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EUCLIDEAN PARTIAL SEMIRINGS

P. V. SRINIVASA RAO

Abstract. The partial functions under disjoint-domain sums and functional com-

position is a partial semiring, an algebraic structure possessing a natural partial

ordering, an infinitary partial addition and a binary multiplication, subject to a set

of axioms. In this paper we study the Euclidean partial semirings.

1. Introduction

Partially defined infinitary operations occur in the contexts ranging from integra-

tion theory to programming language semantics. The study of pfn(D, D)(the set of

all partial functions of a set D to itself), Mfn(D, D)(the set of all multi functions of

a set D to itself) and Mset(D,D)(the set of all total functions of a set D to the set

of all finite multi sets of D) play an important role in the theory of computer science,

and to abstract these structures Manes and Benson[1] introduced the notion of sum

ordered partial semirings (so-rings). In this paper we introduced the notion of left

Euclidean norm and Dale norm on a partial semiring and we generalize the results of

Euclidean semirings studied by Golan[3] to partial semirings.
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2. Preliminaries

In this section we collect some important definitions, results and examples for our

use in this paper.

Definition 2.1. [5] A partial semiring is a quadruple (R, Σ, ·, 1), where (R, Σ) is

a partial monoid, (R, ·, 1) is an monoid with multiplicative operation · and unit 1,

and the additive and multiplicative structures obey the following distributive laws. If

Σ(xi : i ∈ I) is defined in R, then for all y in R, Σ(y · xi : i ∈ I) and Σ(xi · y : i ∈ I)

are defined and

y · [Σixi] = Σi(y · xi); [Σixi] · y = Σi(xi · y).

Definition 2.2. [2] Let R be a partial semiring. A subset N of R is said to be a

partial ideal of R if the following are satisfied

(1). if (xi : i ∈ I) is summable family in R and xi ∈ N for every i ∈ I then Σxi ∈ N ,

(2). if x ∈ N and r ∈ R then xr, rx ∈ N .

Remark 2.3. [2] The set of all partial ideals of a partial semiring is a complete

lattice, in which meet and join of a family

{Iα | α ∈ ∆}, ΣIα = {x ∈ R | x = Σαrαxαsα, xα ∈ I, rα, sα ∈ R}.

Example 2.4. [2] Consider the partial semiring pfn(D, D). Let a be a fixed element

in D. Then N = {f ∈ Pfn(D, D) | dom(f) ⊆ {a}} is a right partial ideal of

Pfn(D, D).

Definition 2.5. [2] Let N and P be partial ideals of a partial semiring R. Then we

define NP = {x ∈ R | x = Σiaibi for some ai ∈ N, bi ∈ P}.



EUCLIDEAN PARTIAL SEMIRINGS 159

3. Euclidean partial semirings

We denote the set of all right divisors of ′a′ in the partial monoid (R, ·) by RD(a).

i.e., RD(a) = {b ∈ R | a ∈ Rb} = {b ∈ R | Ra ⊆ Rb}. We denote the set

{b ∈ R | a · b = 1 = b · a} by U(R) and the set {a ∈ R | a · a = a} by I×(R).

Remark 3.1. If R is a partial semiring then

(i). b ∈ RD(a) if and only if RD(b) ⊆ RD(a),

(ii). U(R) ⊆ RD(1R) ⊆ RD(a).

Proof. (i). Suppose b ∈ RD(a). Then a ∈ Rb. Now for any x ∈ RD(b), Rb ⊆ Rx

and hence a ∈ Rx. ⇒ x ∈ RD(a). Hence RD(b) ⊆ RD(a).

Conversely suppose RD(b) ⊆ RD(a). Since b ∈ RD(b), b ∈ RD(a).

