next, by extending the underlying space, using some density properties and applying

some discretization scheme, the optimal pair of trajectory and control is determined

simultaneously as a result of a finite linear programming. The approach would be

improved if the number of nods in discretization is exceeded.

2. The control System

For all t ∈ [0, T ] ⊂ R, let the deflection of a vibrating shell at an arbitrary point x

in time t, is denoted by u(t, x, y) which satisfies in (see [6] and [12]):

utt = c2(uxx + uyy) (1)

where c2 is a constant dependent on physical structure of the shell. Since the shell

is fixed at its boundary, there is no vibration at these points and hence we have the

following boundary conditions:

u(t, 0, y) = u(t, a, y) = u(t, x, b) = u(t, x, 0) = 0, ∀ 0 ≤ x ≤ a, 0 ≤ y ≤ b. (2)
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If the initial deflection and velocity of the vibrating shell are denoted by f(x, y) and

g(x, y), then the initial conditions of the system are defined as:

f(x, y) = u(0, x, y); g(x, y) = ut(0, x, y) (3)

Regarding [7], u(t, x, y) belongs to the class of homogeneous Cauchy problems. Thus,

it can have a unique bounded classic solution on D = [0, T ] × [0, a] × [0, b], if

f(x, y), g(x, y) and the different orders of their partial derivatives are continuous.

Moreover, as mentioned in [13], the two-dimensional wave equation problem have the

following Fourier series as the solution:

u(t, x, y) =
∞

∑

m=1

∞
∑

n=1

(Amncosλmnt + Bmnsinλmnt)sin
mπx

a
sin

nπy

b
, (4)

where λmn = cπ

√

m2

a2 + n2

b2
, Amn = 4

ab

∫ b

0

∫ a

0
f(x, y)sinmπx

a
sinnπy

b
dxdy and

Bmn = 4
abλmn

∫ b

0

∫ a

0
g(x, y)sinmπx

a
sinnπy

b
dxdy for m = 1, 2, ...; n = 1, 2, ....

Convergence of the above series (to a bounded solution of the problem) indicates that

one can approximate the solution by a finite number terms of the series.

To Control the two-dimensional wave system, we need to introduce some power

to the system somehow. This fact can be done by inserting a shock on a specified

place of the shell. Since the amount of the power to the system is proportional to the

value of its velocity, the amount of the velocity in the mentioned place, is regarded

as a controller. Without losing the generality, suppose that the place for inserting

the shock be (a
2
, b

2
).

Now, let V ⊆ R be a bounded set, and ϑ = ϑ(t) : [0, t] → V be a Lebesgue-

measurable control function. Moreover suppose f0 = f0(t, x, y, ϑ(t)) : D × V → R be

a continues function then, the aim is to find the optimal pair of trajectory and con-

trol functions, simultaneously, as an optimal solution of the following control problem:
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Min : I(P ) ≡
∫

D
f0(t, x, y, ϑ)dA

S. to : utt = c2(uxx + uyy); (5 − 1)

u(t, 0, y) = u(t, a, y) = u(t, x, b) = u(t, x, 0) = 0; (5 − 2)

f(x, y) = u(0, x, y); (5 − 3) (5)

g(x, y) = ut(0, x, y); (5 − 4)

ut|( a
2
, b
2
) = ϑ(t). (5 − 5)

We remind that the objective functional
∫

D
f0(t, x, y, ϑ)dA can explain the energy

or expected error of the system or so on; indeed, the deflection of the shell is regarded

indirectly in the criterion.

Definition: A pair P ≡ (u, ϑ) is called admissible if u be a bounded solution of

(5-1) and the conditions (5-2)−(5-5) are satisfied. The set of all admissible pairs is

denoted by P .

