Jordan Journal of Mathematics and Statistics (JJMS) 5(1), 2012, pp.19 - 35

ON $(1,2)^*$ - $r\omega$ -CLOSED SETS AND $(1,2)^*$ - $r\omega$ -OPEN SETS

O. RAVI (1), S. PIOUS MISSIER (2) AND K. MAHABOOB HASSAIN SHERIEFF (3)

ABSTRACT. The aim of this paper is to introduce the concept of $(1,2)^*$ -r ω -closed sets in bitopological spaces and study some of its properties. Their corresponding $(1,2)^*$ -r ω -open sets are also defined and studied in this paper.

1. Introduction

Regular open sets have been introduced and investigated by Stone [21]. Levine [10], Cameron [2], Sundaram and Sheik John [23], Nagaveni [12], Palaniappan and Rao [13], Mashhour et. al. [11] and Gnanambal [5] introduced and investigated semi-open sets, regular semiopen sets, weakly closed sets, weakly generalized closed sets, regular generalized closed sets, preopen sets and generalized pre-regular closed sets, respectively. Regular ω -closed sets have been introduced and investigated by Benchalli and Wali [1] which is properly placed in between the class of ω -closed sets [22] and the class of regular generalized closed sets [13]. The study of bitopological spaces was first initiated by Kelly [7] in the year 1963. Recently Ravi, Lellis Thivagar, Ekici and Many others [6, 8, 14-20] have defined weakly open sets in bitopological spaces. By using the topological notions, namely, semi-open, preopen, regular open

²⁰⁰⁰ Mathematics Subject Classification. 54E55.

Key words and phrases. $(1,2)^*$ -r ω -closed set, $(1,2)^*$ -r ω -open set, $(1,2)^*$ -gpr-closed set, $(1,2)^*$ -rg-closed set, $(1,2)^*$ -mg-closed set.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

and regular semi-open sets, many new bitopological sets are defined and studied by them.

In this paper, we introduce the notion of regular $(1,2)^*$ - ω -closed (briefly, $(1,2)^*$ - $r\omega$ -closed) sets and investigate their properties. By using the class of $(1,2)^*$ - $r\omega$ -closed sets, we study the properties of $(1,2)^*$ - $r\omega$ -open sets and its relations with other bitopological sets called $(1,2)^*$ -rg-closed sets [19], $(1,2)^*$ -rg-closed sets [19], $(1,2)^*$ -rg-closed sets [19]. In most of the occasions our ideas are illustrated and substantiated by suitable examples.

2. Preliminaries

Throughout this paper, X denote bitopological space (X, τ_1, τ_2) on which no separation axioms are assumed.

Definition 2.1. Let S be a subset of a bitopological space X. Then S is called $\tau_{1,2}$ -open [8] (or quazi-open [3]) if $S=A\cup B$, where $A\in\tau_1$ and $B\in\tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

The family of all $\tau_{1,2}$ -open sets in X is denoted by $(1,2)^*$ -O(X).

Definition 2.2. Let A be a subset of a bitopological space X. Then

- (1) the $\tau_{1,2}$ -closure of A [3, 8], denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{U: A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed}\};$
- (2) the $\tau_{1,2}$ -interior of A [8], denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{U: U \subseteq A \text{ and } U \text{ is } \tau_{1,2}\text{-open}\}.$

Remark 2.3. Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

We recall some definitions and results which are used in this paper.

Definition 2.4. A subset S of a bitopological space X is said to be

(1) $(1,2)^*$ -semi-open [17] if $S \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(S));

- (2) regular (1,2)*-open [14] if $S=\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S));
- (3) $(1,2)^*$ -preopen [16] if $S \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S));
- (4) (1,2)*- π -open [18] if the finite union of regular (1,2)*-open sets.

The complements of the above mentioned open sets are called their respective closed sets.

The family of all $(1,2)^*$ -semi-open (resp. $(1,2)^*$ -preopen, regular $(1,2)^*$ -open, $(1,2)^*$ - π -open) sets in X is denoted by $(1,2)^*$ -SO(X) (resp. $(1,2)^*$ -PO(X), $(1,2)^*$ -RO(X), $(1,2)^*$ - π O(X)).

The $(1,2)^*$ -semi-closure (resp. $(1,2)^*$ -preclosure) of a subset S of X is, denoted by $(1,2)^*$ -scl(S) (resp. $(1,2)^*$ -pcl(S)), defined as the intersection of all $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ -preclosed) sets containing S [15].

