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ON (1,2)*-rω-CLOSED SETS AND (1,2)*-rω-OPEN SETS

O. RAVI (1) , S. PIOUS MISSIER (2) AND K. MAHABOOB HASSAIN SHERIEFF (3)

Abstract. The aim of this paper is to introduce the concept of (1,2)*-rω-closed

sets in bitopological spaces and study some of its properties. Their corresponding

(1,2)*-rω-open sets are also defined and studied in this paper.

1. Introduction

Regular open sets have been introduced and investigated by Stone [21]. Levine

[10], Cameron [2], Sundaram and Sheik John [23], Nagaveni [12], Palaniappan and

Rao [13], Mashhour et. al. [11] and Gnanambal [5] introduced and investigated

semi-open sets, regular semiopen sets, weakly closed sets, weakly generalized closed

sets, regular generalized closed sets, preopen sets and generalized pre-regular closed

sets, respectively. Regular ω-closed sets have been introduced and investigated by

Benchalli and Wali [1] which is properly placed in between the class of ω-closed sets

[22] and the class of regular generalized closed sets [13]. The study of bitopological

spaces was first initiated by Kelly [7] in the year 1963. Recently Ravi, Lellis Thivagar,

Ekici and Many others [6, 8, 14-20] have defined weakly open sets in bitopological

spaces. By using the topological notions, namely, semi-open, preopen, regular open
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and regular semi-open sets, many new bitopological sets are defined and studied by

them.

In this paper, we introduce the notion of regular (1,2)*-ω-closed (briefly, (1,2)*-

rω-closed) sets and investigate their properties. By using the class of (1,2)*-rω-

closed sets, we study the properties of (1,2)*-rω-open sets and its relations with

other bitopological sets called (1,2)*-rg-closed sets [19], (1,2)*-gpr-closed sets [19],

(1,2)*-wg-closed sets [20] and (1,2)*-πg-closed sets [18]. In most of the occasions our

ideas are illustrated and substantiated by suitable examples.

2. Preliminaries

Throughout this paper, X denote bitopological space (X, τ 1, τ 2) on which no

separation axioms are assumed.

Definition 2.1. Let S be a subset of a bitopological space X. Then S is called τ 1,2-open

[8] (or quazi-open [3]) if S=A∪B, where A∈τ 1 and B∈τ 2.

The complement of τ 1,2-open set is called τ 1,2-closed.

The family of all τ 1,2-open sets in X is denoted by (1,2)*-O(X).

Definition 2.2. Let A be a subset of a bitopological space X. Then

(1) the τ 1,2-closure of A [3, 8], denoted by τ 1,2-cl(A), is defined by ∩{U: A⊆U and

U is τ 1,2-closed};

(2) the τ 1,2-interior of A [8], denoted by τ 1,2-int(A), is defined by ∪{U: U⊆A and

U is τ 1,2-open}.

Remark 2.3. Notice that τ 1,2-open subsets of X need not necessarily form a topology.

We recall some definitions and results which are used in this paper.

Definition 2.4. A subset S of a bitopological space X is said to be

(1) (1,2)*-semi-open [17] if S⊆τ 1,2-cl(τ 1,2-int(S));
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(2) regular (1,2)*-open [14] if S=τ 1,2-int(τ 1,2-cl(S));

(3) (1,2)*-preopen [16] if S⊆τ 1,2-int(τ 1,2-cl(S));

(4) (1,2)*-π-open [18] if the finite union of regular (1,2)*-open sets.

The complements of the above mentioned open sets are called their respective

closed sets.

The family of all (1,2)*-semi-open (resp. (1,2)*-preopen, regular (1,2)*-open,

(1,2)*-π-open) sets in X is denoted by (1,2)*-SO(X) (resp. (1,2)*-PO(X), (1,2)*-

RO(X), (1,2)*-πO(X)).