Therefore, we wish to find the admissible minimizer pair for the functional I(P )

over P. It is necessary to indicate that the controllability and the observability of the

above system were discussed in many references such as [4]. Thus, we can suppose

that P is nonempty. In the next, we will try to find the solution of (5) according

to the trigonometrical series and use of the embedding method. For reaching to our

purposes, first we need to represent the problem in a new formulation.
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3. New Representation of the Problem

For a fixed M, Ḿ ∈ N , the optimal trajectory of (5) can be approximated by the

first M × Ḿ terms of a trigonometric series; i.e.:

u(t, x, y) =
∑M

m=1

∑Ḿ

n=1(Amncosλmnt + Bmnsinλmnt)sinmπx
a

sinnπy

b
, (6)

where Amn and Bmn, for m = 1, 2, ..., M and n = 1, 2, ..., Ḿ , are unknown real coeffi-

cients that must be determined under the conditions (5-2)-(5-5). Since the coefficients

are unknown, the amount of the eliminated part of the solution in (4) (the tail of

the series), can be accounted in the unknowns calculation. Moreover, it could caused

more stability of the solution. By defining:

umn(t, x, y) = (Amncosλmnt + Bmnsinλmnt)sin
mπx

a
sin

nπy

b
, (7)

since

umn
xxxyyyt(t, x, y) =

m2n2π4

a2b2
umn

xyt(t, x, y),

we have:

uxxxyyyt(t, x, y) =

M
∑

m=1

Ḿ
∑

n=1

umn
xxxyyyt(t, x, y) =

M
∑

m=1

Ḿ
∑

n=1

m2n2π4

a2b2
umn

xyt(t, x, y);

then, by integrating over [0, T ] × [0, a
2
] × [0, b

2
], we have:

∫ T

0

∫ a
2

0

∫ b
2

0

uxxxyyytdydxdt =

M
∑

m=1

Ḿ
∑

n=1

m2n2π4

a2b2

∫ T

0

∫ a
2

0

∫ b
2

0

umn
xyt(t, x, y)dydxdt.

Now, continuity of umn(t, x, y) and its partial derivatives, allow us to change the order

of the integration. In this manner, by doing some simple calculations, the constraint
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(5-5) can be appeared in the following new format:

∫ T

0

ϑ(t)dt =

M
∑

m=1

Ḿ
∑

n=1

λmnsin
mπ

2
sin

nπ

2
(BmnsinλmnT + Amn(cosλmnT − 1)). (8)

Therefore, based on the equations (6) and (8), the problem (5) can be represented

by the new following exhibition:

Min : I(P ) =
∫

D
f0(x, y, t, ϑ(t))dA

S. to : f(x, y) =
∑M

m=1

∑Ḿ

n=1 Amnsinmπx
a

sinnπy

b

g(x, y) =
∑M

m=1

∑Ḿ

n=1 λmnBmnsinmπx
a

sinnπy

b
(9)

∫ T

0
ϑ(t)dt =

∑M

m=1

∑Ḿ

n=1 λmnsinmπ
2

sinnπ
2

(BmnsinλmnT + Amn(cosλmnT − 1)).

Let x0 = 0, x1, x2, ..., xl and y0 = 0, y1, y2, ..., yĺ be belong to a dense subset of [0, a]

and [0, b] respectively.If l, ĺ → ∞ then obviously the solution of the following problem

converges to the solution of (9). Hence, for a suitable numbers l and ĺ, the solution

of the problem (9) can be approximated by the solution of the following one:

Min : I(P ) =
∫ T

0
[
∑l

i=1

∑ĺ

j=1

∫ ∫

f0(t, xi, yj, ϑ(t))dxdy]dt ≡
∫ T

0
F0(t, ϑ)dt

S. to : f(xi, yj) =
∑M

m=1

∑Ḿ

n=1 Amnsinmπxi

a
sin

nπyj

b

g(xi, yj) =
∑M

m=1

∑Ḿ

n=1 λmnBmnsinmπxi

a
sin

nπyj

b
(10)
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∫ T

0
ϑ(t)dt =

∑M

m=1

∑Ḿ

n=1 λmnsinmπ
2

sinnπ
2

(BmnsinλmnT +

Amn(cosλmnT − 1)).

i = 1, 2, ..., l, j = 1, 2, ..., ĺ

4. Metamorphosis

To solve problem (10), we follow [2] and [9] by applying some new ideas. We do

the metamorphosis step in this section, to deform the problem and redefine it in a

new space in which it has many advantages.