(ii). Let x ∈ U(R). Then ∃ y ∈ R 3 xy = 1 = yx ∈ Rx and hence x ∈ RD(1R). Now

let x ∈ RD(1R) then 1 ∈ Rx. ⇒ Rx = R. ⇒ a ∈ Rx and hence x ∈ RD(a). Hence

the remark. ¤

Definition 3.2. Let R be a partial semiring and a ∈ R. Then ‘a’ is said to be

irreducible from right if and only if it satisfy

(i). a 6∈ U(R), and

(ii). RD(a) = U(R)
⋃{a}.

In the partial semirings N and pfn(D, D), every nonzero element is irreducible

from right.

Example 3.3. Consider the partial semiring MatD(R), the set of D × D matrices

over R. Take D = {a, b} and R = N. Then the only elements of MatD(R) having

determinant 1 which are irreducible from right are [aij] and [bij] where

aij =





0, if i = b and j = a,

1, otherwise.
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and

bij =





0, if i = a and j = b,

1, otherwise.

Definition 3.4. Let A be a nonempty subset of a partial semiring R. Then the set of

common right divisors of A is CRD(A) =
⋂{RD(a) | a ∈ A} = {b ∈ R | RA ⊆ Rb}.

Definition 3.5. Let R be a partial semiring. Then an element b ∈ CRD(A) is said

to be a greatest common right divisor of A if and only if CRD(A) = RD(b).

Theorem 3.6. If A is a nonempty subset of a partial semiring R then an element b

of R is a greatest common right divisor of A if and only if the following conditions

are satisfied:

(i). RA ⊆ Rb,

(ii). if c ∈ R satisfies RA ⊆ Rc then Rb ⊆ Rc.

Proof. Suppose b is a greatest common right divisor of A.

(i). Since b ∈ CRD(A), b ∈ RD(a) ∀a ∈ A. ⇒ Ra ⊆ Rb ∀a ∈ A and hence RA ⊆ Rb.

(ii). Suppose c ∈ R 3 RA ⊆ Rc. Then c ∈ CRD(A) = RD(b) and hence Rb ⊆ Rc.

Conversely suppose that the conditions (i) and (ii) are satisfied. By (i),

b ∈ CRD(A). Now for any x ∈ RD(b), b ∈ Rx. ⇒ b = rx and b ∈ CRD(A).

⇒ b = rx ∈ RD(a) ∀a ∈ A. ⇒ a ∈ Rrx ⊆ Rx ∀a ∈ A. ⇒ x ∈ RD(a) ∀a ∈ A.

⇒ x ∈ CRD(A) and hence RD(b) ⊆ CRD(A). Now for any c ∈ CRD(A), RA ⊆ Rc.

⇒ Rb ⊆ Rc (by (ii)). ⇒ c ∈ RD(b) and hence CRD(A) ⊆ RD(b). Hence b is a

greatest common right divisor of A. ¤

Corollary 3.7. If every left partial ideal of a partial semiring R is principal then

every nonempty subset of R has a greatest common right divisor.
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Proof. Let A be a nonempty subset of R. Since RA is a left partial ideal of R, we

have RA = Rb for some b ∈ R. Now let c ∈ R 3 RA ⊆ Rc. Then Rb ⊆ Rc. Then by

theorem 3.6, b is the greatest common right divisor of A. ¤

Theorem 3.8. Let a, b and c be elements of a partial semiring R. If d is a greatest

common right divisor of {a, b} and e is a greatest common right divisor of {c, d} then

e is a greatest common right divisor of {a, b, c}.

Proof. By definition, RD(e) = RD(d)
⋂

RD(c) = RD(a)
⋂

RD(b)
⋂

Rd(c)

= CRD({a, b, c}). Hence the theorem. ¤

Remark 3.9. If a and b are elements of a partial semiring R and (a, b) is a summable

family in R then CRD({a, b}) ⊆ CRD({a + b, b}).

Proof. For any x ∈ CRD({a, b}) = RD(a)
⋂

RD(b), a ∈ Rx and b ∈ Rx.

