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EUCLIDEAN PARTIAL SEMIRINGS

P. V. SRINIVASA RAO

ABSTRACT. The partial functions under disjoint-domain sums and functional com-
position is a partial semiring, an algebraic structure possessing a natural partial
ordering, an infinitary partial addition and a binary multiplication, subject to a set

of axioms. In this paper we study the Euclidean partial semirings.

1. INTRODUCTION

Partially defined infinitary operations occur in the contexts ranging from integra-
tion theory to programming language semantics. The study of pfn(D, D)(the set of
all partial functions of a set D to itself), M fn(D, D)(the set of all multi functions of
a set D to itself) and Mset(D, D)(the set of all total functions of a set D to the set
of all finite multi sets of D) play an important role in the theory of computer science,
and to abstract these structures Manes and Benson[1] introduced the notion of sum
ordered partial semirings (so-rings). In this paper we introduced the notion of left
Euclidean norm and Dale norm on a partial semiring and we generalize the results of

Euclidean semirings studied by Golan[3] to partial semirings.
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2. PRELIMINARIES

In this section we collect some important definitions, results and examples for our

use in this paper.

Definition 2.1. [5] A partial semiring is a quadruple (R,%,-,1), where (R, %) is
a partial monoid, (R,-,1) is an monoid with multiplicative operation - and unit 1,
and the additive and multiplicative structures obey the following distributive laws. If
Y(z; 11 € 1) is defined in R, then for ally in R, X(y-z;:i € 1) and X(z; -y :i € I)
are defined and

y - [Baws] = By - @2); [Biwi] -y = il - y).

Definition 2.2. [2] Let R be a partial semiring. A subset N of R is said to be a
partial ideal of R if the following are satisfied

(1). if (z; : i € I) is summable family in R and x; € N for everyi € I then Xx; € N,
(2). if x € N andr € R then xr,rz € N.

Remark 2.3. [2] The set of all partial ideals of a partial semiring is a complete
lattice, in which meet and join of a family

{I,|ae A}, X1, ={r € R| 2 =Xura®aSa, Ta € I,74, 54 € R}.

Example 2.4. [2] Consider the partial semiring pfn(D, D). Let a be a fized element
in D. Then N = {f € Pfn(D,D) | dom(f) C {a}} is a right partial ideal of
Pfn(D,D).

Definition 2.5. [2] Let N and P be partial ideals of a partial semiring R. Then we
define NP = {x € R | x = X;a;b; for some a; € N,b; € P}.
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3. EUCLIDEAN PARTIAL SEMIRINGS

We denote the set of all right divisors of ‘a’ in the partial monoid (R, -) by RD(a).
ie, RD(a) ={b € R| a € Rb} ={b € R| Ra C Rb}. We denote the set
{beR|a-b=1=0b-a} by U(R) and the set {a € R| a-a = a} by I*(R).

Remark 3.1. If R is a partial semiring then
(i). b € RD(a) if and only if RD(b) C RD(a),
(i7). U(R) C RD(1g) € RD(a).

Proof. (i). Suppose b € RD(a). Then a € Rb. Now for any x € RD(b), Rb C Rx
and hence a € Rx. = = € RD(a). Hence RD(b) C RD(a).

Conversely suppose RD(b) € RD(a). Since b € RD(b), b € RD(a).
(ii). Let z € U(R). Then 3y € R > 2y =1 = yz € Rz and hence x € RD(1g). Now
let z € RD(1g) then 1 € Rx. = Rx = R. = a € Rz and hence x € RD(a). Hence
the remark. O

Definition 3.2. Let R be a partial semiring and a € R. Then ‘a’ is said to be
wrreducible from right if and only if it satisfy

(i). a ¢ U(R), and

(ii). RD(a) =U(R)\J{a}.

In the partial semirings N and pfn(D, D), every nonzero element is irreducible

from right.

Example 3.3. Consider the partial semiring Matp(R), the set of D x D matrices
over R. Take D = {a,b} and R = N. Then the only elements of Matp(R) having

determinant 1 which are irreducible from right are |a;;] and [b;;] where

0, if t="0and j=a,
aij =
1, otherwise.
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and
0, if i=aand j =0,

1, otherwise.

Definition 3.4. Let A be a nonempty subset of a partial semiring R. Then the set of
common right divisors of A is CRD(A) = ({RD(a) |a€ A} ={be R| RA C Rb}.

Definition 3.5. Let R be a partial semiring. Then an element b € CRD(A) is said
to be a greatest common right divisor of A if and only if CRD(A) = RD(b).