Let Ω = [0, T ]×V ; we know that for each (u, ϑ) ∈ P, the functional Λϑ : C(Ω) → R

defined by Λϑ(h) =
∫ T

0
h(t, ϑ)dt, is a positive continuous linear functional. Based

on the Riesz Representation Theorem ([11]), there exists a positive Radon mea-

sure µϑ ∈ M+(Ω) (the space of all positive Radon measures on Ω) so that for all

h ∈ C(Ω), µϑ(h) =
∫

Ω
h dµ = Λϑ(h). Therefore, problem (10) is changed into a new

one in which its unknowns are the coefficients Amn and Bmn (m = 1, 2, ..., M ; n =

1, 2, ..., Ḿ) and a positive Radon measure, say µ , produced by the Riesz Represen-

tation Theorem. Now, we are able to assure the global solution, like [2],[5] and [9],

by enlarging the underlying space and seeking on a subset of M+(Ω) which is defined

just by the last equations of (10); this means that instead of searching for the opti-

mal measure, say µ∗, between the introduced measures from the Riesz Representation

Theorem, we seek in the set of all positive Radon measures in which they just satisfy

in the last condition of (10); therefore, our minimization is global. In this manner,

we try to solve the following problem:
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Min : µ(F0)

S. to : f(xi, yj) =
∑M

m=1

∑Ḿ

n=1 Amnsinmπxi

a
sin

nπyj

b
;

g(xi, yj) =
∑M

m=1

∑Ḿ

n=1 λmnBmnsinmπxi

a
sin

nπyj

b
, (11)

i = 1, 2, . . . , l, j = 1, 2, . . . , ĺ;

µ(ϑ) =
∑M

m=1

∑Ḿ

n=1 λmnsinmπ
2

sinnπ
2

(BmnsinλmnT + Amn(cosλmnT − 1));

µ(ξ) = aξ, ∀ ξ ∈ C1(Ω).

Here, the unknown measure µ belongs to M+(Ω), C1(Ω) is a subset of functions in

C(Ω) that depends only on variable t and aξ is the Lebesgue integral of ξ over [0, T ] ;

indeed the last set of equations is added to the problem to guarantee that projection

of an admissible measure on the real line is the Lebesgue measure (see for instance

[1] and [9]).

Suppose Amn’s and Bmn’s be obtained by solving the following linear equations:

f(xi, yj) =
M

∑

m=1

Ḿ
∑

n=1

Amnsin
mπxi

a
sin

nπyj

b
, i = 1, 2, ..., l; j = 1, 2, ..., ĺ;

g(xi, yj) =

M
∑

m=1

Ḿ
∑

n=1

λmnBmnsin
mπxi

a
sin

nπyj

b
i = 1, 2, . . . , l; j = 1, 2, . . . , ĺ;

then, by substituting the obtained coefficients in the third equation of (11), the prob-

lem is converted into one in which the unknown is just the measure µ ∈ M+(Ω). Let

Q be the space of all measures in M+(Ω) which satisfied the conditions of (11); as

Rubio shown in [9] and [10], Q is compact in the sense of weak∗ topology. Moreover,

the function µ → µ(F0) is continuous. Since each continuous function has an infimum
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on a compact space, there exists an optimal measure which minimizes the objective

function of (11). Thus , we have the following proposition:

proposition 1: Problem (11) has the optimal solution.

By regarding the result of Rosenblooms work which is mentioned in [9], the optimal

measure has the form

µ∗ =
L

∑

r=1

αrδ(zr) (12)

where δ(zr) is a unitary atomic measure with the support of the singleton set {zr}, αr

is a nonnegative real coefficient and zr is a point belongs to Ω. Applying (12) in (11),

changes the problem into a nonlinear one in which its unknowns are the coefficients