The (1,2)*-semi-closure (resp. (1,2)*-preclosure) of a subset S of X is, denoted by

(1,2)*-scl(S) (resp. (1,2)*-pcl(S)), defined as the intersection of all (1,2)*-semi-closed

(resp. (1,2)*-preclosed) sets containing S [15].

Definition 2.5. A subset S of a bitopological space X is said to be

(1) a regular (1,2)*-generalized closed (briefly, (1,2)*-rg-closed [19]) if τ 1,2-cl(S)⊆U

whenever S⊆U and U∈(1,2)*-RO(X).

(2) a (1,2)*-ω-closed or (1,2)*-ĝ-closed [6] if τ 1,2-cl(S)⊆U whenever S⊆U and

U∈(1,2)*-SO(X).

(3) a (1,2)*-gpr-closed [19] if (1,2)*-pcl(S)⊆U whenever S⊆U and U∈(1,2)*-

RO(X).

(4) a (1,2)*-generalized closed (briefly, (1,2)*-g-closed [19]) if τ 1,2-cl(S)⊆U when-

ever S⊆U and U∈(1,2)*-O(X).

(5) a weakly (1,2)*-generalized closed (briefly, (1,2)*-wg-closed [20]) if τ 1,2-cl(τ 1,2-

int(S))⊆U whenever S⊆U and U∈(1,2)*-O(X).

(6) a (1,2)*-πg-closed [18] if τ 1,2-cl(S)⊆U whenever S⊆U and U∈(1,2)*-πO(X).

The complements of the above mentioned closed sets are called their respective

open sets.
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Definition 2.6. A subset S of a bitopological space X is called regular (1,2)*-semi-

open if there is a regular (1,2)*-open set U such that U⊆S⊆τ 1,2-cl(U).

The family of all regular (1,2)*-semi-open sets in X is denoted by (1,2)*-RSO(X).

Definition 2.7. A subset S of a bitopological space X is called τ 1,2-clopen if it is both

τ 1,2-open and τ 1,2-closed in X.

Remark 2.8. (1) Every regular (1,2)*-semi-open set in (X, τ 1, τ 2) is (1,2)*-

semi-open but not conversely.

(2) If A is regular (1,2)*-semi-open in (X, τ 1, τ 2), then X\A is also regular

(1,2)*-semi-open.

(3) In a space (X, τ 1, τ 2), the regular (1,2)*-open sets and the regular (1,2)*-

closed sets are regular (1,2)*-semi-open.

Theorem 2.9. [16] For a subset S of X, we have (1,2)*-scl(S)=S∪τ 1,2-int(τ 1,2-cl(S)).

3. Properties of (1,2)*-rω-closed sets

Definition 3.1. A subset S of a bitopological space X is said to be regular (1,2)*-

ω-closed (briefly, (1,2)*-rω-closed) if τ 1,2-cl(S)⊆U whenever S⊆U and U is regular

(1,2)*-semi-open.

The family of all (1,2)*-rω-closed sets in X is denoted by (1,2)*-RωC(X).

Example 3.2. Let X={a, b, c}, τ 1= {∅, X, {b}} and τ 2= {∅, X, {c}}. Then

(1) the sets in {∅, X, {b}, {c}, {b, c}} are called τ 1,2-open;

(2) the sets in {∅, X, {a}, {a, b}, {a, c}} are called τ 1,2-closed;

(3) the sets in {∅, X, {b}, {c}, {a, b}, {a, c}} are called regular (1,2)*-semi-open

in X;

(4) the sets in {∅, X, {a}, {a, b}, {a, c}, {b, c}} are called (1,2)*-rω-closed in

X;
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(5) the sets in {∅, X, {a}, {b}, {c}, {a, b}, {a, c}} are called (1,2)*-semi-closed

in X;

(6) {b, c} is (1,2)*-rω-closed set but {b, c} is neither τ 1,2-closed nor (1,2)*-semi-

closed in X;

(7) {b} is (1,2)*-semi-closed set but {b} is not (1,2)*-rω-closed in X;

(8) the set {b, c} is (1,2)*-rω-closed set but {b, c} is not (1,2)*-ω-closed in X.