Theorem 3.6. If A is a nonempty subset of a partial semiring R then an element b
of R is a greatest common right divisor of A if and only if the following conditions
are satisfied:

(i). RA C Rb,

(7). if c € R satisfies RA C Re then Rb C Re.

Proof. Suppose b is a greatest common right divisor of A.

(i). Sinceb € CRD(A), b € RD(a) Va € A. = Ra C RbVa € A and hence RA C Rb.

(ii). Suppose ¢ € R 3 RA C Re. Then ¢ € CRD(A) = RD(b) and hence Rb C Re.
Conversely suppose that the conditions (i) and (ii) are satisfied. By (i),

b€ CRD(A). Now for any x € RD(b), b € Rx. = b=rx and b € CRD(A).

=b=rre€ RD(a)Va€ A. = a€ Rre C RxVYa € A. = x € RD(a) Ya € A.

= 2 € CRD(A) and hence RD(b) C CRD(A). Now for any ¢ € CRD(A), RA C Re.

= Rb C Rc (by (ii)). = ¢ € RD(b) and hence CRD(A) C RD(b). Hence b is a

greatest common right divisor of A. O

Corollary 3.7. If every left partial ideal of a partial semiring R is principal then

every nonempty subset of R has a greatest common right divisor.
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Proof. Let A be a nonempty subset of R. Since RA is a left partial ideal of R, we
have RA = Rb for some b € R. Now let c € R 3 RA C Rc. Then Rb C Rc. Then by

theorem 3.6, b is the greatest common right divisor of A. O

Theorem 3.8. Let a,b and c be elements of a partial semiring R. If d is a greatest
common right divisor of {a,b} and e is a greatest common right divisor of {c,d} then

e is a greatest common right divisor of {a,b,c}.

Proof. By definition, RD(e) = RD(d) (Y RD(c) = RD(a) (" RD(b) () Rd(c)
= CRD({a,b,c}). Hence the theorem. O

Remark 3.9. If a and b are elements of a partial semiring R and (a,b) is a summable

family in R then CRD({a,b}) C CRD({a + b,b}).

Proof. For any v € CRD({a,b}) = RD(a)(\RD(b), a € Rz and b € Rx.
= a+b € Rr and hence x € RD(a + b)(\RD(b) = CRD({a + b,b}). Hence the

remark. U

Theorem 3.10. Let R be a partial semiring. Then the following are equivalent
(i). CRD({a,b}) = CRD({a+ b,b}) for all a,b € R > a+ b exists in R,
(7). every principal left partial ideal of R is subtractive.

Proof. (1)=(ii): Suppose CRD({a,b}) = CRD({a + b,b}) for all a,b € R > a+b
exists in R. Let Rd be a principal left partial ideal of R and let ;2 4+ y € Rd. Then
d€ RD(z) and d € RD(x+vy). = de€ CRD({zx+y,z}) = CRD{z,y}.

= d € RD(y) and hence y € Rd. Hence Rd is subtractive.

(ii)=-(i): Suppose every principal left partial ideal of R is subtractive. Let

a,b € R > a+bexists in R and let x € CRD({a + b,b}). Then x € RD(a + b) and
x € RD(b). = a+b€ Rxr and b € Rr. = a € Rr and hence

x € RD(a) \RD(b) = CRD({a,b}). Hence CRD({a,b}) = CRD({a + b,b}) for all
a,be R > a+ D exists in R. ([l
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Definition 3.11. A partial semiring R is said to be PLIS-semiring if it satisfies any
one of the following equivalent conditions:
(i). CRD({a,b}) = CRD({a + b,b}) for all a,b € R > a+ b exists in R,

(ii). every principal left partial ideal of R is subtractive.

Note that the partial semirings N, R are PLIS-semirings. The following is an

example of a partial semiring which is not PLIS-semiring.

Example 3.12. Let S = (R* x {0}) J({0} x RT). Define ¥ on S by

(

xj, if x; =0Vi#j, for some j,

. (a+d,0), if ;= (a,0), z; =(a',0) & vy, =0V k #1,j
xIr; =

(0,b4+0), if x;=(0,b) or (b,0), z; =(0,0') & 2, =0V k #1,j

undefined, otherwise.
\

and “, defined on R by (a,0)-(a’,0) = (ad’,0) = (0,a)-(a’,0) and (0,b)-(0,b") = (0, bb")
= (b,0) - (0,¥) Va,d',b,b) € Rt. Then R = S x N is a partial semiring. Now
H = {0} x R x {0} is a principal left partial ideal of R. Since (0,b,0) € H,

(b,0,0) + (0,b,0) = (0,2b,0) € H. But (b,0,0) ¢ H. Hence H is not subtractive.