⇒ a + b ∈ Rx and hence x ∈ RD(a + b)
⋂

RD(b) = CRD({a + b, b}). Hence the

remark. ¤

Theorem 3.10. Let R be a partial semiring. Then the following are equivalent

(i). CRD({a, b}) = CRD({a + b, b}) for all a, b ∈ R 3 a + b exists in R,

(ii). every principal left partial ideal of R is subtractive.

Proof. (i)⇒(ii): Suppose CRD({a, b}) = CRD({a + b, b}) for all a, b ∈ R 3 a + b

exists in R. Let Rd be a principal left partial ideal of R and let x, x + y ∈ Rd. Then

d ∈ RD(x) and d ∈ RD(x + y). ⇒ d ∈ CRD({x + y, x}) = CRD{x, y}.
⇒ d ∈ RD(y) and hence y ∈ Rd. Hence Rd is subtractive.

(ii)⇒(i): Suppose every principal left partial ideal of R is subtractive. Let

a, b ∈ R 3 a + b exists in R and let x ∈ CRD({a + b, b}). Then x ∈ RD(a + b) and

x ∈ RD(b). ⇒ a + b ∈ Rx and b ∈ Rx. ⇒ a ∈ Rx and hence

x ∈ RD(a)
⋂

RD(b) = CRD({a, b}). Hence CRD({a, b}) = CRD({a + b, b}) for all

a, b ∈ R 3 a + b exists in R. ¤



162 P. V. SRINIVASA RAO

Definition 3.11. A partial semiring R is said to be PLIS-semiring if it satisfies any

one of the following equivalent conditions:

(i). CRD({a, b}) = CRD({a + b, b}) for all a, b ∈ R 3 a + b exists in R,

(ii). every principal left partial ideal of R is subtractive.

Note that the partial semirings N,R are PLIS-semirings. The following is an

example of a partial semiring which is not PLIS-semiring.

Example 3.12. Let S = (R+ × {0}) ⋃
({0} × R+). Define Σ on S by

Σxi =





xj, if xi = 0 ∀i 6= j, for some j,

(a + a′, 0), if xi = (a, 0), xj = (a′, 0) & xk = 0 ∀ k 6= i, j

(0, b + b′), if xi = (0, b) or (b, 0), xj = (0, b′) & xk = 0 ∀ k 6= i, j

undefined, otherwise.

and ‘·, defined on R by (a, 0)·(a′, 0) = (aa′, 0) = (0, a)·(a′, 0) and (0, b)·(o, b′) = (0, bb′)

= (b, 0) · (0, b′) ∀a, a′, b, b′ ∈ R+. Then R = S × N is a partial semiring. Now

H = {0} × R+ × {0} is a principal left partial ideal of R. Since (0, b, 0) ∈ H,

(b, 0, 0) + (0, b, 0) = (0, 2b, 0) ∈ H. But (b, 0, 0) 6∈ H. Hence H is not subtractive.

Hence R is not a PLIS-semiring.

Definition 3.13. Let R be a partial semiring. Then a mapping δ : R \ {0} → N is

said to be a left Euclidean norm on R if it satisfies the following condition:

If a and b are elements of R with b 6= 0 and δ(a) ≥ δ(b) then ∃ q, r ∈ R 3 a = qb+r

with r = 0 or δ(r) < δ(b).

Definition 3.14. A partial semiring R is said to be left Euclidean if and only if there

exists a left Euclidean norm defined on R.
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The partial semiring N is left Euclidean if we define the left Euclidean norm δ by

δ : n 7→ n or δ : n 7→ n2.

Remark 3.15. If δ is a left Euclidean norm on a partial semiring R, then we can

extend δ to δ′ from R to N
⋃{∞} by defining δ′(0) = ∞ and δ′(a) = δ(a) ∀a ∈ R\{0}.