Definition 2.5. A subset S of a bitopological space X is said to be

- (1) a regular (1,2)*-generalized closed (briefly, (1,2)*-rg-closed [19]) if $\tau_{1,2}$ -cl $(S) \subseteq U$ whenever $S \subseteq U$ and $U \in (1,2)$ *-RO(X).
- (2) a $(1,2)^*$ - ω -closed or $(1,2)^*$ - \hat{g} -closed [6] if $\tau_{1,2}$ -cl(S) $\subseteq U$ whenever $S\subseteq U$ and $U\in (1,2)^*$ -SO(X).
- (3) a $(1,2)^*$ -gpr-closed [19] if $(1,2)^*$ -pcl(S) $\subseteq U$ whenever $S\subseteq U$ and $U\in (1,2)^*$ -RO(X).
- (4) a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed [19]) if $\tau_{1,2}$ -cl(S) $\subseteq U$ whenever $S\subseteq U$ and $U\in (1,2)^*$ -O(X).
- (5) a weakly $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -wg-closed [20]) if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S))\subseteq U$ whenever $S\subseteq U$ and $U\in (1,2)^*$ -O(X).
- (6) a $(1,2)^*$ - πg -closed [18] if $\tau_{1,2}$ -cl(S) $\subseteq U$ whenever $S\subseteq U$ and $U\in (1,2)^*$ - $\pi O(X)$.

The complements of the above mentioned closed sets are called their respective open sets.

Definition 2.6. A subset S of a bitopological space X is called regular $(1,2)^*$ -semi-open if there is a regular $(1,2)^*$ -open set U such that $U \subseteq S \subseteq \tau_{1,2}$ -cl(U).

The family of all regular $(1,2)^*$ -semi-open sets in X is denoted by $(1,2)^*$ -RSO(X).

Definition 2.7. A subset S of a bitopological space X is called $\tau_{1,2}$ -clopen if it is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed in X.

- Remark 2.8. (1) Every regular $(1,2)^*$ -semi-open set in (X, τ_1, τ_2) is $(1,2)^*$ -semi-open but not conversely.
 - (2) If A is regular $(1,2)^*$ -semi-open in (X, τ_1, τ_2) , then $X \setminus A$ is also regular $(1,2)^*$ -semi-open.
 - (3) In a space (X, τ_1, τ_2) , the regular $(1,2)^*$ -open sets and the regular $(1,2)^*$ -closed sets are regular $(1,2)^*$ -semi-open.

Theorem 2.9. [16] For a subset S of X, we have $(1,2)^*$ -scl $(S)=S\cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S)).

3. Properties of $(1,2)^*$ -r ω -closed sets

Definition 3.1. A subset S of a bitopological space X is said to be regular $(1,2)^*$ - ω -closed (briefly, $(1,2)^*$ -r ω -closed) if $\tau_{1,2}$ -cl $(S)\subseteq U$ whenever $S\subseteq U$ and U is regular $(1,2)^*$ -semi-open.

The family of all $(1,2)^*$ -r ω -closed sets in X is denoted by $(1,2)^*$ -R ω C(X).

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\} \text{ and } \tau_2 = \{\emptyset, X, \{c\}\}.$ Then

- (1) the sets in $\{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}\$ are called $\tau_{1,2}$ -open;
- (2) the sets in $\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\$ are called $\tau_{1,2}$ -closed;
- (3) the sets in $\{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called regular $(1,2)^*$ -semi-open in X;
- (4) the sets in $\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -rw-closed in X;

- (5) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called $(1,2)^*$ -semi-closed in X;
- (6) $\{b, c\}$ is $(1,2)^*$ - $r\omega$ -closed set but $\{b, c\}$ is neither $\tau_{1,2}$ -closed nor $(1,2)^*$ -semi-closed in X;
- (7) $\{b\}$ is $(1,2)^*$ -semi-closed set but $\{b\}$ is not $(1,2)^*$ -r ω -closed in X;
- (8) the set $\{b, c\}$ is $(1,2)^*$ -rw-closed set but $\{b, c\}$ is not $(1,2)^*$ -w-closed in X.

Example 3.3. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{a, b, c\}\}$. Then

- (1) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open;
- (2) the sets in $\{\emptyset, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}\$ are called $\tau_{1,2}$ -closed;
- (3) the sets in {∅, X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-rg-closed in X;
- (4) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called regular $(1,2)^*$ -semi-open in X;
- (5) the sets in $\{\emptyset, X, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1,2)^*$ -r ω -closed in X;
- (6) the sets in {∅, X, {c}, {d}, {c, d}, {a, d}, {b, d}, {a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-wg-closed in X;
- (7) the sets in $\{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1,2)^*$ - πg -closed in X;
- (8) the sets in $\{\emptyset, X, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1,2)^*$ -g-closed in X;
- (9) the sets in {∅, X, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} are called (1,2)*-gpr-closed in X;
- (10) $\{c\}$ is $(1,2)^*$ -wg-closed, $(1,2)^*$ - π g-closed and $(1,2)^*$ -rg-closed set but $\{c\}$ is not $(1,2)^*$ -r ω -closed in X;

- (11) $\{a, b\}$ is $(1,2)^*$ - $r\omega$ -closed set but it is neither $(1,2)^*$ -wg-closed nor $(1,2)^*$ - πg -closed in X;
- (12) $\{a, d\}$ is $(1,2)^*$ -g-closed set but it is not $(1,2)^*$ -r ω -closed in X. Also, $\{a, b\}$ is $(1,2)^*$ -r ω -closed set but it is not $(1,2)^*$ -g-closed in X;
- (13) $\{c\}$ is $(1,2)^*$ -gpr-closed set but it is not $(1,2)^*$ -r ω -closed in X.