Example 3.3. Let X={a, b, c, d}, τ 1={∅, X, {a}} and τ 2={∅, X, {b}, {a, b, c}}.

Then

(1) the sets in {∅, X, {a}, {b}, {a, b}, {a, b, c}} are called τ 1,2-open;

(2) the sets in {∅, X, {d}, {c, d}, {a, c, d}, {b, c, d}} are called τ 1,2-closed;

(3) the sets in {∅, X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a,

b, c}, {a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-rg-closed in X;

(4) the sets in {∅, X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, c, d}, {b, c,

d}} are called regular (1,2)*-semi-open in X;

(5) the sets in {∅, X, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c,

d}} are called (1,2)*-rω-closed in X;

(6) the sets in {∅, X, {c}, {d}, {c, d}, {a, d}, {b, d}, {a, b, d}, {a, c, d}, {b, c,

d}} are called (1,2)*-wg-closed in X;

(7) the sets in {∅, X, {c}, {d}, {a, c}, {b, c}, {c, d}, {a, d}, {b, d}, {a, b, c},

{a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-πg-closed in X;

(8) the sets in {∅, X, {d}, {c, d}, {a, d}, {b, d}, {a, b, d}, {a, c, d}, {b, c, d}}

are called (1,2)*-g-closed in X;

(9) the sets in {∅, X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a,

b, c}, {a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-gpr-closed in X;

(10) {c} is (1,2)*-wg-closed, (1,2)*-πg-closed and (1,2)*-rg-closed set but {c} is

not (1,2)*-rω-closed in X;
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(11) {a, b} is (1,2)*-rω-closed set but it is neither (1,2)*-wg-closed nor (1,2)*-πg-

closed in X;

(12) {a, d} is (1,2)*-g-closed set but it is not (1,2)*-rω-closed in X. Also, {a, b}

is (1,2)*-rω-closed set but it is not (1,2)*-g-closed in X;

(13) {c} is (1,2)*-gpr-closed set but it is not (1,2)*-rω-closed in X.

Remark 3.4. The following diagram follows immediately from the above definitions

and the above examples. Where A→B (resp. A=B) means A implies B but not

conversely (resp. A and B are independent).

(1,2)*-g-closed (1,2)*-ω-closed (1,2)*-wg-closed

τ 1,2-closed (1,2)*-rω-closed (1,2)*-rg-closed

(1,2)*-semi-closed (1,2)*-gpr-closed (1,2)*-πg-closed

- -
?

?

R

I

	

�

R

I

	

�

Remark 3.5. The following example shows that the intersection of two (1,2)*-rω-

closed sets need not be an (1,2)*-rω-closed.

Example 3.6. Let X, τ 1 and τ 2 be as in Example 3.2. We have {a, b} and {b, c}

are (1,2)*-rω-closed but their intersection {a, b}∩{b, c}={b} is not (1,2)*- rω-closed

in X.

Theorem 3.7. If a subset A of X is (1,2)*-rω-closed in X, then τ 1,2-cl(A)\A does

not contain any nonempty regular (1,2)*-semi-open set in X.

Proof. Suppose that A is an (1,2)*-rω-closed set in X. We prove the result by con-

tradiction. Let U be a regular (1,2)*-semi-open set such that τ 1,2-cl(A)\A⊇U and
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U 6=∅. Since U*A, U⊆X\A which implies A⊆X\U. Since U is regular (1,2)*-semi-

open , X\U is also regular (1,2)*-semi-open in X. Since A is an (1,2)*-rω-closed set

in X, by definition, we have τ 1,2-cl(A)⊆X\U. So U⊆X\τ 1,2-cl(A). We already have

U⊆τ 1,2-cl(A). Therefore, U⊆(τ 1,2-cl(A)∩(X\τ 1,2-cl(A)))=∅. This shows that U=∅,

which is a contradiction. Hence τ 1,2-cl(A)\A does not contain any nonempty regular

(1,2)*-semi-open set in X.

