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CERTAIN CLASSES OF UNIVALENT FUNCTIONS HAVING
NEGATIVE COEFFICIENTS

VANITA JAIN

Abstract. Eight classes of univalent analytic functions with negative coefficients,

involving Ruscheweyh derivative and a linear operator, have been studied in regard

to coefficient inequality, distortion theorems, extreme points, radii of starlikeness

and convexity.

1. Introduction

Let S denote the class of functions of the form f(z) = z +
∑∞

n=2 anz
n that are

analytic and univalent in the unit disk U : |z| < 1. Let T denote the subclass of S

consisting of functions whose non-zero coefficients from second on, are negative; that

is, an analytic and univalent functions f is in T if and only if it can be expressed as

(1.1) f(z) = z −
∞∑

n=2

|an|zn.

The class T together with its subclasses TS∗(α) and TC(α), respectively, of starlike

and convex functions of order α, were introduced and studied by Silverman [12].
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Further, if f is given by (1.1) and g in S is given by g(z) = z +
∑∞

n=2 |bn|zn, then

the convolution (Hadamard prouduct) of f and g is given by

(f ∗ g)(z) = z −
∞∑

n=2

|anbn|zn.

The subclasses TS∗
s and TCs , respectively , starlike functions and convex func-

tions with symmetric points of T were introduced and studied by Sakaguchi [11] and

Dass and Singh [1], respectively, see also [9]; whereas the subclasses TS∗(α, β) and in

TC(α, β), respectively, of starlike and convex functions of order α and type β were

introduced and studied in Gupta and Jain [3], see also [4].

In this paper, involving two operators, namely, Ruschewey derivative operator

R(α, β, µ), introduced by Ruscheweyh [10] (Section 2), and the linear operator L(a, c),

introduced by Carlson and Shaffer (c.f.[9]) (Section 3), eight different classes of uni-

valent analytic functions with negative coefficients have been considered. Results on

coefficients inequalities, distortion theorems, extreme points and radii of starlikeness

and convexity for these classes have been derived.

2. Classes of functions involving Ruscheweyh derivative

A function f ∈ T is in TS∗
sR(α, β, µ), the class of starlike functions of order

α(0 ≤ α < 1) and type β(0 < β ≤ 1) with respect to symmetric points, if and only if

(2.1)

∣∣∣∣[ z(Dµf(z))
′

Dµf(z)−Dµf(−z)
− 1

]/[
z(Dµf(z))

′

Dµf(z)−Dµf(−z)
+ (1− 2α)

]∣∣∣∣ < β, |z| < 1

where the operator Dµf , the Ruscheweyh derivative of f , is defined by

Dµf(z) =
z(zµ−1f(z))u

µ!
=

z

(1− z)µ+1
∗ f(z)
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(2.2) = z −
∞∑

n=2

An(µ)|an|zn,

with

An(µ) =

(
n + µ− 1

µ

)
=

(µ + 1)(µ + 2).............(µ + n− 1)

(n− 1)!
.

Further, f ∈ T is in TCsR(α, β, µ), the class of convex functions of order

α(0 ≤ α < 1) and type β(0 < β ≤ 1) with respect to symmetric points involving the

Ruscheweyh derivative if and only if zf ′ ∈ TS∗
sR(α, β, µ).

Note that TS∗
sR(α, β, 0) = TS∗

sR(α, β) and TCsR(α, β, 0) = TCs(α, β) which

were considered and discussed in [5], [6] . We first give the results for the class

TS∗
sR(α, β, µ).

Theorem 2.1. A function f(z) = z −
∑∞

n=2 |an|zn is in class TS∗
sR(α, β, µ) if and

only if

∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

The following is the distortion result.

Theorem 2.2. If f ∈ TS∗
sR(α, β, µ), then

(2.2.1) r − β|3− 4α| − 1

2(β + 1)(1 + µ)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

2(β + 1)(1 + µ)
r2, |z| = r

(2.2.2) 1− β|3− 4α| − 1

(β + 1)(1 + µ)
r ≤

∣∣∣f ′(z)
∣∣∣ ≤ 1 +

β|3− 4α| − 1

(β + 1)(1 + µ)
r |z| = r
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and

(2.2.3) r − β|3− 4α| − 1

2(β + 1)
r2 ≤

∣∣∣Dµf(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

2(β + 1)
r2, |z| = r

with equalities for f(z) = z − β|3−4α|−1
2(1+β)(1+µ)

z2, (z = ± r).