Conversely if δ′ : R → N
⋃{∞} is a function satisfying the condition: for any a, b ∈ R

3 δ′(a) ≥ δ′(b) ∃ q, r ∈ R 3 a = qb+ r with r = 0 or δ′(r) < δ′(b), then its restriction

is a left Euclidean norm on R.

Theorem 3.16. If δ is a left Euclidean norm defined on a partial semiring R then

there exists a left Euclidean norm δ∗ satisfying

(i). δ∗(a) ≤ δ(a) ∀a ∈ R \ {0}, and

(ii). δ∗(b) ≤ δ(rb) ∀b, r ∈ R 3 rb 6= 0.

Proof. Define δ∗ : R \ {0} → N by δ∗(a) =min{δ(ra) | ra 6= 0} ∀0 6= a ∈ R. Then

δ∗(a) ≤ δ(a) ∀a ∈ R \ {0}, and δ∗(b) ≤ δ(rb) ∀b, r ∈ R 3 rb 6= 0.

Now we prove that δ∗ is a left Euclidean norm:

Let a, b ∈ R \ {0} 3 δ∗(a) ≥ δ∗(b) =min{δ(rb) | rb 6= 0}. Then ∃ s ∈ R 3 δ∗(b) =

δ(sb). By (i), δ(a) ≥ δ∗(a) ≥ δ∗(b) = δ(sb). ⇒ ∃ q, r ∈ R 3 a = q(sb) + r where

r = 0 or δ(r) < δ(sb). Suppose δ(r) < δ(sb). Then δ∗(r) ≤ δ(r) < δ(sb) = δ∗(b). ⇒
∃ qs, r ∈ R 3 a = (qs)b + r where r = 0 or δ∗(r) < δ∗(b). Hence the theorem. ¤

Definition 3.17. Let (R, δ) be a left Euclidean partial semiring. Then δ is said to

be submultiplicative norm if it satisfies the following condition:

δ(b) ≤ δ(rb) ∀ 0 6= b ∈ R, r ∈ R 3 rb 6= 0.

Definition 3.18. A left Euclidean norm δ defined on a partial semiring R is said to

be multiplicative norm if and only if δ(ab) = δ(a)δ(b) ∀a, b ∈ R 3 ab 6= 0.

In the left Euclidean partial semiring N, δ defined by δ : n 7→ n or δ : n 7→ n2 is a

submultiplicative and multiplicative norm.
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Theorem 3.19. Let R be a partial semiring and δ : R\{0} → N be a submultiplicative

Euclidean norm. If Mδ = {r ∈ R | δ(r) ≤ δ(a)∀0 6= a ∈ R} is a minimal element of

im(δ) then

(i). 1R ∈ Mδ,

(ii). if a ∈ Mδ then ∃ q ∈ R 3 1 = qa,

(iii). Mδ

⋂
I×(R) = {1R},

(iv). U(R) ⊆ Mδ, with equality holding if R is commutative.

Proof. (i). Since δ is submultiplicative norm, δ(1R) ≤ δ(a) ∀0 6= a ∈ R and hence

1R ∈ Mδ.

(ii). Let a ∈ Mδ. Then δ(a) ≤ δ(b) ∀0 6= b ∈ R. ⇒ δ(a) ≤ δ(1R). ⇒ ∃ q, r ∈ R 3
1R = qa + r with r = 0 or δ(r) < δ(a). Since a ∈ Mδ, δ(a) ≤ δ(r) for 0 6= r ∈ R and

hence r = 0. Hence 1R = qa.

(iii). Let c ∈ Mδ

⋂
I×(R). Then c ∈ Mδ and c2 = c. By (ii), ∃ q ∈ R 3 1R = qc =

qc2 = 1Rc = c. Hence Mδ

⋂
I×(R) = {1R}.

(iv). Let a ∈ U(R). Then ∃ b ∈ R 3 1R = ba. Since δ is submultiplicative norm,

δ(a) ≤ δ(ba) = δ(1R) and by (i), δ(1R) ≤ δ(a). ⇒ δ(a) = δ(1R) ≤ δ(b) ∀0 6= b ∈ R

and hence a ∈ Mδ.