Remark 3.4. The following diagram follows immediately from the above definitions and the above examples. Where $A \rightarrow B$ (resp. $A \nleftrightarrow B$) means A implies B but not conversely (resp. A and B are independent).

Remark 3.5. The following example shows that the intersection of two $(1,2)^*$ - $r\omega$ -closed sets need not be an $(1,2)^*$ - $r\omega$ -closed.

Example 3.6. Let X, τ_1 and τ_2 be as in Example 3.2. We have $\{a, b\}$ and $\{b, c\}$ are $(1,2)^*$ -rw-closed but their intersection $\{a, b\} \cap \{b, c\} = \{b\}$ is not $(1,2)^*$ - rw-closed in X.

Theorem 3.7. If a subset A of X is $(1,2)^*$ - $r\omega$ -closed in X, then $\tau_{1,2}$ - $cl(A)\backslash A$ does not contain any nonempty regular $(1,2)^*$ -semi-open set in X.

Proof. Suppose that A is an $(1,2)^*$ -r ω -closed set in X. We prove the result by contradiction. Let U be a regular $(1,2)^*$ -semi-open set such that $\tau_{1,2}$ -cl(A)\A \supseteq U and

 $U\neq\emptyset$. Since $U\nsubseteq A$, $U\subseteq X\setminus A$ which implies $A\subseteq X\setminus U$. Since U is regular $(1,2)^*$ -semi-open , $X\setminus U$ is also regular $(1,2)^*$ -semi-open in X. Since A is an $(1,2)^*$ -r ω -closed set in X, by definition, we have $\tau_{1,2}$ -cl $(A)\subseteq X\setminus U$. So $U\subseteq X\setminus \tau_{1,2}$ -cl(A). We already have $U\subseteq \tau_{1,2}$ -cl(A). Therefore, $U\subseteq (\tau_{1,2}$ -cl $(A)\cap (X\setminus \tau_{1,2}$ -cl $(A))=\emptyset$. This shows that $U=\emptyset$, which is a contradiction. Hence $\tau_{1,2}$ -cl $(A)\setminus A$ does not contain any nonempty regular $(1,2)^*$ -semi-open set in X.

Remark 3.8. The following example shows that the converse of Theorem 3.7 need not be true.

Example 3.9. Let X, τ_1 and τ_2 be as in Example 3.2. Then the sets in $\{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called regular $(1,2)^*$ -semi-open in X.

If we put $A = \{c\}$, then $\tau_{1,2}$ -cl(A)\ $A = \{a, c\} \setminus \{c\} = \{a\}$ does not contain any nonempty regular $(1,2)^*$ -semi-open set but A is not an $(1,2)^*$ -r ω -closed in X.

Corollary 3.10. If a subset A of X is an $(1,2)^*$ - $r\omega$ -closed set in X, then $\tau_{1,2}$ - $cl(A)\setminus A$ does not contain any non-empty regular $(1,2)^*$ -open (resp. regular $(1,2)^*$ -closed) set in X.

Proof. Follows from Theorem 3.7 and the fact that every regular $(1,2)^*$ -open (resp. regular $(1,2)^*$ -closed) set is regular $(1,2)^*$ -semi-open.

Remark 3.11. The following example shows that the converse of Corollary 3.10 need not be true.

Example 3.12. Let X, τ_1 and τ_2 be as in Example 3.2. Then the sets in $\{\emptyset, X, \{b\}, \{c\}\}$ are called regular $(1,2)^*$ -open in X;

If we put $A = \{c\}$, then $\tau_{1,2}\text{-}cl(A)\backslash A = \{a, c\}\backslash \{c\} = \{a\}$ does not contain any non-empty regular $(1,2)^*$ -open set but A is not an $(1,2)^*$ -r ω -closed in X.

Theorem 3.13. For an element $x \in X$, the set $X \setminus \{x\}$ is $(1,2)^*$ - $r\omega$ -closed or regular $(1,2)^*$ -semi-open.

