AN UPPER BOUND FOR THE RAMSEY NUMBER $r(C_6, K_9)$

ALRHAYYEL A. A. M. $^{(1)}$, BATAINEH M. S. A. $^{(2)}$ and ALZAALIG A. M. N. $^{(3)}$

ABSTRACT: Let C_m denote a cycle of length m and K_n a complete graph of order n. In this paper we establish an upper bound for the Ramsey number of $r(C_6, K_9)$ by proving that $41 \le r(C_6, K_9) \le 46$.

1. INTRODUCTION

All graphs considered in this paper are undirected and simple. C_m , P_m , K_m and S_m stand for cycle, path, complete, and star graphs on m vertices, respectively. The open neighborhood of a vertex u is the set of all vertices of G that are adjacent to u, denoted by N(u) and the closed neighborhood of u is $N[u] = \{u\} \cup N(u)$. The minimum degree of all vertices in G is denoted by $\delta(G)$. If $V_1 \subset V(G)$ and V_1 is a nonempty set, the subgraph of G whose vertex set is V_1 and whose edge set is the set of these edges of G that have both ends in V_1 is called the subgraph of G induced by V_1 , denoted by $V_1 >_G \text{ or } G[V_1]$. If $V_1, V_2 \subseteq V(G)$, we use $E(V_1, V_2)$ to denote the set of the edges between V_1 and V_2 . The set $A \subseteq V(G)$ is called an independent set if any two vertices of G are non adjacent. The independence number of a graph G is the order of the largest independent set, and is denoted by $\alpha(G)$.

2000 Mathematics Subject Classification: Primary 05C38; secondary 05 C35

Keywords: Ramsey Number; Cycle Graph; Complete Graph

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received on: March 27, 2011 Accepted on: December 1, 2011

The cycle-complete graph Ramsey number $r(C_n, K_m)$ is the smallest integer N such that every graph of order N contain a cycle C_n on n vertices or \check{G} contains the complete graph K_m , where \check{G} is the complement of G. Chartrand and Schuster [5] proved For all n > 3, $r(C_n, K_3) = 2n - 1$. Bondy and Erdös [3] proved that For all $n \ge m^2 - 2$, $r(C_n, K_m) = (n-1)(m-1) + 1$. In 1978, Erdös, Faudree, Roussean and Schelp [6] conjectured the following.

$$r(C_n, K_m) = (n-1)(m-1) + 1$$
 for all $n \ge m \ge 3$, and $(n, m) \ne (3,3)$.

The conjecture was confirmed for n=3, 4, 5, 6 and 7 (see [15], [4], [13], and [16]). Nikiforov [11] proved the conjecture for all $n \ge 4m^2 + 2$, $m \ge 3$. In related work, Radziszowski and Tse [12] showed that $r(C_4, K_7) = 22$ and $r(C_4, K_8) = 26$. In [10] Jayawardene and Rousseau proved that $r(C_5, K_6) = 21$. In [14] Schiermeyer proved that $r(C_5, K_7) = 25$. In [2] and [9] Bani abedalruhman and Jaradat proved that $r(C_7, K_7) = 37$ and $r(C_8, K_7) = 43$. In [7] Jaradat and Alzaleq proved that $r(C_8, K_8) = 50$. In 2009, Yaojun Chen, Edwin Cheng, and Ran Xu [17] proved the following theorem.

Theorem 1.1. $r(C_6, K_8) = 36$.

2. The Main Results

In this paper we establish an upper bound for the Ramsey number of $r(C_6, K_9)$ by proving that $41 \le r(C_6, K_9) \le 46$. It worth mentioning that, in proving our theorem, we follow the same proof that used in [8] by jaradat and Alzaleq. Our proof consists of a series of seven lemmas.

Lemma 2.1. Let G be a graph of order 46 that contains neither C_6 nor an independent set of 9-elements. Then $\delta(G) \ge 10$.

Proof. Suppose not, that is, G contains a vertex, say u of degree less than 10. Then $|V(G)-N[u]| \ge 46-10=36$. By Theorem 1.1, $r(C_6,K_8)=36$, as a result G-N[u] has an independent set consisting of 8 vertices. This set together with the vertex u is an independent set consisting of 9-vertices. So we have $\alpha(G) \ge 9$, and this contradicts the fact that $\alpha(G) < 9$.