Remark 3.8. The following example shows that the converse of Theorem 3.7 need

not be true.

Example 3.9. Let X, τ 1 and τ 2 be as in Example 3.2. Then the sets in {∅, X, {b},

{c}, {a, b}, {a, c}} are called regular (1,2)*-semi-open in X.

If we put A={c}, then τ 1,2-cl(A)\A={a, c}\{c}={a} does not contain any nonempty

regular (1,2)*-semi-open set but A is not an (1,2)*-rω-closed in X.

Corollary 3.10. If a subset A of X is an (1,2)*-rω-closed set in X, then τ 1,2-cl(A)\A

does not contain any non-empty regular (1,2)*-open (resp. regular (1,2)*-closed) set

in X.

Proof. Follows from Theorem 3.7 and the fact that every regular (1,2)*-open (resp.

regular (1,2)*-closed) set is regular (1,2)*-semi-open.

Remark 3.11. The following example shows that the converse of Corollary 3.10 need

not be true.

Example 3.12. Let X, τ 1 and τ 2 be as in Example 3.2. Then the sets in {∅, X, {b},

{c}} are called regular (1,2)*-open in X;

If we put A={c}, then τ 1,2-cl(A)\A={a, c}\{c}={a} does not contain any non-

empty regular (1,2)*-open set but A is not an (1,2)*-rω-closed in X.

Theorem 3.13. For an element x∈X, the set X\{x} is (1,2)*-rω-closed or regular

(1,2)*-semi-open.
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Proof. Suppose X\{x} is not regular (1,2)*-semi-open. Then X is the only regular

(1,2)*-semi-open set containing X\{x}. This implies τ 1,2-cl(X\{x})⊆X. Hence X\{x}

is an (1,2)*-rω-closed in X.

Theorem 3.14. If A is an (1,2)*-rω-closed subset of X such that A⊆B⊆τ 1,2-cl(A),

then B is an (1,2)*-rω-closed set in X.

Proof. Let A be an (1,2)*-rω-closed subset of X such that A⊆B⊆τ 1,2-cl(A). Let U be

a regular (1,2)*-semi-open set of X such that B⊆U. Then A⊆U. Since A is (1,2)*-

rω-closed, we have τ 1,2-cl(A)⊆U. Now τ 1,2-cl(B)⊆τ 1,2-cl(τ 1,2-cl(A)) = τ 1,2-cl(A)⊆U.

Therefore, B is an (1,2)*-rω-closed set in X.

Theorem 3.15. Let A be (1,2)*-rω-closed in X. Then A is τ 1,2-closed if and only if

τ 1,2-cl(A)\A is regular (1,2)*-semi-open.

Proof. Suppose A is τ 1,2-closed in X. Then τ 1,2-cl(A)=A and so τ 1,2-cl(A)\A=∅, which

is regular (1,2)*-semi-open in X. Conversely τ 1,2-cl(A)\A is regular (1,2)*-semi-open

in X. Since A is (1,2)*-rω-closed, by Theorem 3.7, τ 1,2-cl(A)\A does not contain any

nonempty regular (1,2)*-semi-open set in X. Then τ 1,2-cl(A)\A=∅ and hence A is

τ 1,2-closed in X.

Theorem 3.16. If A is regular (1,2)*-open and (1,2)*-rg-closed, then A is (1,2)*-

rω-closed in X.

Proof. Let A be regular (1,2)*-open and (1,2)*-rg-closed in X. We prove that A is an

(1,2)*-rω-closed set in X. Let U be any regular (1,2)*-semi-open set in X such that

A⊆U. Since A is regular (1,2)*-open and (1,2)*-rg-closed, we have τ 1,2-cl(A)⊆A.