Proof. Suppose $X\setminus\{x\}$ is not regular $(1,2)^*$ -semi-open. Then X is the only regular $(1,2)^*$ -semi-open set containing $X\setminus\{x\}$. This implies $\tau_{1,2}$ -cl $(X\setminus\{x\})\subseteq X$. Hence $X\setminus\{x\}$ is an $(1,2)^*$ -r ω -closed in X.

Theorem 3.14. If A is an $(1,2)^*$ -r ω -closed subset of X such that $A \subseteq B \subseteq \tau_{1,2}$ -cl(A), then B is an $(1,2)^*$ -r ω -closed set in X.

Proof. Let A be an $(1,2)^*$ -r ω -closed subset of X such that $A \subseteq B \subseteq \tau_{1,2}$ -cl(A). Let U be a regular $(1,2)^*$ -semi-open set of X such that $B \subseteq U$. Then $A \subseteq U$. Since A is $(1,2)^*$ -r ω -closed, we have $\tau_{1,2}$ -cl(A) \subseteq U. Now $\tau_{1,2}$ -cl(B) $\subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -cl(A) \subseteq U. Therefore, B is an $(1,2)^*$ -r ω -closed set in X.

Theorem 3.15. Let A be $(1,2)^*$ - $r\omega$ -closed in X. Then A is $\tau_{1,2}$ -closed if and only if $\tau_{1,2}$ - $cl(A)\backslash A$ is regular $(1,2)^*$ -semi-open.

Proof. Suppose A is $\tau_{1,2}$ -closed in X. Then $\tau_{1,2}$ -cl(A)=A and so $\tau_{1,2}$ -cl(A)\A= \emptyset , which is regular $(1,2)^*$ -semi-open in X. Conversely $\tau_{1,2}$ -cl(A)\A is regular $(1,2)^*$ -semi-open in X. Since A is $(1,2)^*$ -r ω -closed, by Theorem 3.7, $\tau_{1,2}$ -cl(A)\A does not contain any nonempty regular $(1,2)^*$ -semi-open set in X. Then $\tau_{1,2}$ -cl(A)\A= \emptyset and hence A is $\tau_{1,2}$ -closed in X.

Theorem 3.16. If A is regular $(1,2)^*$ -open and $(1,2)^*$ -rg-closed, then A is $(1,2)^*$ - $r\omega$ -closed in X.

Proof. Let A be regular $(1,2)^*$ -open and $(1,2)^*$ -rg-closed in X. We prove that A is an $(1,2)^*$ -r ω -closed set in X. Let U be any regular $(1,2)^*$ -semi-open set in X such that $A\subseteq U$. Since A is regular $(1,2)^*$ -open and $(1,2)^*$ -rg-closed, we have $\tau_{1,2}$ -cl(A) $\subseteq A$. Then $\tau_{1,2}$ -cl(A) $\subseteq A\subseteq U$. Hence A is $(1,2)^*$ -r ω -closed in X.

Theorem 3.17. If a subset A of a bitopological space X is both regular $(1,2)^*$ -semi-open and $(1,2)^*$ -rw-closed, then it is $\tau_{1,2}$ -closed.

Proof. Since A is regular $(1,2)^*$ -semi-open and $(1,2)^*$ -r ω -closed, $\tau_{1,2}$ -cl $(A)\subseteq A$. Thus, A is $\tau_{1,2}$ -closed.

Corollary 3.18. If A is regular $(1,2)^*$ -open and $(1,2)^*$ -rw-closed, then A is regular $(1,2)^*$ -closed and hence $\tau_{1,2}$ -clopen.

Proof. Since A is regular $(1,2)^*$ -open, A is regular $(1,2)^*$ -semi-open by Remark 2.8. By Theorem 3.17, A is $\tau_{1,2}$ -closed. Since A is regular $(1,2)^*$ -open, A is $\tau_{1,2}$ -open. Thus A is $\tau_{1,2}$ -clopen and regular $(1,2)^*$ -closed.

Corollary 3.19. Suppose the collection of $\tau_{1,2}$ -closed sets of X is closed under finite intersections. Let A be regular $(1,2)^*$ -semi-open and $(1,2)^*$ -r ω -closed in X. Suppose that F is $\tau_{1,2}$ -closed in X. Then $A \cap F$ is an $(1,2)^*$ -r ω -closed set in X.

Proof. Let A be regular $(1,2)^*$ -semi-open and $(1,2)^*$ -r ω -closed in X. By Theorem 3.17, A is $\tau_{1,2}$ -closed. Since F is $\tau_{1,2}$ -closed, A \cap F is $\tau_{1,2}$ -closed in X. Hence A \cap F is $(1,2)^*$ -r ω -closed set in X.