In the following five lemmas we assume that G is a graph of order 46 that contains no cycle of length 6 as a subgraph with minimum degree $\delta(G) \ge 10$ and $\alpha(G) < 9$.

Lemma 2.2. If G contains $K_5 - P_3$, then $|V(G)| \ge 55$.

Proof. Let $U = \{u_1, u_2, u_3, u_4, u_5\}$ be the vertex set of $K_5 - P_3$ where the induced subgraph on $\{u_1, u_2, u_3, u_4\}$ is isomorphic to K_4 . Without loss of generality, assume that $u_1u_5, u_2u_5 \in E(G)$ Define R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 5$. Since $\delta(G) \ge 10$, $|U_i| \ge 6$ for all $1 \le i \le 5$. Since G contains no G_6 , we have $U_i \cap U_j = \emptyset$ for all $1 \le i < j \le 5$ except possibly for i = 1 and j = 2. $E(U_i, U_j) = \emptyset$ for all $1 \le i < j \le 5$, and $N_R(U_i) \cap N_R(U_j) = \emptyset$ for all $1 \le i < j \le 5$. From above, we have

 $\sum_{i=3}^{i=5} \left| U_i \cup N_R(U_i) \cup \{u_i\} \right| \ge \sum_{i=3}^{i=5} (7+3+1) = 33. \text{ Since } G \text{ contains no cycle of order 6, we}$ $\text{have } U_1 \cap N_R(x) = U_2 \cap N_R(y) = \phi \text{ for all } x \in U_2 \text{ and } y \in U_1.$

Let $A = (U_1 \cup N_R(U_1) \cup \{u_1\}) \cup (U_2 \cup N_R(U_2) \cup \{u_2\})$. It suffices to show that $|A| \ge 22$.

Now we consider two cases.

Case1.
$$U_1 - U_2 \neq \phi$$
 and $U_2 - U_1 \neq \phi$. Then
$$|A| \ge |(U_1 - U_2 \cup N_R(U_1 - U_2) \cup \{u_1\}) \cup (U_2 - U_1 \cup N_R(U_2 - U_1) \cup \{u_2\})|$$

$$= |(U_1 - U_2) \cup N_R(U_1 - U_2) \cup \{u_1\}| + |(U_2 - U_1) \cup N_R(U_2 - U_1) \cup \{u_2\}|$$

$$\ge 11 + 11 = 22.$$

Case2. $U_1 - U_2 = \phi$ or $U_2 - U_1 = \phi$. Then $|U_1 \cap U_2| \ge 6$. Since G contains no cycle of length G, we have for any G and G are G and G and G and G are G and G and G are G and G are G are G and G are G are G are G are G and G are G and G are G and G are G a

$$\sum_{x \in U_1 \cap U_2} |N_G(x) - \{u_1, u_2\}| \ge 8|U_1 \cap U_2| \ge 48.$$

Lemma 2.3. If G contains K_4 , then G contains $K_5 - P_3$.

Proof. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of K_4 . Define R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 4$. Since $\delta(G) \ge 10$, $\left|U_i\right| \ge 7$ for all $1 \le i \le 4$. Now we consider the following cases.

Case 1. $U_i \cap U_j \neq \phi$ for some $1 \le i < j \le 4$.

Let $w \in U_i \cap U_j$ where $1 \le i < j \le 4$. Then G Contains $K_5 - P_3$, as required.

Case 2. $U_i \cap U_j = \phi$ for all $1 \le i < j \le 4$. Since G contains no cycle of length 6, we have for all $1 \le i < j \le 4$, $E(U_i, U_j) = \phi$, $N_R(U_i) \cap N_R(U_j) = \phi$ and $E(N_R(U_i), N_R(U_j)) = \phi$. If $\alpha(< U_1 >_G) \ge 3$ and $< U_i >_G$ are not complete for all i = 2, 3 and 4, then we have $\alpha(G) \ge 9$. So we need to consider that at least one of $< U_i >_G$ is complete where i = 2, 3 and 4, or $\alpha(< U_1 >_G) \le 2$. Now, if one of $< U_i >_G$

for i=2, 3 and 4, is complete, say, $< U_2>_G$ is complete, then $< U_2>_G$ contains K_5 because $|U_2|\geq 7$. So G contains K_5-P_3 , and we are done. If $\alpha(< U_1>_G)\leq 2$. We know that $\delta(G)\geq 10$, and $|U_1|\geq 7$, since $r(K_3,K_4-e)=7$ and $\alpha(< U_1>_G)\leq 2$ then $< U_1>_G$ contains K_4-e , and so $< U_1\cup \{u_1\}>_G$ contains K_5-e , and so G contains K_5-P_3 , as required.