Then τ 1,2-cl(A)⊆A⊆U. Hence A is (1,2)*-rω-closed in X.

Theorem 3.17. If a subset A of a bitopological space X is both regular (1,2)*-semi-

open and (1,2)*-rω-closed, then it is τ 1,2-closed.
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Proof. Since A is regular (1,2)*-semi-open and (1,2)*-rω-closed, τ 1,2-cl(A)⊆A. Thus,

A is τ 1,2-closed.

Corollary 3.18. If A is regular (1,2)*-open and (1,2)*-rω-closed, then A is regular

(1,2)*-closed and hence τ 1,2-clopen.

Proof. Since A is regular (1,2)*-open, A is regular (1,2)*-semi-open by Remark 2.8.

By Theorem 3.17, A is τ 1,2-closed. Since A is regular (1,2)*-open, A is τ 1,2-open.

Thus A is τ 1,2-clopen and regular (1,2)*-closed.

Corollary 3.19. Suppose the collection of τ 1,2-closed sets of X is closed under finite

intersections. Let A be regular (1,2)*-semi-open and (1,2)*-rω-closed in X. Suppose

that F is τ 1,2-closed in X. Then A∩F is an (1,2)*-rω-closed set in X.

Proof. Let A be regular (1,2)*-semi-open and (1,2)*-rω-closed in X. By Theorem

3.17, A is τ 1,2-closed. Since F is τ 1,2-closed, A∩F is τ 1,2-closed in X. Hence A∩F is

(1,2)*-rω-closed set in X.

Theorem 3.20. Let A be regular (1,2)*-open in a bitopological space X. Then the

following are equivalent:

(1) A is (1,2)*-g-closed.

(2) A is (1,2)*-πg-closed.

(3) A is (1,2)*-rg-closed.

(4) A is (1,2)*-rω-closed.

Proof. (1)⇒(2) It follows from the fact that every (1,2)*-g-closed set is (1,2)*-πg-

closed [18].

(2)⇒(3) It follows from the fact that every (1,2)*-πg-closed set is (1,2)*-rg-closed

[18].

(3)⇒(4) It follows from Theorem 3.16.
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(4)⇒(1) It follows from Corollary 3.18 and the fact that every regular (1,2)*-closed

set is τ 1,2-closed [14] and every τ 1,2-closed set is (1,2)*-g-closed [18].

Theorem 3.21. Let A be regular (1,2)*-open in a bitopological space X. Then the

following are equivalent

(1) A is (1,2)*-g-closed.

(2) A is (1,2)*-wg-closed.

(3) A is (1,2)*-rω-closed.

Proof. (1)⇒(2) It follows from the fact that every (1,2)*-g-closed set is (1,2)*-wg-

closed [20].

(2)⇒(3) We know that every regular (1,2)*-open set is τ 1,2-open. Let A⊆U where

U is regular (1,2)*-semi-open in X. Since A is (1,2)*-wg-closed and τ 1,2-open, τ 1,2-

cl(τ 1,2-int(A))⊆A. Since A=τ 1,2-int(A), τ 1,2-cl(A)⊆A⊆U. Thus, A is (1,2)*-rω-closed.

(3)⇒(1) It follows from Theorem 3.20.

Theorem 3.22. In a bitopological space X, if (1,2)*-RSO(X)={X, ∅}, then every

subset of X is an (1,2)*-rω-closed set.

Proof. Let X be a bitopological space and (1,2)*-RSO(X)={X, ∅}. Let A be any

subset of X. Suppose A=∅. Then ∅ is an (1,2)*-rω-closed set in X. Suppose A 6=∅.

Then X is the only regular (1,2)*-semi-open set containing A and so τ 1,2-cl(A)⊆X.

Hence A is an (1,2)*-rω-closed set in X.