Hence R is not a PLIS-semiring.

Definition 3.13. Let R be a partial semiring. Then a mapping 6 : R\ {0} — N is
said to be a left Euclidean norm on R if it satisfies the following condition:

If a and b are elements of R with b # 0 and 6(a) > §(b) then 3 q,r € R > a = gb+r
with r =0 or 6(r) < 6(b).

Definition 3.14. A partial semiring R is said to be left Fuclidean if and only if there

exists a left Fuclidean norm defined on R.
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The partial semiring N is left Euclidean if we define the left Euclidean norm ¢ by

Jd:n—nord:n— n

Remark 3.15. If 6 is a left Euclidean norm on a partial semiring R, then we can
extend 0 to &' from R to N|J{oo} by defining §'(0) = oo and §'(a) = §(a) Va € R\{0}.
Conversely if o' : R — N|J{oo} is a function satisfying the condition: for anya,b € R
50 (a) >(b) Ig,r € R>a=qb+r withr =0 ord(r) < (b), then its restriction

is a left Fuclidean norm on R.

Theorem 3.16. If 0 is a left Euclidean norm defined on a partial semiring R then
there exists a left Euclidean norm 0* satisfying

(i). 0*(a) < d(a) Ya € R\ {0}, and

(ii). 6*(b) < d(rb) Vb,r € R > rb# 0.

Proof. Define 6* : R\ {0} — N by 6*(a) =min{d(ra) | ra # 0} VO # a € R. Then
0*(a) < d(a) Va € R\ {0}, and 6*(b) < o(rb) Vb,r € R > rb # 0.

Now we prove that 0* is a left Euclidean norm:
Let a,b € R\ {0} 2 6*(a) > 6*(b) =min{o(rd) | rb # 0}. Then I s € R 3 §*(b) =
d(sb). By (i), d(a) > d*(a) > 6*(b) = d(sb). = T q,r € R > a = q(sb) + r where
r=0or d(r) < d(sb). Suppose §(r) < d(sb). Then 6*(r) < d(r) < (sb) = §*(b). =
Jgs,mr € R>a=(qs)b+r where r =0 or 6*(r) < 6*(b). Hence the theorem. O

Definition 3.17. Let (R, ) be a left Euclidean partial semiring. Then § is said to
be submultiplicative norm if it satisfies the following condition:

S(b) <5(rb)V0£be R, r€ RS rb+£0.

Definition 3.18. A left Euclidean norm 6 defined on a partial semiring R is said to
be multiplicative norm if and only if §(ab) = §(a)d(b) Ya,b € R 5 ab # 0.

In the left Euclidean partial semiring N, ¢ defined by d : n+—nor 6 : n+— n?is a

submultiplicative and multiplicative norm.
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Theorem 3.19. Let R be a partial semiring and 6 : R\{0} — N be a submultiplicative
FEuclidean norm. If Ms = {r € R | d(r) < §(a)V0 # a € R} is a minimal element of
im(9) then

(i). 1r € Ms,

(ii). if a € Ms then 3¢ € R 5 1 = qa,

(ii). Ms(\1*(R) = {1r},

(iv). U(R) C Ms, with equality holding if R is commutative.

Proof. (i). Since § is submultiplicative norm, d(1gz) < d(a) VO # a € R and hence
1r € Ms.

(ii). Let a € Ms. Then d§(a) < §(b) YO # b € R. = §(a)
1r = qa+r with r =0 or §(r) < §(a). Since a € Ms, §(a)

§5(1R) :>3q,7“€R9
< §(r) for 0 #r € R and

hence » = 0. Hence 1z = qa.
(iii). Let ¢ € Ms(I*(R). Then ¢ € M; and ¢* = ¢. By (ii), 3¢ € R> 1g = qc =
qc® = lgc = c. Hence M;(I*(R) = {1}
(iv). Let a € U(R). Then 3 b € R 5 1 = ba. Since § is submultiplicative norm,
d(a) < d(ba) = §(1g) and by (i), d(1g) < d(a). = d(a) = 6(1g) < 6(b) VO #£b € R
and hence a € Mj.

Suppose R is commutative and let a € M. By (ii), 3¢ € R 5 1 = ga = aq and
hence a € U(R). Hence Ms = U(R). O

Theorem 3.20. If v : R — S is an epimorphism of partial semirings R, S and
d 1s a left Euclidean norm on R then 3 a left Euclidean norm & on S defined by
§'(c) =min{d(a) |a € v (c)} VO£ c € S.