Theorem 3.20. Let A be regular $(1,2)^*$ -open in a bitopological space X. Then the following are equivalent:

- (1) A is $(1,2)^*$ -g-closed.
- (2) A is $(1,2)^*-\pi g$ -closed.
- (3) A is (1,2)*-rg-closed.
- (4) A is $(1,2)^*$ -r ω -closed.

Proof. (1) \Rightarrow (2) It follows from the fact that every (1,2)*-g-closed set is (1,2)*- π g-closed [18].

- (2) \Rightarrow (3) It follows from the fact that every (1,2)*- π g-closed set is (1,2)*- π g-closed [18].
 - $(3)\Rightarrow (4)$ It follows from Theorem 3.16.

(4) \Rightarrow (1) It follows from Corollary 3.18 and the fact that every regular (1,2)*-closed set is $\tau_{1,2}$ -closed [14] and every $\tau_{1,2}$ -closed set is (1,2)*-g-closed [18].

Theorem 3.21. Let A be regular $(1,2)^*$ -open in a bitopological space X. Then the following are equivalent

- (1) $A \text{ is } (1,2)^*$ -g-closed.
- (2) A is (1,2)*-wg-closed.
- (3) A is $(1,2)^*$ -r ω -closed.

Proof. (1) \Rightarrow (2) It follows from the fact that every (1,2)*-g-closed set is (1,2)*-wg-closed [20].

 $(2)\Rightarrow(3)$ We know that every regular $(1,2)^*$ -open set is $\tau_{1,2}$ -open. Let $A\subseteq U$ where U is regular $(1,2)^*$ -semi-open in X. Since A is $(1,2)^*$ -wg-closed and $\tau_{1,2}$ -open, $\tau_{1,2}$ -cl $(\tau_{1,2}\text{-int}(A))\subseteq A$. Since $A=\tau_{1,2}\text{-int}(A)$, $\tau_{1,2}\text{-cl}(A)\subseteq A\subseteq U$. Thus, A is $(1,2)^*$ -r ω -closed. $(3)\Rightarrow(1)$ It follows from Theorem 3.20.

Theorem 3.22. In a bitopological space X, if $(1,2)^*$ - $RSO(X)=\{X, \emptyset\}$, then every subset of X is an $(1,2)^*$ - $r\omega$ -closed set.

Proof. Let X be a bitopological space and $(1,2)^*$ -RSO(X)={X, \emptyset }. Let A be any subset of X. Suppose A= \emptyset . Then \emptyset is an $(1,2)^*$ -r ω -closed set in X. Suppose A $\neq \emptyset$. Then X is the only regular $(1,2)^*$ -semi-open set containing A and so $\tau_{1,2}$ -cl(A) \subseteq X. Hence A is an $(1,2)^*$ -r ω -closed set in X.

Remark 3.23. The following example shows that the converse of Theorem 3.22 need not be true.

Example 3.24. Let $X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a, b\}\}\$ and $\tau_2 = \{\emptyset, X, \{c, d\}\}.$ Then

- (1) the sets in $\{\emptyset, X, \{a, b\}, \{c, d\}\}\$ are called $\tau_{1,2}$ -open;
- (2) the sets in $\{\emptyset, X, \{a, b\}, \{c, d\}\}$ are called $\tau_{1,2}$ -closed;
- (3) the sets in $\{\emptyset, X, \{a, b\}, \{c, d\}\}$ are called regular (1,2)*-semi-open in X;

- (4) Every subset of X is an $(1,2)^*$ -rw-closed set in X;
- (5) $(1,2)^*$ - $RSO(X)=\{\emptyset, X, \{a, b\}, \{c, d\}\};$
- (6) $(1,2)*-RSO(X)\neq\{\emptyset, X\}.$

Theorem 3.25. In a bitopological space X, $(1,2)^*$ - $RSO(X) \subseteq \{F \subseteq X : F^c \in (1,2)^* - O(X)\}$ if and only if every subset of X is $(1,2)^*$ - $r\omega$ -closed.

Proof. Suppose that $(1,2)^*$ -RSO(X) \subseteq {F \subseteq X : F c \in (1,2)*-O(X)}. Let A be any subset of X such that A \subseteq U where U is regular $(1,2)^*$ -semi-open. Then U \in (1,2)*-RSO(X) \subseteq {F \subseteq X : F c \in (1,2)*-O(X)}. That is U \in {F \subseteq X : F c \in (1,2)*-O(X)}. Thus U is $\tau_{1,2}$ -closed and hence $\tau_{1,2}$ -cl(U)=U. Now, we have $\tau_{1,2}$ -cl(A) \subseteq $\tau_{1,2}$ -cl(U)=U. Hence A is a $(1,2)^*$ -r ω -closed in X.