Theorem 2.3. If f(z) = z −
∑∞

n=2 |an|zn and g(z) = z −
∑∞

n=2 |bn|zn are in

TS∗
sR(α, β, µ), then h(z) = z − 1

2

∑∞
n=2 |an + bn|zn is also in TS∗

sR(α, β, µ).

Theorem 2.4. Let

f1(z) = z and fn(z) = z− β|3− 4α| − 1

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)
zn, n ≥ 2.

Then f ∈ TS∗
sR(α, β, µ) if and only if it can be expressed in the form

f(z) =
∑∞

n=1 λnfn(z), where λn ≥ 0 and
∑∞

n=1 λn = 1.

Theorem 2.5. Let f ∈ TS∗
sR(α, β, µ). Then f is starlike in the disc

|z| < r = r(α, β), where,

r(α, β) = inf
n

[
n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)

n(β|3− 4α| − 1)
An(µ)

] 1
n−1

Now, we give results for the class TCsR(α, β, µ) .

Theorem 2.6. A function f(z) = z −
∑∞

n=2 |an|zn is in class TCsR(α, β, µ) if and

only if

∞∑
n=2

n{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 2.7. If f ∈ TCsR(α, β, µ), then

(2.7.1) r − β|3− 4α| − 1

4(β + 1)(1 + µ)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

4(β + 1)(1 + µ)
r2, |z| = r

(2.7.2) 1− β|3− 4α| − 1

2(β + 1)(1 + µ)
r ≤

∣∣∣f ′(z)
∣∣∣ ≤ 1 +

β|3− 4α| − 1

2(β + 1)(1 + µ)
r |z| = r
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and

(2.7.3) r − β|3− 4α| − 1

4(β + 1)
r2 ≤

∣∣∣Dµf(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

4(β + 1)
r2, |z| = r

with equalities for f(z) = z − β|3−4α|−1
4(1+β)(1+µ)

z2, (z = ±r).

Theorem 2.8. If f(z) = z −
∑∞

n=2 |an|zn and g(z) = z −
∑∞

n=2 |bn|zn are in

TCsR(α, β, µ), then h(z) = z − 1
2

∑∞
n=2 |an + bn|zn is also in TCsR(α, β, µ).

Theorem 2.9. Let

f1(z) = z and fn(z) = z− β|3− 4α| − 1

n[n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)]An(µ)
zn, (n ≥ 2).

Then f ∈ TCsR(α, β, µ) if and only if it can be expressed in the form

f(z) =
∑∞

n=1 λnfn(z), where λn ≥ 0 and
∑∞

n=1 λn = 1.

Theorem 2.10. Let f ∈ TCsR(α, β, µ). Then f is convex in the disc

|z| < r = r(α, β), where

r(α, β) = inf
n

[
(n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)An(µ)

n2(β|3− 4α| − 1)

] 1
n−1

, n ≥ 2.

Similar to (2.1), we can introduce the classesTS∗
c R(α, β, µ) and TCcR(α, β, µ), the

class of starlike functions and the class of convex functions, respectively, of order

α and type β with respect to conjugate points involving Ruscheweyh derivative. A

function f ∈ T is in TS∗
c R(α, β, µ) if and only if∣∣∣∣[ z(Dµf(z))

′

Dµf(z) + Dµf(z)
− 1

]/[
z(Dµf(z))

′

Dµf(z) + Dµf(z)
+ (1− 2α)

]∣∣∣∣ < β, |z| < 1

and f ∈ T is in TCcR(α, β, µ) if and only if zf ′ ∈ TS∗
c R(α, β, µ).