Amn, Bmn, αr, and the supporting points zr for m = 1, 2, . . . , M, n = 1, 2, . . . , Ḿ

and r = 1, 2, . . . , L. We know that, by doing a discretization on Ω with nodes

zr = (tr, ϑr), r = 1, 2, . . . , L, in a dense subset of ω ⊆ Ω, the supporting points can

be determined; hence the problem can be converted into a linear one. But, regarding

the last set of equations in (11), the number of constrains are still infinite. It would be

more convenient if somehow we could change the problem into a finite linear program-

ming one. In the next step of approximation, by choosing a dense countable subset

of C1(Ω) and then selecting a finite number of its elements as ξk for k = 1, 2, ..., K,

the total number of the constraints of the problem would be finite. Therefore, the

solution of (11) can be approximated by the following linear programming problem

with variables αr, r = 1, 2, . . . , L, and A+
mn, A−

mn, B+
mn, B−

mn that Amn = A+
mn − A−

mn

and Bmn = B+
mn − B−

mn :

Min :
∑L

r=1 αrF0(tr, ϑr)



10 S. EBRAHIMI, A. FAKHARZADEH J. AND H. R. SAHEBI

S. to : f(xi, yj) =
∑M

m=1

∑Ḿ

n=1(A
+
mn − A−

mn)sinmπxi

a
sin

nπyj

b
;

g(xi, yj) =
∑M

m=1

∑Ḿ

n=1 λmn(B+
mn − B−

mn)sinmπxi

a
sin

nπyj

b
; (11)

∑L

r=1 αrϑr =
∑M

m=1

∑Ḿ

n=1 λmnsinmπ
2

sinnπ
2

((B+
mn − B−

mn)sinλmnT +

(A+
mn − A−

mn)(cosλmnT − 1));

∑L

r=1 αrξk(tr, ϑr) = ak, k = 1, 2, ..., K.

αr ≥ 0, r = 1, 2, . . . , L; A+
mn, A−

mn, B+
mn, B−

mn, A+
mn ≥ 0,

m = 1, 2, . . . , M, n = 1, 2, . . . , Ḿ , i = 1, 2, . . . , l, j = 1, 2, . . . , ĺ.

The density properties of the applied sets, indicate that if N, l, ĺ, m, n, k tend to

infinity, the optimal solution of (13) convergence into the solution of (10), or more

precisely (5)(see [9]). Therefore, the optimal solution of (5) can be approximated by

the results of the finite linear programming problem (13).

To set up (13), as mentioned in [10] and some other literature (like [1],[4]and

[6]), for k = 1, 2, . . . , K − 1, we choose Jk = [k−1
T

, k
T
) and JK = [K−1

T
, T ] ; hence

[0, T ] =
⋃K

k=1 Jk. Now for each k = 1, 2, . . .K, we define:

ξk(t, ϑ) =







1, t ∈ Jk,

0, otherwise.

Although these class of functions are not continuous, but when k → ∞ every functions

in C1(Ω) can be approximated by a finite linear combination of these functions (see

[5]). In this manner, for an arbitrary function ξk, we have ak =
∫

Jk
ξk dt. Now, by
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solving the linear programming problem (13), one can obtain the optimal coefficients

α∗

r, A∗

mn and B∗

mn at the same time. Then, according to (6) and the explained method

in [9], the optimal trajectory and control functions can be determined simultaneously,

which is one of the main aim of this paper.

5. Numerical Examples

Based on the explained approach, we incline to find the optimal pair of trajectory

and control for given vibrating systems in the following numerical examples. In the

first example, more than the obtained results, the procedure of the new approach was

also described. But in the second one, just the results was mentioned.

Example 1: Consider the following vibrating shell:

utt = uxx + uyy

u(t, 0, y) = u(t, a, y) = u(t, x, b) = u(t, x, 0) = 0;

u(0, x, y) = x + y;

ut(0, x, y) = xy,

with the performance criterion defined by F0(t, ϑ) = (ϑ − t2)2 ; indeed, here was

supposed that c = 1, t ∈ [0, 1], D = [0, 2]× [0, 2] × [0, 1], U = [0, 1], f(x, y) = x + y,

and g(x, y) = xy. Also we choose M = Ḿ = 6, K = 10 and l = ĺ = 3. Therefore, to

solve the problem, a similar linear programming problem like (13) with 1044 variables

and 29 constraints was established as follow:

Min :
∑900

r=1 αr(ϑ − t2)2

S. to : xi + yj =
∑6

m=1

∑6
n=1(A

+
mn − A−

mn)sinmπxi

2
sin

nπyj

2
;
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xiyj =
∑6

m=1

∑6
n=1 λmn(B+

mn − B−

mn)sinmπxi

2
sin

nπyj

2
;

∑900
r=1 αrϑr −

∑6
m=1

∑6
n=1 λmnsinmπ

2
sinnπ

2
((A+

mn − A−

mn)(cosλmnT − 1) +

(B+
mn − B−

mn)sinλmnT );

i = 1, 2, 3; j = 1, 2, 3.