Conversely, suppose that every subset of X is $(1,2)^*$ -r ω -closed. Let $U \in (1,2)^*$ -RSO(X). Since U is $(1,2)^*$ -r ω -closed, we have $\tau_{1,2}$ -cl(U) \subseteq U. Thus $\tau_{1,2}$ -cl(U)=U and hence $U \in \{F \subseteq X : F^c \in (1,2)^*$ -O(X) $\}$. Therefore $(1,2)^*$ -RSO(X) $\subseteq \{F \subseteq X : F^c \in (1,2)^*$ -O(X) $\}$.

- **Definition 3.26.** (1) The intersection of all regular $(1,2)^*$ -semi-open subsets of (X, τ_1, τ_2) containing A is called the regular $(1,2)^*$ -semi-kernel of A and is denoted by $(1,2)^*$ -rsker(A).
 - (2) The intersection of all $(1,2)^*$ -semi-open subsets of (X, τ_1, τ_2) containing A is called the $(1,2)^*$ -semi-kernel of A and is denoted by $(1,2)^*$ -sker(A).

Lemma 3.27. Let X be a bitopological space and A be a subset of X. If A is regular $(1,2)^*$ -semi-open in X, then $(1,2)^*$ -rsker(A)=A but not conversely.

Proof. It follows from Definition 3.26.

Example 3.28. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{a, c, d\}\}\}$ and $\tau_2 = \{\emptyset, X, \{c, d\}, \{a, c, d\}\}$. Then

- (1) the sets in $\{\emptyset, X, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ are called $\tau_{1,2}$ -open;
- (2) the sets in $\{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed;
- (3) the sets in $\{\emptyset, X, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called regular $(1,2)^*$ -semi-open;
- (4) we have $(1,2)^*$ -rsker($\{b\}$)= $\{b\}$ but $\{b\}$ is not regular $(1,2)^*$ semi-open.

Lemma 3.29. For any subset A of X, $(1,2)^*$ -sker $(A)\subseteq (1,2)^*$ -rsker(A).

Proof. It follows from Definition 3.26 and $(1,2)^*$ -RSO $(X)\subseteq (1,2)^*$ -SO(X).

Lemma 3.30. For any subset A of X, $A \subseteq (1,2)^*$ -rsker(A).

Proof. It follows from Definition 3.26.

Theorem 3.31. A subset A of X is $(1,2)^*$ - $r\omega$ -closed if and only if $\tau_{1,2}$ - $cl(A) \subseteq (1,2)^*$ -rsker(A).

Proof. Suppose that A is $(1,2)^*$ -r ω -closed. Then $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is regular $(1,2)^*$ -semi-open. Let $x\in\tau_{1,2}$ -cl(A). Suppose $x\notin(1,2)^*$ -rsker(A), then there is a regular $(1,2)^*$ -semi-open set U containing A such that x is not in U. Since A is $(1,2)^*$ -r ω -closed, $\tau_{1,2}$ -cl(A) \subseteq U. We have x not in $\tau_{1,2}$ -cl(A), which is a contradiction. Hence $x\in(1,2)^*$ -rsker(A) and so $\tau_{1,2}$ -cl(A) $\subseteq(1,2)^*$ -rsker(A). Conversely, let $\tau_{1,2}$ -cl(A) $\subseteq(1,2)^*$ -rsker(A). If U is any regular $(1,2)^*$ -semi-open set containing A, then $(1,2)^*$ -rsker(A) \subseteq U and hence $\tau_{1,2}$ -cl(A) $\subseteq(1,2)^*$ -rsker(A) \subseteq U. Therefore, A is $(1,2)^*$ -r ω -closed in X.

Definition 3.32. A subset S of a bitopological space X is said to be regular $(1,2)^*$ - ω -open (briefly, $(1,2)^*$ - $r\omega$ -open) if A^c is $(1,2)^*$ - $r\omega$ -closed in X.

We denote the family of all $(1,2)^*$ -r ω -open sets in X by $(1,2)^*$ -R ω O(X).

Theorem 3.33. If a set A is $(1,2)^*$ - $\tau\omega$ -open in X, then G=X, whenever G is regular $(1,2)^*$ -semi-open and $\tau_{1,2}$ -int $(A) \cup A^c \subseteq G$.

Proof. Suppose that A is $(1,2)^*$ -r ω -open in X. Let G be regular $(1,2)^*$ -semi-open and $\tau_{1,2}$ -int(A) \cup A^c \subseteq G. This implies $G^c\subseteq(\tau_{1,2}$ -int(A) \cup A^c)^c = $(\tau_{1,2}$ -int(A))^c \cap A. That is $G^c\subseteq(\tau_{1,2}$ -int(A))^c \setminus A^c. Thus $G^c\subseteq\tau_{1,2}$ -cl(A^c) \setminus A^c, since $(\tau_{1,2}$ -int(A))^c= $\tau_{1,2}$ -cl(A^c). Now G^c is also regular $(1,2)^*$ -semi-open and A^c is $(1,2)^*$ -r ω -closed, by Theorem 3.7, it follows that $G^c=\emptyset$. Hence G=X.