Suppose R is commutative and let a ∈ Mδ. By (ii), ∃ q ∈ R 3 1 = qa = aq and

hence a ∈ U(R). Hence Mδ = U(R). ¤

Theorem 3.20. If γ : R → S is an epimorphism of partial semirings R, S and

δ is a left Euclidean norm on R then ∃ a left Euclidean norm δ′ on S defined by

δ′(c) =min{δ(a) | a ∈ γ−1(c)} ∀0 6= c ∈ S.

Proof. Define δ′ : S \ {0} → N by δ′(c) =min{δ(a) | a ∈ γ−1(c)} ∀0 6= c ∈ S. Let

c, d ∈ S 3 d 6= 0 with δ′(c) ≥ δ′(d). ⇒ ∃ a, 0 6= b ∈ R 3 γ(a) = c, γ(b) = d where b is

such that δ(b) =min{δ(y) | y ∈ γ−1(d)}. Since δ′(c) ≥ δ′(d), min{δ(x) | x ∈ γ−1(c)}
≥ min{δ(y) | y ∈ γ−1(d)}. ⇒ δ(a) ≥ δ(b). ⇒ ∃ q, r ∈ R 3 a = qb + r where
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r = 0 or δ(r) < δ(b). ⇒ c = γ(a) = γ(qb + r) = γ(q)d + γ(r) where γ(r) = 0 or

δ′(γ(r)) =min{δ(a) | a ∈ γ−1(γ(r))} ≤ δ(r) < δ(b) = δ′(d). Hence δ′ is a Euclidean

norm on S. ¤

Theorem 3.21. If R is a left Euclidean partial semiring then every subtractive left

partial ideal of R is principal.

Proof. Let δ be the Euclidean norm defined on R and I be a subtractive left partial

ideal of R. Take C = {δ(a) | a ∈ I}. Then by Zorn’s lemma, C has a minimal element.

Let it be δ(b). Suppose I 6= Rb. Then ∃ a ∈ I 3 a 6∈ Rb. ⇒ δ(b) ≤ δ(a) (by the

minimality of δ(b)). ⇒ ∃ q, r ∈ R 3 a = qb + r with r = 0 or δ(r) < δ(b). Suppose

r = 0 then a = qb ∈ Rb, a contradiction. ⇒ δ(r) < δ(b). Since qb + r = a ∈ I and

b ∈ I, we have r ∈ I. ⇒ r ∈ I and δ(r) < δ(b), a contradiction. Hence I = Rb is a

principal left partial ideal of R. ¤

Theorem 3.22. The following conditions on a left Euclidean partial semiring are

equivalent:

(i). R is a PLIS-semiring,

(ii). there exists a left Euclidean norm δ defined on R satisfying the condition that if

a = qb + r for r ∈ R \ {0} and δ(r) < δ(b) then a 6∈ Rb.

Proof. (i)⇒(ii): Suppose R is a PLIS-semiring. Since R is left Euclidean partial

semiring, ∃ a left Euclidean norm δ on R. By theorem 3.16, ∃ a left Euclidean norm

δ∗ defined on R 3 δ∗(b) ≤ δ(rb) ∀r, b ∈ R 3 rb 6= 0. Now suppose a = qb + r ∈ Rb

for r ∈ R \ {0} and δ∗(r) < δ∗(b). Since R is PLIS-semiring, Rb is subtractive. ⇒
r ∈ Rb. ⇒ r = cb for some c ∈ R. ⇒ δ∗(r) = δ∗(cb) = δ(cb) ≥ δ∗(b), a contradiction.

Hence a 6∈ Rb.