The following results for the classes TS∗
c R(α, β, µ) and TCcR(α, β, µ) are analogous

to those for classes TS∗
sR(α, β, µ) and TCsR(α, β, µ) and can be derived in similar

fashion.
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Theorem 2.11. A function f(z) = z −
∑∞

n=2 |an|zn is in class TS∗
c R(α, β, µ) if and

only if
∞∑

n=2

{n(1 + β) + 2(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 2.12. If f ∈ TS∗
c R(α, β, µ), then

(2.12.1) r − β|3− 4α| − 1

4β(1− α)(1 + µ)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

4β(1− α)(1 + µ)
r2, |z| = r

(2.12.2) 1− β|3− 4α| − 1

2β(1− α)(1 + µ)
r ≤

∣∣∣f ′(z)
∣∣∣ ≤ 1 +

β|3− 4α| − 1

2β(1− α)(1 + µ)
r, |z| = r

and

(2.12.3) r − β|3− 4α| − 1

4β(1− α)
r2 ≤

∣∣∣Dµf(z)
∣∣∣ ≤ r +

β
∣∣∣3− 4α| − 1

4β(1− α)
r2, |z| = r

with equalities for f(z) = z − β|3−4α|−1
4β(1−α)(1+µ)

z2, (z = ± r).

Theorem 2.13. If f(z) = z −
∑∞

n=2 |an|zn and g(z) = z −
∑∞

n=2 |bn|zn are in

f ∈ TS∗
c R(α, β, µ), then h(z) = z − 1

2

∑∞
n=2 |an + bn|zn is also in f ∈ TS∗

c R(α, β, µ).

Theorem 2.14. Let

f1(z) = z and fn(z) = z − β|3− 4α| − 1

[n(1 + β) + 2(β(1− 2α)− 1)]An(µ)
zn, (n = 2, 3....).

Then f ∈ TS∗
c R(α, β, µ) if and only if can be expressed in the form f(z) =

∑∞
n=1 λnfn(z),

where λn ≥ 0 and
∑∞

n=1 λn = 1.

Theorem 2.15. Let f ∈ TS∗
c R(α, β, µ). Then f is starlike in the disc

|z| < r = r(α, β), where

r(α, β) = inf
n

[
{n(1 + β) + 2(β(1− 2α)− 1)}An(µ)

n(β|3− 4α| − 1)

] 1
n−1

, n ≥ 2.
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Theorem 2.16. A function f(z) = z −
∑∞

n=2 |an|zn is in class TCcR(α, β, µ) if and

only if

∞∑
n=2

n{n(1 + β) + 2(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 2.17. If f ∈ TCcR(α, β, µ), then

(2.17.1) r − β|3− 4α| − 1

8β(1− α)(1 + µ)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

8β(1− α)(1 + µ)
r2, |z| = r

(2.17.2) 1− β|3− 4α| − 1

4β(1− α)(1 + µ)
r ≤

∣∣∣f ′(z)
∣∣∣ ≤ 1 +

β|3− 4α| − 1

4β(1− α)(1 + µ)
r, |z| = r

and

(2.17.3) r − β|3− 4α| − 1

8β(1− α)
r2 ≤

∣∣∣Dµf(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

8β(1− α)
r2, |z| = r

with equalities for f(z) = z − β|3−4α|−1
8β(1−α)(1+µ)

z2, (z = ± r).

Theorem 2.18. If f(z) = z −
∑∞

n=2 |an|zn and g(z) = z −
∑∞

n=2 |bn|zn are in

TCcR(α, β, µ), then h(z) = z − 1
2

∑∞
n=2 |an + bn|zn is also in TCcR(α, β, µ).

Theorem 2.19. Let

f1(z) = z and fn(z) = z − β|3− 4α| − 1

n[n(1 + β) + 2(β(1− 2α)− 1)]An(µ)
zn, (n = 2, 3....).

Then f ∈ TCcR(α, β, µ) if and only if it can be expressed in the form

f(z) =
∞∑

n=1

λnfn(z), where λn ≥ 0 and
∞∑

n=1

λn = 1.