Lemma 2.4. If G contains $K_1 + p_4$, then G contains K_4 .

Proof. Let $U=\{u_1,u_2,u_3,u_4,u_5\}$ be the vertex set of K_1+p_4 , where $p_4=u_2u_3u_4u_5$ is a path and $V(P_4)\subseteq N(u_1)$. Define R=G-U and $U_i=N(u_i)\cap V(R)$ for each $1\leq i\leq 5$. Observe that $|U_i|\geq 6$ for all $1\leq i\leq 5$ because $\delta(G)\geq 10$. Since G contains no cycle of order G we have, $U_i\cap U_j=\phi$, $E(U_i,U_j)=\phi$, $N_R(U_i)\cap N_R(U_j)=\phi$ and $E(N_R(U_i),N_R(U_j))=\phi$ for all $1\leq i\leq 5$. If $\alpha(< U_5\cup N_R(U_5)>_G)\geq 3$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$. If $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete for all $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, or $1\leq i\leq 5$ and $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, or $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$ and $1\leq i\leq 5$ are not complete, say, $1\leq i\leq 5$

Lemma 2.5. If G contains $K_1 + p_3$, then G contains $K_1 + p_4$ or K_4 .

Proof. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of $K_1 + p_3$, where $p_3 = u_2 u_3 u_4$ is a path and $V(P_3) \subseteq N(u_1)$. If $u_2 u_4 \in E(G)$, then $< U >_G$ is K_4 and hence we are done. So we

need to consider the case in which $u_2u_4 \notin E(G)$. We define R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 4$. Since $\delta(G) \ge 10$, $|U_i| \ge 7$ for i = 1 and i = 3, $|U_i| \ge 8$ for i = 2 and i = 4. Now we consider the following cases:

Case 1. $U_i \cap U_j = \phi$ for all $2 \le i < j \le 4$.

Since G contains no cycle of order 6 we have, $U_i \cap U_j = \emptyset$, $E(U_i, U_j) = \emptyset$ and $N_R(U_i) \cap N_R(U_j) = \emptyset$ for all $2 \le i < j \le 4$. If $\alpha(< U_i >_G) \ge 3$ for all i = 2, 3 and 4, then we have $\alpha(G) \ge 9$. So we need to consider the case in which $\alpha(< U_i >_G) \le 2$ for at least one i, where i = 2, 3 and 4. Say i = 2. We know that $\delta(G) \ge 10$ and $|U_2| \ge 6$, since $r(K_3, K_3) = 6$ and $\alpha(< U_2 >_G) \le 2$ then $< U_2 >_G$ contains K_3 , and so $< U_2 \cup \{u_2\} >_G$ contains K_4 , and so G contains K_4 , as required.

Case 2. $U_1 \cap U_2 \neq \emptyset$, then G would have $K_1 + p_4$, as required.

Case 3. $U_1 \cap U_3 \neq \emptyset$.

Let $u_5 \in U_1 \cap U_3$. Now, if $u_2u_5 \in E(G)$, then G contains K_4 , hence we are done. So we assume that $u_2u_5 \notin E(G)$. Define $U' = \{u_1, u_2, u_3, u_4, u_5\}$, R' = G - U' and $U'_i = N(u_i) \cap V(R')$ for each $1 \le i \le 5$. Since G contains no cycle of length6, we have, $U'_2 \cap U'_5 = \phi$, $U'_2 \cap U'_4 = \phi$, $U'_4 \cap U'_5 = \phi$, $E(U'_2, U'_5) = \phi$, $E(U'_2, U'_4) = \phi$ and $E(U'_4, U'_5) = \phi$. If $\alpha(< U'_i >_G) \ge 3$ for all i = 2, 4 and i = 2, 4 and i = 3, 4 for at least one i = 3, 4 and i = 3,

Case 4. $U_1 \cap U_4 \neq \emptyset$, then G would have $K_1 + p_4$, as required.