(ii)⇒(i): Suppose the condition (ii) is valid and let t ∈ CRD({a+b, b}). ⇒ a+b = dt

and b = et for some d, e ∈ R. ⇒ a + et = dt ∈ Rt. Then by (ii), δ(r) ≥ δ(t)
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∀r ∈ R \ {0}. ⇒ δ(a) ≥ δ(t). ⇒ ∃ q, r ∈ R 3 a = qt + r where r = 0 or δ(r) < δ(t).

⇒ dt = a + b = qt + r + et. Suppose δ(r) < δ(t). Then by (ii), dt 6∈ Rt, a

contradiction. Hence r = 0. ⇒ a = qt. ⇒ t ∈ RD(a)
⋂

RD(b) = CRD({a, b}).
Hence R is PLIS-semiring. ¤

Theorem 3.23. If R is a left Euclidean PLIS-semiring then any nonempty finite

subset A of R has a greatest common right divisor.

Proof. By theorem 3.8, it is enough to prove that ∃ a greatest common right divisor

for any a, b in A. For a = b = 0, the greatest common right divisor is 0. Suppose

b 6= 0. By theorem 3.22, ∃ a left Euclidean norm δ on R 3 if a = qb+r for r ∈ R\{0}
and δ(r) < δ(b) then a 6∈ Rb. Since δ is a left Euclidean norm on R, ∃ q1, r1 ∈ R 3
a = q1b+r1 where r1 = 0 or δ(r1) < δ(b). If r1 = 0 then a = q1b ∈ Rb, a contradiction.

Hence ∃ q1, 0 6= r1 ∈ R 3 a = q1b+r1 where δ(r1) < δ(b). Continuing this process, we

get q1, q2, ..., qn, qn+1, 0 6= r1, 0 6= r2, ..., 0 6= rn ∈ R such that a = q1b + r1, b = q2r1 +

r2,..., rn−2 = qnrn−1+rn, rn−1 = qn+1rn and δ(b) > δ(r1) > ... > δ(rn). This process of

selecting qi, ri is terminated after a finitely many steps. Then rn−1 = qn+1rn, rn−2 =

(qnqn+1 +1)rn, ..., b = (q2q3...qnqn+1 + ...+q2 +qn+1)rn. ⇒ rn ∈ RD(b). Now a = q′rn

for some q′ ∈ R and hence rn ∈ RD(a). ⇒ rn ∈ RD(a)
⋂

RD(b) = CRD({a, b}). Let

d ∈ CRD({a, b}). Then d ∈ CRD({q1b + r1, b}). ⇒ d ∈ CRD({r1, b1}) and hence

d ∈ RD(r1). Similarly d ∈ RD(r2),..., d ∈ RD(rn). Hence CRD({a, b}) = RD(rn).

Therefore rn is the greatest common right divisor of {a, b}. Hence the theorem. ¤

Remark 3.24. If R is a partial semiring then P (R) = {0R}
⋃{r + 1R | r ∈ R} is a

partial subsemiring of R.

Proof. Clearly 0R, 1R ∈ P (R). Let (ri : i ∈ I) be a summable family in

R 3 ri ∈ P (R), i ∈ I. Then Σi∈Iri exists and ri = si + 1R for some si ∈ R, i ∈ I.

⇒ Σi∈Iri = Σi∈I(si + 1R) = (Σi∈Isi + Σi 6=k1R) + 1R ∈ P (R). Hence Σi∈Iri ∈ P (R).
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Let r1, r2 ∈ P (R). Then r1 = s1 + 1R, r2 = s2 + 1R for some s1, s2 ∈ R.

⇒ r1r2 = (s1 + 1R)(s2 + 1R) = (s1s2 + s1 + s2) + 1R ∈ P (R). Hence P (R) is a partial

subsemiring of R. ¤

Definition 3.25. A partial semiring R is said to be antisimple if P (R) = R.

The partial semiring N is antisimple whereas pfn(D, D) is not a antisimple partial

semiring.