Theorem 2.20. Let f ∈ TCcR(α, β, µ). Then f is convex in the disk

|z| < r = r(α, β), where

r(α, β) = inf
n

[{n(1 + β) + 2(β(1− 2α)− 1)}An(µ)

n2(β|3− 4α|)− 1

] 1
n−1

, n ≥ 2.
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3. Classes of functions involving a linear operator

Let us consider the linear operator L(a, c)f, introduced by Carlson and Shaffer

(cf. [9]), which is given by

L(a, c)f(z) = ø(a, c; z) ∗ f(z)

= z −
∞∑

n=2

(a)n−1

(c)n−1

|an|zn

Here ø(a, c; z) = z +
∞∑

n=2

(a)n−1

(c)n−1

zn; for c 6= 0,−1,−2, .....; a 6= −1; z ∈ U

where (λ)n is Pochhammer symbol defined by

(λ)n =
Γ(n + λ)

Γ(λ)
=

 1 n = 0

λ(λ + 1)(λ + 1).......(λ + n− 1) n ∈ N

In analogy with the classes considered relating to the operator R(α, β, µ) in Sec-

tion 2, we consider here the classes relating to the linear operator L(a, c); namely,

TS∗
sL(α, β, a, c), TS∗

c L(α, β, a, c), TCsL(α, β, a, c), and TCcL(α, β, a, c) :

(i) A function f ∈ T is in TS∗
sL(α, β, a, c) , the class of starlike of order

α(0 ≤ α < 1) and type β(0 < β ≤ 1) with respect to symmetric points, if and only if

∣∣∣∣[ z(L(a, c)f(z))
′

L(a, c)f(z)− L(a, c)f(−z)
−1

]/[
z(L(a, c)f(z))

′

L(a, c)f(z)− L(a, c)f(−z)
+(1−2α)

]∣∣∣∣ < β, |z| < 1.

(ii) A function f ∈ T is in TS∗
c L(α, β, a, c) , the class of starlike of order α(0 ≤

α < 1) and type β(0 < β ≤ 1) with respect to conjugate points, if and only if

∣∣∣∣[ z(L(a, c)f(z))
′

L(a, c)f(z) + L(a, c)f(z)
−1

]/[
z(L(a, c)f(z))

′

L(a, c)f(z) + L(a, c)f(z)
+(1−2α)

]∣∣∣∣ < β, |z| < 1.
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A function f ∈ T is in TCsL(α, β, a, c) and TCcL(α, β, a, c), respectively, if and

only if zf ′ ∈ TS∗
sL(α, β, a, c) and zf ′ ∈ TS∗

c L(α, β, a, c).

Analogous to Theorems 2.1 to 2.20, we can now have theorems for these four classes

involving the operator L(a, c). In what follows, we only give results concerning coef-

ficient inequalities for each of these classes and the others can be stated analogously

which are omitted for the sake of brevity.

Theorem 3.1. A function f(z) = z−
∑∞

n=2 |an|zn is in class TS∗
sL(α, β, a, c) if and

only if

∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 3.2. A function f(z) = z−
∑∞

n=2 |an|zn is in class TCsL(α, β, a, c) if and

only if

∞∑
n=2

n{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 3.3. A function f(z) = z−
∑∞

n=2 |an|zn is in class TS∗
c L(α, β, a, c) if and

only if
∞∑

n=2

{n(1 + β) + 2(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 3.4. A function f(z) = z−
∑∞

n=2 |an|zn is in class TCcL(α, β, a, c) if and

only if

∞∑
n=2

n{n(1 + β) + 2(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.
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4. Classes of functions with symmetric conjugate points involving

Ruscheweyh derrivative and a linear operator.

In this section, we consider the classes TS∗
scR(α, β, µ) and TCscR(α, β, µ) in-

volving Ruscheweyh derivative R(α, β, µ) and the classes TS∗
scL(α, β, a, c), TCscL(α, β, a, c)

involving the linear operator L(α, β, a, c).

A function f ∈ T is in TS∗
scR(α, β, µ), the class of starlike functions of order α

(0 ≤ α < 1) and type β(0 < β ≤ 1) with respect to symmetric conjugate points, if

and only if

(4.1)

∣∣∣∣[ z(Dµf(z))
′

Dµf(z)−Dµf(−z)
− 1

]/[
z(Dµf(z))

′

Dµf(z)−Dµf(−z)
+ 1− 2α)

]∣∣∣∣ < β, |z| < 1.