Remark 3.23. The following example shows that the converse of Theorem 3.22 need

not be true.

Example 3.24. Let X={a, b, c, d}, τ 1={∅, X, {a, b}} and τ 2={∅, X, {c, d}}. Then

(1) the sets in {∅, X, {a, b}, {c, d}} are called τ 1,2-open;

(2) the sets in {∅, X, {a, b}, {c, d}} are called τ 1,2-closed;

(3) the sets in {∅, X, {a, b}, {c, d}} are called regular (1,2)*-semi-open in X;
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(4) Every subset of X is an (1,2)*-rω-closed set in X;

(5) (1,2)*-RSO(X)={∅, X, {a, b}, {c, d}};

(6) (1,2)*-RSO(X) 6={∅, X}.

Theorem 3.25. In a bitopological space X, (1,2)*-RSO(X)⊆{F⊆X : Fc∈(1,2)*-

O(X)} if and only if every subset of X is (1,2)*-rω-closed.

Proof. Suppose that (1,2)*-RSO(X)⊆{F⊆X : Fc∈(1,2)*-O(X)}. Let A be any sub-

set of X such that A⊆U where U is regular (1,2)*-semi-open. Then U∈(1,2)*-

RSO(X)⊆{F⊆X : Fc∈(1,2)*-O(X)}. That is U∈{F⊆X : Fc∈(1,2)*-O(X)}. Thus U

is τ 1,2-closed and hence τ 1,2-cl(U)=U. Now, we have τ 1,2-cl(A)⊆τ 1,2-cl(U)=U. Hence

A is a (1,2)*-rω-closed in X.

Conversely, suppose that every subset of X is (1,2)*-rω-closed. Let U∈(1,2)*-

RSO(X). Since U is (1,2)*-rω-closed, we have τ 1,2-cl(U)⊆U. Thus τ 1,2-cl(U)=U and

hence U∈{F⊆X : Fc∈(1,2)*-O(X)}. Therefore (1,2)*-RSO(X)⊆{F⊆X : Fc∈(1,2)*-

O(X)}.

Definition 3.26. (1) The intersection of all regular (1,2)*-semi-open subsets of

(X, τ 1, τ 2) containing A is called the regular (1,2)*-semi-kernel of A and is

denoted by (1,2)*-rsker(A).

(2) The intersection of all (1,2)*-semi-open subsets of (X, τ 1, τ 2) containing A

is called the (1,2)*-semi-kernel of A and is denoted by (1,2)*-sker(A).

Lemma 3.27. Let X be a bitopological space and A be a subset of X. If A is regular

(1,2)*-semi-open in X, then (1,2)*-rsker(A)=A but not conversely.

Proof. It follows from Definition 3.26.

Example 3.28. Let X={a, b, c, d}, τ 1= {∅, X, {a}, {d}, {a, c}, {a, d}, {a, c, d}}

and τ 2={∅, X, {c, d}, {a, c, d}}. Then
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(1) the sets in {∅, X, {a}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}} are called

τ 1,2-open;

(2) the sets in {∅, X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {b, c, d}} are called

τ 1,2-closed;

(3) the sets in {∅, X, {a}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {b, c,

d}} are called regular (1,2)*-semi-open;

(4) we have (1,2)*-rsker({b})={b} but {b} is not regular (1,2)*- semi-open.

Lemma 3.29. For any subset A of X, (1,2)*-sker(A)⊆(1,2)*-rsker(A).

Proof. It follows from Definition 3.26 and (1,2)*-RSO(X)⊆(1,2)*-SO(X).

Lemma 3.30. For any subset A of X, A⊆(1,2)*-rsker(A).

Proof. It follows from Definition 3.26.

Theorem 3.31. A subset A of X is (1,2)*-rω-closed if and only if τ 1,2-cl(A)⊆(1,2)*-

rsker(A).