Remark 3.34. The following example shows that the converse of Theorem 3.33 need not be true.

Example 3.35. Let X, τ_1 and τ_2 be as in Example 3.2. Then

- (1) the sets in $\{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called regular $(1,2)^*$ -semi-open in X;
- (2) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{b, c\}\}$ are called $(1,2)^*$ -r ω -open in X;
- (3) If we put $A = \{a, b\}$, then the following conditions are satisfied
 - (a) $\tau_{1,2}$ -int($\{a, b\}$) \cup ($\{a, b\}$) c = $\{b\}$ \cup { $c\}$ = $\{b, c\}$ $\subseteq X=G$;
 - (b) G is regular (1,2)*-semi-open;
 - (c) G=X. But A is not $(1,2)^*$ - $r\omega$ -open in X.
 - 4. Properties of $(1,2)^*$ -rslc*-sets

Definition 4.1. A subset A of X is said to be $(1,2)^*$ -rslc*-set if $A=M\cap N$ where M is regular $(1,2)^*$ -semi-open and N is $\tau_{1,2}$ -closed.

- **Remark 4.2.** (1) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -rslc*-set but not conversely.
 - (2) Every regular (1,2)*-semi-open set is (1,2)*-rslc*-set but not conversely.

Example 4.3. Let X, τ_1 and τ_2 be as in Example 3.3. Then

(1) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, c, d\}\}$ are called regular $(1,2)^*$ -semi-open in X;

- (2) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1,2)^*$ -rslc*-sets in X;
- (3) {a} is (1,2)*-rslc*-set but not $\tau_{1,2}$ -closed set in X;
- (4) $\{c\}$ is (1,2)*-rslc*-set but not regular (1,2)*-semi-open.

Theorem 4.4. Let A be a subset of a bitopological space X. Then A is $\tau_{1,2}$ -closed if and only if A is $(1,2)^*$ -rw-closed and $(1,2)^*$ -rslc*-set.

Proof. Let A be a $\tau_{1,2}$ -closed subset of X. Then A is $(1,2)^*$ -r ω -closed and $(1,2)^*$ -rslc*-set.

Conversely, let $A=M\cap N$ where M is regular $(1,2)^*$ -semi-open and N is $\tau_{1,2}$ -closed. Since A is $(1,2)^*$ -r ω -closed, $A\subseteq M$ and M is regular $(1,2)^*$ -semi-open, $\tau_{1,2}$ -cl $(A)\subseteq M$. Moreover, since $A\subseteq N$, $\tau_{1,2}$ -cl $(A)\subseteq \tau_{1,2}$ -cl(N)=N. We have $\tau_{1,2}$ -cl $(A)\subseteq M\cap N$ and so $\tau_{1,2}$ -cl $(A)\subseteq A$. Hence A is $\tau_{1,2}$ -closed.

Remark 4.5. The concepts of $(1,2)^*$ - $r\omega$ -closed sets and $(1,2)^*$ - $rslc^*$ -sets are independent of each other.

Example 4.6. Let X, τ_1 and τ_2 be as in Example 4.3. Then

- (1) {a} is (1,2)*-rslc*-set but not (1,2)*-r ω -closed set;
- (2) $\{a, b\}$ is $(1,2)^*$ -rw-closed but not $(1,2)^*$ -rslc*-set.

Definition 4.7. A subset A of X is said to be $(1,2)^*-\Lambda_{rs}^b$ -set if $A=(1,2)^*$ -rsker(A).

Definition 4.8. A subset A of X is said to be $(1,2)^*-\lambda_{rs}^b$ -closed if $A=L\cap F$ where L is $(1,2)^*-\Lambda_{rs}^b$ -set and F is $\tau_{1,2}$ -closed.

Lemma 4.9. For a bitopological space (X, τ_1, τ_2) , the following conditions are equivalent.

- (1) A is $(1,2)^*-\lambda_{rs}^b$ -closed.
- (2) $A = L \cap \tau_{1,2} cl(A)$ where L is $(1,2)^* \Lambda_{rs}^b$ -set.

- (3) $A = (1,2)^* rsker(A) \cap \tau_{1,2} cl(A)$.
- **Remark 4.10.** (1) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - λ_{rs}^b -closed but not conversely.
 - (2) Every (1,2)*-rslc*-set is (1,2)*- λ_{rs}^b -closed.