Further, f ∈ T is in TCscR(α, β, µ), the class of convex function with symmetric

conjugate points, if and only if zf ′ ∈ TS∗
scR(α, β, µ).

Similarly, a function f ∈ T is in TS∗
scL(α, β, a, c), the class of starlike functions of

order α(0 ≤< 1) and type β(0 < β ≤ 1) with respect to symmetric conjugate points,

if and only if

(4.2)∣∣∣∣[ z(L(a, c)f(z))
′

L(a, c)f(z)− L(a, c)f(−z)
−1

]/[
z(L(a, c)f(z))

′

L(a, c)f(z)− L(a, c)f(−z)
+1−2α)

]∣∣∣∣ < β, |z| < 1.

Further, f ∈ T is in TCscL(α, β, a, c), the class of convex functions with symmetric

conjugate points, if and only if zf ′ ∈ TS∗
scL(α, β, a, c).

Given below, without the details of the proofs, are the coefficient inequalities for

above four classes whereas the results concerning distortion theorems, extreme points,

radii of starlikeness and convexity etc. for these classes can be formulated accordingly.
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Theorem 4.1. A function f(z) = z −
∑∞

n=2 |an|zn is in class TS∗
scR(α, β, µ) if and

only if

∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 4.2. A function f(z) = z −
∑∞

n=2 |an|zn is in class TCscR(α, β, µ) if and

only if

∞∑
n=2

n{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 4.3. A function f(z) = z−
∑∞

n=2 |an|zn is in class TCscL(α, β, a, c) if and

only if

∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.

Theorem 4.4. A function f(z) = z−
∑∞

n=2 |an|zn is in class TCscL(α, β, a, c) if and

only if

∞∑
n=2

n{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}(a)n−1

(c)n−1

|an| ≤ β|3− 4α| − 1.

This result is sharp.

Remark 1. If the definitions for the classes TS∗
sR(α, β, µ) given in (2.1) and TS∗

scR(α, β, µ)

given in (4.1) are compared, it appears that these classes are identical. This is further

justified by observing that the coefficient inequality for the class TS∗
scR(α, β, µ) ob-

tained in (4.1) is exactly the same as that for the class TS∗
sR(α, β, µ) obtained in The-

orem 2.1. Similar remark is also applied to the classes TCscR(α, β, µ), TS∗
scL(α, β, a, c)

and TCscL(α, β, a, c) .
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5. Proofs of the Results

Proof of Theorem 2.1. Let |z| = 1. Then

|z(Dµf(z))′ −Dµf(z) + Dµf(−z)| − β|z(Dµf(z))′ + (1− 2α)(Dµf(z)−Dµf(−z))|

=
∣∣∣z +

∞∑
n=2

(n− 1 + (−1)n)An(µ)|an|zn
∣∣∣− β

∣∣∣(3− 4α)z

−
∞∑

n=2

[n + (1− (−1)n)(1− 2α)]An(µ)|an|zn

≤ [1− β|3− 4α|] +
∞∑

n=2

[n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)]An(µ)|an| ≤ 0.

hence, by the maximum modulus theorem, f ∈ TS∗
SR(α, β, µ).

For the converse, assume that∣∣∣∣[ z(Dµf(z))′

Dµf(z)−Dµf(−z)
− 1

]/[
z(Dµf(z))′

Dµf(z)−Dµf(−z)
+ (1− 2α)

]∣∣∣∣ < β.

Since |Re(z)| ≤ |z|, for all z, we have

Re

{
z +

∑∞
n=2(n− 1 + (−1)n)An(µ)|an|zn

(3− 4α)z −
∑∞

n=2[n + (1− 2α)(1− (−1)n)]An(µ)|an|zn

}
< β.