α1 +α2 + . . .+α90 = 0.1; α91 +α92 + . . .+α180 = 0.1; α181 +α182 + . . .+α270 = 0.1;

α271+α272+. . .+α360 = 0.1; α361+α362+. . .+α450 = 0.1; α451+α452+. . .+α540 = 0.1;

α541+α542+. . .+α600 = 0.1; α601+α602+. . .+α720 = 0.1; α721+α722+. . .+α780 = 0.1;

α781 + α782 + . . . + α900 = 0.1;

A+
mn, A−

mn, B+
mn, B−

mn, αr ≥ 0, r = 1, . . . , 900, m = n = 1, 2, . . . , 6.

We applied the subroutine DLPRS from IMSL library of Compaq Visual For-

tran to solve the above linear programming problem by Revised Simplex Method.

The optimal value of the objective function was obtained as 0.00000000841. The

optimal nonzero’s value of the variables were as follows:

A∗

23 = −0.86125305181532; A∗

26 = 0.2073658162327× 10−6;

A∗

32 = −0.86253251456649; A∗

33 = 8.145973600226562;

A∗

35 = 2.514406849562812; A∗

53 = 2.5144070418132100;

A∗

55 = 0.8828391960869988; A∗

56 = 0.15414731179242598;

A∗

65 = 0.1541471182493354;

B∗

25 = 3.605543346961127; B∗

33 = 1.289129664170388;

B∗

35 = 3.706182792805683; B∗

36 = 0.1365719754782218;

B∗

53 = 0.455939940928165; B∗

55 = 2.840023316025101;

B∗

56 = 0.05883815637717339; B∗

63 = 0.136571975478222;
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B∗

65 = 2.51892580651433 B∗

66 = 0.01875655299702234;

α∗

61 = α∗

121 = α∗

212 = α∗

304 = α∗

366 = α∗

521 = α∗

552 = α∗

646 = α∗

741 = α∗

900 = 0.1 .

Base on these values, the nearly optimal piecewise-constant control was calculated

via the explained manner in [9]. Also, by regarding (6) and the above optimal coef-

ficient, the trajectory function u∗(t, x, y) was determined as:

u∗(t, x, y) =
6

∑

m=1

6
∑

n=1

(A∗

mncosλmnt + B∗

mnsinλmnt)sin
mπx

2
sin

nπy

2
.

The obtained nearly optimal control and trajectory functions are plotted in figures

1 and 2 respectively (since the optimal trajectory is a function of four variables, it

was plotted for some specified times) .

Figure 1. The Optimal Control of example (1)
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Figure 2. The Optimal Trajectory of example (1)

Example 2: Consider the following vibrating shell system:

utt = uxx + uyy

u(t, 0, y) = u(t, a, y) = u(t, x, b) = u(t, x, 0) = 0;

u(0, x, y) = (0.1)sin2πx sin2πy;

ut(0, x, y) = 0,
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with the performance criterion defined by F0(t, ϑ) = (ϑ − t2)2 ; indeed, here was

supposed that c = 1, t ∈ [0, 1], D = [0, 2] × [0, 2] × [0, 1], U = [0, 1],

f(x, y) = (0.1)sin2πx sin2πy, and g(x, y) = 0. With the same discretization scheme

as the previous example, we transfer the problem into a finite programming with

1044 variables and 29 constraints. By solving this problem and obtaining the results

in the explained manner as mentioned in example 1, the optimal value of the objec-

tive function was determined as 0.00000000841 .The obtained optimal trajectory and

control of this system are plotted in below figures 3 and 4 respectively.

Figure 3. The Optimal Control of example (2)
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Figure 4. The Optimal Trajectory of example (2)
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