Example 4.11. Let X, τ_1 and τ_2 be as in Example 3.28. Then

- (1) the sets in $\{\emptyset, X, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called regular $(1,2)^*$ -semi-open in X;
- (2) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called $(1,2)^*-\Lambda_{rs}^b$ -sets in X;
- (3) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called $(1,2)^*$ - λ_{rs}^b -closed in X;
- (4) $\{c\}$ is $(1,2)^*-\lambda_{rs}^b$ -closed set but not $\tau_{1,2}$ -closed set in X.

Theorem 4.12. For a bitopological space (X, τ_1, τ_2) , the following conditions are equivalent.

- (1) A is $\tau_{1,2}$ -closed.
- (2) A is (1,2)*-r ω -closed and (1,2)*-rslc*-set.
- (3) A is (1,2)*- $r\omega$ -closed and (1,2)*- λ_{rs}^b -closed.

Proof. $(1) \Rightarrow (2)$ Obvious.

- $(2) \Rightarrow (3)$ Obvious.
- (3) \Rightarrow (1) Let A be (1,2)*- λ_{rs}^b -closed. Then, by Lemma 4.9, A=(1,2)*-rsker(A) $\cap \tau_{1,2}$ -cl(A). Since A is (1,2)*-r ω -closed, by Theorem 3.31, A= $\tau_{1,2}$ -cl(A). Thus A is $\tau_{1,2}$ -closed.

Remark 4.13. The concepts of $(1,2)^*$ - $r\omega$ -closed sets and $(1,2)^*$ - λ_{rs}^b -closed sets are independent.

Example 4.14. Let X, τ_1 and τ_2 be as in Example 4.3. Then

- (1) the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1,2)^*-\Lambda^b_{rs}$ -sets and $(1,2)^*-\lambda^b_{rs}$ -closed in X;
- (2) {a} is $(1,2)^*-\lambda_{rs}^b$ -closed set but not $(1,2)^*-r\omega$ -closed set in X;
- (3) $\{a, b\}$ is $(1,2)^*$ -r ω -closed but not $(1,2)^*$ - λ_{rs}^b -closed set in X.

Acknowledgement

The authors thank the referee for his/her valuable comments and suggestions for improvement of this paper.

References

- [1] S. S. Benchalli and R. S. Wali, On $r\omega$ -closed sets in topological spaces, Bull. Malayas. Math. Sci. Soc., (2), 30(2)(2007), 99-110.
- [2] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72(1978), 581-586.
- [3] M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., 13(1972), 327-334.
- [4] J. Dontchev and T. Noiri, Quasi normal spaces and πg -closed sets, Acta Math. Hungar., 89(2000), 211-219.
- [5] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [6] S. Jafari, M. Lellis Thivagar and Nirmala Mariappan, On $(1,2)^*$ - $\alpha \hat{g}$ -closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.
- [7] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [8] M. Lellis Thivagar and O. Ravi, On stronger forms of $(1,2)^*$ -quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14(6)(2004), 481-492.
- [9] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(1970), 89-96.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] N. Nagaveni, Studies on generalizations of Homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore (1999).

- [13] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993), 211-219.
- [14] O. Ravi, M. Lellis Thivagar and E. Ekici, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3 (2008), 181-189.
- [15] O. Ravi, M. Lellis Thivagar and E. Hatir, Decomposition of $(1,2)^*$ -continuity and $(1,2)^*$ - α -continuity, Miskolc Mathematical Notes, 10(2)(2009), 163-171.
- [16] O. Ravi and M. Lellis Thivagar, Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in Applied Mathematical Analysis, 5(1)(2010), 1-15.
- [17] O. Ravi and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1)(2006), 79-88.
- [18] O. Ravi, E. Hatir, M. Lellis Thivagar and M. Joseph Israel, A bitopological approach on πg closed sets and continuity, International Mathematical Forum (To appear).
- [19] O. Ravi, M. Lellis Thivagar, K. Kayathri and M. Joseph Israel, Decomposition of (1,2)*-rg-continuous maps in bitopological spaces, Antarctica J. Math., 6(1)(2009),13-23.
- [20] O. Ravi, S. Pious Missier and K. Mahaboob Hassain Sherieff, On (1,2)*-sets and weakly generalized (1,2)*-continuous maps in bitopological spaces (submitted).
- [21] M. H. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-381.
- [22] P. Sundaram and M. Sheik John, On ω -closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [23] P. Sundaram and M. Sheik John, Weakly closed sets and Weakly continuous maps in topological spaces, Proc. 82nd Indian Sci. Cong., Calcutta, (1995), p-49.
- [24] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad Naur SSSR, (1918), 778-779.
- (1) Department of Mathematics,, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India. E-mail: siingam@yahoo.com.
- (2) Department of Mathematics,, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India. Email :spmissier@yahoo.com.
- (3) Department of Mathematics,, S. L. S. MAVMM AV College, Madurai, Tamil Nadu, India. Email :rosesheri14@yahoo.com.