Choose values of z on the real axis so that z(Dµf(z))′

Dµf(z)−Dµf(−z)
is real and then let z → 1,

through real values, we obtain

∞∑
n=2

{n(β + 1) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| − [β|3− 4α| − 1] ≤ 0,

which gives the required condition.
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Finally, the function

f(z) = z −
∞∑

n=2

(β|3− 4α| − 1)

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)
zn

is an extremal function for the inequality. 2

Proof of Theorem 2.2. We note from (1.1) and (2.2) that

(2.2.4) r − r2

∞∑
n=2

|an| ≤ |f(z)| ≤ r + r2

∞∑
n=2

|an|,

(2.2.5) 1− r
∞∑

n=2

n|an| ≤ |f ′(z)| ≤ 1 + r

∞∑
n=2

n|an|

and

(2.2.6) r − r2

∞∑
n=2

An(µ)|an| ≤ |Dµf(z)| ≤ r + r2

∞∑
n=2

An(µ)|an|.

By Theorem 2.1, we have

∞∑
n=2

|an| ≤ β|3− 4α| − 1

2(1 + β)(1 + µ)
,

∞∑
n=2

n|an| ≤ β|3− 4α| − 1

(1 + β)(1 + µ)

and
∞∑

n=2

An(µ)|an| ≤
β|3− 4α| − 1

2(1 + β)

Using these inequalities in (2.2.4), (2.2.5) and (2.2.6), respectively, the results (2.2.1),

(2.2.2) and (2.2.3) are established. 2

Proof of Theorem 2.3. The proof follows directly by appealing to Theorem 2.1. In

fact, f and g being in TS∗
sR(α, β, µ), we have

(2.3.1)
∞∑

n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an| ≤ [β|3− 4α| − 1]
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and

(2.3.2)
∞∑

n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|bn| ≤ [β|3− 4α| − 1].

It is sufficient, for h to be a member of TS∗
sR(α, β, µ), to show

1

2

∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)|an + bn| ≤ [β|3− 4α| − 1].

which follows immediately by the use of (2.3.1) and (2.3.2). 2

Proof of Theorem 2.4. Let

f(z) =
∞∑

n=1

λnfn(z)

= z −
∞∑

n=2

(β|3− 4α| − 1)λn

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)
zn,

= z −
∞∑

n=2

tnz
n.

Then
∞∑

n=2

{
[n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)]An(µ)

β|3− 4α| − 1

}
tn

=
∞∑

n=2

λn = 1− λ1 ≤ 1

Thus, by Theorem 2.1, f ∈ TS∗
sR(α, β, µ) .

Conversely, suppose f ∈ TS∗
sR(α, β, µ). Again by Theorem 2.1, we have

|an| ≤
β|3− 4α| − 1

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)
, n = 2, 3..... .

Setting

λn =
{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}An(µ)

(β|3− 4α| − 1)
|an|, n = 2, 3..... .

and

λ1 = 1−
∞∑

n=2

λn,
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we have

f(z) =
∞∑

n=1

λnfn(z),

which completes the proof. 2

Proof of Theorem 2.5. Noting that∣∣∣ zf ′(z)

f(z)− f(−z)
− 1

∣∣∣ ≤ |z|+
∑∞

n=2[n− 1 + (−1)n]|an|z|n

2|z| −
∑∞

n=2[1 + (−1)n]|an||z|n

we find that | zf ′(z)
f(z)−f(−z)

| < 1 for |z| < 1 if

∞∑
n=2

n|an||z|n−1 < 1.

Hence f is starlike if

|z| ≤
{
{n(1 + β) + [1− (−1)n][β(1− 2α)− 1]}An(µ)

n(β|3− 4α| − 1)

} 1
n−1

, n = 2, 3.....

which completes the proof. 2

Proofs of Theorem 2.6 to 2.10. Using the fact that f ∈ T is in TCsR(α, β, µ) if

and only if zf ′ ∈ TS∗
sR(α, β, µ) and the results proved for the class TS∗

sR(α, β, µ) in

Theorem 2.1 to 2.5, the proofs follow. 2

Proofs of Theorem 2.11 to 2.20 Using arguments similar to those for Theorems 2.1

to 2.10, the proofs can be derived. 2

Proofs of Theorems 3.1 to 3.4 The coefficient inequality in these theorems can be

derived by using the arguments similar to those of Theorems 2.1, 2.6, 2.11 and 2.16. 2
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