Case 5. $U_2 \cap U_3 \neq \emptyset$, then G would have $K_1 + P_4$, as required.

Case 6. $U_3 \cap U_4 \neq \emptyset$, then G would have $K_1 + p_4$, as required.

Case 7. $U_2 \cap U_4 \neq \phi$.

Let $u_5 \in U_2 \cap U_4$. Now, if $u_5u_3 \in E(G)$, then G contains $K_1 + p_4$ where $K_1 = u_3$ and $p_4 = u_5u_4u_1u_2$, hence we are done. So we may assume that $u_5u_3 \notin E(G)$. Define $U^{'} = \{u_1, u_2, u_3, u_4, u_5\}$, $R^{'} = G - U^{'}$ and $U^{'}_i = N(u_i) \cap V(R^{'})$ for each $1 \le i \le 5$. Since G contains no cycle of length G, we have, $U^{'}_2 \cap U^{'}_3 = \phi$, $U^{'}_2 \cap U^{'}_5 = \phi$, $U^{'}_3 \cap U^{'}_5 = \phi$, $E(U^{'}_2, U^{'}_3) = \phi$, $E(U^{'}_2, U^{'}_5) = \phi$ and $E(U^{'}_3, U^{'}_5) = \phi$. If $\alpha(\langle U^{'}_i \rangle_G) \ge 3$ for all i = 2, 3 and i = 2, 3 and

Lemma 2.6. If G contains K_3 , then G contains $K_1 + p_3$ or K_4 .

Proof. Let $U = \{u_1, u_2, u_3\}$ be the vertex set of K_3 . Define R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 3$. Since $\delta(G) \ge 10$, $\left| U_i \right| \ge 8$ for all $1 \le i \le 3$. Now we consider the following cases:

Case 1. $U_i \cap U_j \neq \emptyset$ for some $1 \le i < j \le 3$, then G contains $K_1 + p_3$, as required.

Case 2. $U_i \cap U_j = \emptyset$ for all $1 \le i < j \le 3$. Let $y_i \in U_i$ $1 \le i \le 3$. Let $Y = \{y_1, y_2, y_3\}$. Define $R' = G - (Y \cup U)$ and $Y_i = N(y_i) \cap U(R')$. Then $|Y_i| \ge 8$ for all $1 \le i \le 3$.

Since G contains no cycle of length6, we have, $Y_i \cap Y_j = \emptyset$ and $E(Y_i, Y_j) = \emptyset$ for all $1 \le i < j \le 3$. If $\alpha(<Y_i>_G) \ge 3$ for all $1 \le i \le 3$, then we have $\alpha(G) \ge 9$. So we need to consider the case in which $\alpha(<Y_i>_G) \le 2$ for at least one i, where i=1, 2 and 3. We know that $|Y_i| \ge 8$, since $r(K_3, K_3) = 6$ we have $|Y_i| \ge 8$ contains $|Y_i| \ge 8$, since $|Y_i| \ge 8$ are quired.

Lemma 2.7. Let G be a graph of order 46 with $\delta(G) \ge 10$ and $\alpha(G) < 9$. Suppose that G does not have C_6 as a subgraph. Then G contains K_3 .

Proof. Suppose not, that is G contains no K_3 . Let $u \in V(G)$. Since $\delta(G) \ge 10$ then $|N(u)| \ge 10$. Since G contains no K_3 , then the induced subgraph $\langle N(u) \rangle_G$ is a null graph of order at least 10. Hence, $\alpha(G) \ge 10$. Contradiction with $\alpha(G) < 9$.

Theorem 2.1. $41 \le r(C_6, K_9) \le 46$.