Definition 3.26. Let R be a commutative antisimple partial semiring. Then a func-

tion δ : R → N is said to be Dale norm if and only if the following conditions are

satisfied:

(i). δ(a) = 0 if and only if a = 0R,

(ii). If Σi∈Iai exists then δ(Σi∈Iai) ≥ δ(ai) for any i ∈ I,

(iii). δ(ab) = δ(a)δ(b) for all a, b ∈ R,

(iv). If a ∈ R and 0 6= b ∈ R then there exists q, r ∈ R 3 a = qb + r, where r = 0 or

δ(r) < δ(b).

The functions defined by n 7→ n or n 7→ n2 is a Dale norm on the partial semiring

N.

Remark 3.27. If R is a commutative antisimple partial semiring and δ is a Dale

norm on R then R is entire.

Proof. Let a, b ∈ R 3 ab = 0R. Then δ(ab) = δ(0R) = 0. ⇒ δ(a)δ(b) = 0. ⇒ δ(a) = 0

or δ(b) = 0. ⇒ a = 0R or b = 0R and hence R is entire. ¤

Clearly every Dale norm defined on a partial semiring R is a left Euclidean norm.

The following is an example of a partial semiring R in which δ is a left Euclidean

norm but not Dale norm.
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Example 3.28. Consider the partial semiring R = {0, a, b, 1} in which Σ defined on

R by

Σxi =





xj, if xi = 0 ∀i 6= j, for some j,

0, if xi = xj = a for some i, j & xk = 0 ∀ k 6= i, j

1, if xi = a, xj = b for some i, j & xk = 0 ∀ k 6= i, j

a, if xi = xj = 1 or b for some i, j & xk = 0 ∀ k 6= i, j

b, if xi = 1, xj = a for some i, j & xk = 0 ∀ k 6= i, j

undefined, otherwise.

and · defined on R by the following table:

. 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 a 1 b

1 0 a b 1

Then R is a commutative antisimple partial semiring. Now δ : R \ {0} → N defined

by δ(1) = δ(b) = 2 and δ(a) = 3 is a left Euclidean norm which cannot be converted

to a Dale norm.

Theorem 3.29. If R is a commutative antisimple partial semiring and δ is a Dale

norm defined on R then

(i). U(R) = {a ∈ R | δ(a) = 1},
(ii). R is a division partial semiring if and only if δ(R) is finite.
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Proof. (i). Note that δ(1R) = δ(1R · 1R) = δ(1R) · δ(1R) and hence δ(1R) = 1. Let

a ∈ U(R). Then ∃ b ∈ R 3 ab = 1R. ⇒ δ(ab) = δ(a)δ(b) = δ(1R) = 1. ⇒ δ(a) = 1

and δ(b) = 1 and hence a ∈ {c ∈ R | δ(c) = 1}. Now let a ∈ {c ∈ R | δ(c) = 1}.
Then δ(a) = 1 = δ(1R). ⇒ ∃ q, r ∈ R 3 1R = qa + r, where r = 0R or δ(r) < δ(a).

Suppose δ(r) < δ(a) = 1. Then δ(r) = 0 and hence r = 0R. ⇒ 1R = qa and hence

a ∈ U(R). Hence U(R) = {a ∈ R | δ(a) = 1}.
(ii). Suppose R is a division partial semiring and let 0 6= δ(a) ∈ δ(R). Then 0R 6=
a ∈ R. ∃ b ∈ R 3 ab = 1R. ⇒ δ(ab) = δ(1R) = 1. ⇒ δ(a) = 1 and δ(b) = 1.

δ(R) = {0, 1}, a finite set.

Conversely suppose that δ(R) is a finite subset of N and suppose ∃ a nonunit

r ∈ R \ {0}. Then δ(r) > 1 and rk is nonunit for all k ≥ 1. ⇒ δ(rk) = δ(r)δ(rk−1) >

δ(rk−1) ∀k > 1 and hence δ(R) is not finite, a contradiction. Hence R is division

partial semiring. ¤
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