Proof. Suppose that A is (1,2)*-rω-closed. Then τ 1,2-cl(A)⊆U whenever A⊆U and

U is regular (1,2)*-semi-open. Let x∈τ 1,2-cl(A). Suppose x/∈(1,2)*-rsker(A), then

there is a regular (1,2)*-semi-open set U containing A such that x is not in U. Since

A is (1,2)*-rω-closed, τ 1,2-cl(A)⊆U. We have x not in τ 1,2-cl(A), which is a con-

tradiction. Hence x∈(1,2)*-rsker(A) and so τ 1,2-cl(A)⊆(1,2)*-rsker(A). Conversely,

let τ 1,2-cl(A)⊆(1,2)*-rsker(A). If U is any regular (1,2)*-semi-open set containing

A, then (1,2)*-rsker(A)⊆U and hence τ 1,2-cl(A)⊆(1,2)*-rsker(A)⊆U. Therefore, A is

(1,2)*-rω-closed in X.

Definition 3.32. A subset S of a bitopological space X is said to be regular (1,2)*-

ω-open (briefly, (1,2)*-rω-open) if Ac is (1,2)*-rω-closed in X.

We denote the family of all (1,2)*-rω-open sets in X by (1,2)*-RωO(X).
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Theorem 3.33. If a set A is (1,2)*-rω-open in X, then G=X, whenever G is regular

(1,2)*-semi-open and τ 1,2-int(A)∪Ac⊆G.

Proof. Suppose that A is (1,2)*-rω-open in X. Let G be regular (1,2)*-semi-open

and τ 1,2-int(A)∪Ac⊆G. This implies Gc⊆(τ 1,2-int(A)∪Ac)c = (τ 1,2-int(A))c∩A. That

is Gc⊆(τ 1,2-int(A))c\Ac. Thus Gc⊆τ 1,2-cl(A
c)\Ac, since (τ 1,2-int(A))c=τ 1,2-cl(A

c).

Now Gc is also regular (1,2)*-semi-open and Ac is (1,2)*-rω-closed, by Theorem 3.7,

it follows that Gc=∅. Hence G=X.

Remark 3.34. The following example shows that the converse of Theorem 3.33 need

not be true.

Example 3.35. Let X, τ 1 and τ 2 be as in Example 3.2. Then

(1) the sets in {∅, X, {b}, {c}, {a, b}, {a, c}} are called regular (1,2)*-semi-open

in X;

(2) the sets in {∅, X, {a}, {b}, {c}, {b, c}} are called (1,2)*-rω-open in X;

(3) If we put A={a, b}, then the following conditions are satisfied

(a) τ 1,2-int({a, b})∪({a, b})c={b}∪{c}={b, c}⊆X=G;

(b) G is regular (1,2)*-semi-open;

(c) G=X. But A is not (1,2)*-rω-open in X.

4. Properties of (1,2)*-rslc*-sets

Definition 4.1. A subset A of X is said to be (1,2)*-rslc*-set if A=M∩N where M

is regular (1,2)*-semi-open and N is τ 1,2-closed.

Remark 4.2. (1) Every τ 1,2-closed set is (1,2)*-rslc*-set but not conversely.

(2) Every regular (1,2)*-semi-open set is (1,2)*-rslc*-set but not conversely.

Example 4.3. Let X, τ 1 and τ 2 be as in Example 3.3. Then

(1) the sets in {∅, X, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {b, c, d}, {a, c,

d}} are called regular (1,2)*-semi-open in X;
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(2) the sets in {∅, X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, c, d}, {b, c, d}} are called (1,2)*-rslc*-sets in X;

(3) {a} is (1,2)*-rslc*-set but not τ 1,2-closed set in X;

(4) {c} is (1,2)*-rslc*-set but not regular (1,2)*-semi-open.

Theorem 4.4. Let A be a subset of a bitopological space X. Then A is τ 1,2-closed if

and only if A is (1,2)*-rω-closed and (1,2)*-rslc*-set.