Proof. We prove it by contradiction. Suppose that G is a graph of order 46 which contains neither C_6 nor a 9-elements independent set. Then by Lemma 2.1, $\delta(G) \ge 10$. By Lemma 2.7, G contains K_3 . Thus, by Lemma 2.6, 2.5, 2.4, 2.3 and 2.2, $|V(G)| \ge 55$, contradiction. Thus $r(C_6, K_9) \le 46$. To prove $r(C_6, K_9) \ge 41$. Let $H = 8K_5$ observe that $\alpha(H) = 8$ and does not contain a cycle of length 6 as a subgraph. Thus $r(C_6, K_9) \ge 41$, and hence $41 \le r(C_6, K_9) \le 46$. The proof is complete.

References

- [1] Alzaalig A. M., "On the Ramsey number of Graphs", M.Sc. Thesis, Yarmouk University, July, (2010).
- [2] Baniabedalruhman A. "On Ramsey Numbers for cycle-complete Graphs". M.Sc. Thesis, Yarmouk University, (2006).
- [3] Bondy J. A. and Erd s P., Ramsey Numbers for Cycles in Graphs, Journal of Combinatorial Theory, Series B, 14 (1973), 46-54.
- [4] Bollobás B., Jayawardene C. J., Yang Jian Sheng, Huang Yi Ru, Rousseau C. C, and Zhang Ke Min, On a Conjecture Involving Cycle-Complete Graph Ramsey Numbers, Australasian Journal of Combinatorics, 22 (2000), 63-71.
- [5] Chartrand G. and Schuster S., On the existence of specified cycles in complementary graphs, Bulletin of the American Mathematical Society, 77 (1971), 995-998.
- [6] Erd s P., FaudreeR.J., Rousseau C. C. and Schelp R. H., On Cycle-Complete Graph Ramsey Numbers, Journal of Graph Theory, 2 (1978), 53-64.
- [7] Jaradat M. and Alzaleq B., The cycle-complete graph Ramsey number $r(C_8, K_8)$,. SUT Journal of Mathematics, Vol. 43, No. 1 (2007), 85-98.
- [8] Jaradat M. and Alzaleq B., cycle-complete graph Ramsey number $r(C_6, K_8) \le 38$, SUT Journal of Mathematics, Vol. 44, No. 2 (2008), 257-263.
- [9] Jaradat M. and Baniabedalruhman, A. M., The cycle-complete graph Ramsey number $r(C_8, K_7)$, International Journal of Pure and Applied Mathematics, 41 (2007), 667-677.
- [10] Jayawardene C. J. and Rousseau C., the Ramsey numbers for a cycle of length five versus a complete graph of order six, Journal of Graph Theory, 35 (2000), 99-108.
- [11] Nikiforov V., The Cycle-Complete Graph Ramsey Numbers, Combinatorics, Probability and Computing,14 (2005), 349-370.
- [12] Radziszowski S. P. and Tse K.-K., A computational approach for the Ramsey number $\,r(C_4,K_n)\,$, J. Comb. Math. Comb. Comput., 42 (2002), 195-207.
- [13] Schiermeyer I., All Cycle-Complete Graph Ramsey Numbers $r(C_m, K_6)$, Journal of Graph Theory, 44 (2003), 251-260.
- [14] Schiermeyer I., All Cycle-Complete Graph Ramsey Numbers $r(C_5,K_7)$, Discussiones Mathematics Graph Theory 25 (2005), 129-139.

- [15] Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The Value of the Ramsey Number $r(C_n, K_4)$ is 3n-2 $(n \ge 4)$, Australasian Journal of Combinatorics, 20 (1999), 205-206.
- [16] Yaojun Chen, Edwin Cheng T. C. and Yunqing Zhang, The Ramsey Numbers $r(C_m, K_7)$ and $r(C_7, K_8)$, European Journal of Combinatorics, 29 (2008), 1337-1352.
- [17] Yaojun Chen, T.C. Edwin Cheng and Ran Xu, The Ramsey Number for a Cycle of Length Six versus a Clique of Order Eight, Discrete Applied Mathematics, 157 (2009), 8-12.
- (**Mohammad Bataineh**) Department of Mathematics, Yarmouk University, Irbid, Jordan *E-mail address*: bataineh71@hotmail.com
- (Ahmad Al-Rhayyel) Department of Mathematics, Yarmouk University, Irbid , Jordan E-mail address: Rhayyel@yu.edu.jo
- (Alzaalig A. M. N) Department of Mathematics, Yarmouk University, Irbid, Jordan