Proof. Let A be a τ 1,2-closed subset of X. Then A is (1,2)*-rω-closed and (1,2)*-rslc*-

set.

Conversely, let A=M∩N where M is regular (1,2)*-semi-open and N is τ 1,2-closed.

Since A is (1,2)*-rω-closed, A⊆M and M is regular (1,2)*-semi-open, τ 1,2-cl(A)⊆M.

Moreover, since A⊆N, τ 1,2-cl(A)⊆τ 1,2-cl(N)=N. We have τ 1,2-cl(A)⊆M∩N and so

τ 1,2-cl(A)⊆A. Hence A is τ 1,2-closed.

Remark 4.5. The concepts of (1,2)*-rω-closed sets and (1,2)*-rslc*-sets are inde-

pendent of each other.

Example 4.6. Let X, τ 1 and τ 2 be as in Example 4.3. Then

(1) {a} is (1,2)*-rslc*-set but not (1,2)*-rω-closed set;

(2) {a, b} is (1,2)*-rω-closed but not (1,2)*-rslc*-set.

Definition 4.7. A subset A of X is said to be (1,2)*-Λb
rs-set if A=(1,2)*-rsker(A).

Definition 4.8. A subset A of X is said to be (1,2)*-λb
rs-closed if A=L∩F where L

is (1,2)*-Λb
rs-set and F is τ 1,2-closed.

Lemma 4.9. For a bitopological space (X, τ 1, τ 2), the following conditions are equiv-

alent.

(1) A is (1,2)*-λb
rs-closed.

(2) A=L∩τ 1,2-cl(A) where L is (1,2)*-Λb
rs-set.
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(3) A=(1,2)*-rsker(A)∩τ 1,2-cl(A).

Remark 4.10. (1) Every τ 1,2-closed set is (1,2)*-λb
rs-closed but not conversely.

(2) Every (1,2)*-rslc*-set is (1,2)*-λb
rs-closed.

Example 4.11. Let X, τ 1 and τ 2 be as in Example 3.28. Then

(1) the sets in {∅, X, {a}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {b, c,

d}} are called regular (1,2)*-semi-open in X;

(2) the sets in {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d},

{a, b, c}, {b, c, d}} are called (1,2)*-Λb
rs-sets in X;

(3) the sets in {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d},

{a, b, c}, {b, c, d}} are called (1,2)*-λb
rs-closed in X;

(4) {c} is (1,2)*-λb
rs-closed set but not τ 1,2-closed set in X.

Theorem 4.12. For a bitopological space (X, τ 1, τ 2), the following conditions are

equivalent.

(1) A is τ 1,2-closed.

(2) A is (1,2)*-rω-closed and (1,2)*-rslc*-set.

(3) A is (1,2)*-rω-closed and (1,2)*-λb
rs-closed.

Proof. (1)⇒(2) Obvious.

(2)⇒(3) Obvious.

(3)⇒(1) Let A be (1,2)*-λb
rs-closed. Then, by Lemma 4.9, A=(1,2)*-rsker(A)∩τ 1,2-

cl(A). Since A is (1,2)*-rω-closed, by Theorem 3.31, A=τ 1,2-cl(A). Thus A is τ 1,2-

closed.

Remark 4.13. The concepts of (1,2)*-rω-closed sets and (1,2)*-λb
rs-closed sets are

independent.

Example 4.14. Let X, τ 1 and τ 2 be as in Example 4.3. Then
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(1) the sets in {∅, X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, c, d}, { b, c, d}} are called (1,2)*-Λb
rs-sets and (1,2)*-λb

rs-closed in X;

(2) {a} is (1,2)*-λb
rs-closed set but not (1,2)*-rω-closed set in X;

(3) {a, b} is (1,2)*-rω-closed but not (1,2)*-λb
rs-closed set in X.
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