Proof. Define &' : S\ {0} — N by &'(c) =min{d(a) | a € 7' (c)} YO # ¢ € S. Let
c,deS5d#0with&(c) > 8(d). = Ja,0£be R > y(a)=c, v(b) = d where b is
such that §(b) =min{d(y) | y € v"'(d)}. Since &'(c) > &(d), min{d(z) | = € v(c)}
> min{d(y) | y € v (d)}. = 8(a) > §(b). = I qr € R > a = gb+r where
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r=20ord(r) <dib). =c=vy(a)=v(g+r)=~(qd+ v(r) where v(r) = 0 or
§'(v(r)) =min{d(a) | a € v (y(r))} < d(r) < §(b) = §'(d). Hence ¢ is a Euclidean

norm on S. l

Theorem 3.21. If R s a left Fuclidean partial semiring then every subtractive left

partial ideal of R is principal.

Proof. Let 6 be the Euclidean norm defined on R and I be a subtractive left partial
ideal of R. Take C = {d(a) | a € I}. Then by Zorn’s lemma, C has a minimal element.
Let it be §(b). Suppose I # Rb. Then 3a € I 5 a & Rb. = 6(b) < d(a) (by the
minimality of §(b)). = 3 ¢,r € R 3 a = gb+r with r =0 or §(r) < §(b). Suppose
r = 0 then a = ¢gb € Rb, a contradiction. = §(r) < d(b). Since gb+r = a € I and
bel,wehaver € I. = r €[ and 6(r) < §(b), a contradiction. Hence I = Rb is a

principal left partial ideal of R. O

Theorem 3.22. The following conditions on a left Fuclidean partial semiring are
equivalent:

(i). R is a PLIS-semiring,

(7). there exists a left Fuclidean norm ¢ defined on R satisfying the condition that if
a=gb+r forre R\ {0} and §(r) < 6(b) then a & Rb.

Proof. (1)=-(ii): Suppose R is a PLIS-semiring. Since R is left Euclidean partial
semiring, 3 a left Euclidean norm ¢ on R. By theorem 3.16, 3 a left Euclidean norm
0% defined on R 3 §*(b) < §(rb) Vr,b € R > rb # 0. Now suppose a = gb+1r € Rb
for r € R\ {0} and 6*(r) < 0*(b). Since R is PLIS-semiring, Rb is subtractive. =
r € Rb. = r = c¢b for some ¢ € R. = 0*(r) = 6*(cb) = 6(cb) > 6*(b), a contradiction.
Hence a ¢ Rb.

(i1)=-(i): Suppose the condition (ii) is valid and let t € CRD({a+b,b}). = a+b = dt
and b = et for some d,e € R. = a+ et = dt € Rt. Then by (ii), d(r) > 0(¢)
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Vr € R\ {0}. = d(a) >6(t). = I q,r € R>a=qt+r wherer =0 or §(r) < J(t).
= dt = a+b = qt+1r+ et. Suppose 0(r) < 6(t). Then by (ii), dt ¢ Rt, a
contradiction. Hence r = 0. = a = qt. =t € RD(a)(\RD(b) = CRD({a,b}).
Hence R is PLIS-semiring. O

Theorem 3.23. If R is a left Euclidean PLIS-semiring then any nonempty finite

subset A of R has a greatest common right divisor.

Proof. By theorem 3.8, it is enough to prove that 3 a greatest common right divisor
for any a, bin A. For a = b = 0, the greatest common right divisor is 0. Suppose
b # 0. By theorem 3.22, 3 a left Euclidean norm 6 on R 3 if a = ¢gb+r for r € R\ {0}
and §(r) < §(b) then a ¢ Rb. Since J is a left Euclidean norm on R, 3 ¢;,71 € R 2
a = q1b+r; wherer; = 0or d(r1) < §(b). If r; = 0 then a = ¢;b € Rb, a contradiction.
Hence 3 ¢1,0 #r1 € R > a = ¢;b+r; where §(r;) < §(b). Continuing this process, we
get q1, G2, ooy Qs Gui1, 0 11,0 # 19, ...,0 # 1, € R such that a = ¢1b+ 11, b = qor1 +
T9yeres T2 = quTn-1+Tn, Tno1 = Gns1Tn and 6(b) > 6(ry) > ... > 6(r,). This process of
selecting q;, r; is terminated after a finitely many steps. Then r, 1 = ¢, 17, T2 =
(GnGnir+ )7, ooy b= (243 @nlns1+ -+ @2+ Gni1)rn. = 1 € RD(b). Now a = ¢'r,
for some ¢’ € R and hence r,, € RD(a). = r, € RD(a)(VRD(b) = CRD({a,b}). Let
d € CRD({a,b}). Then d € CRD({q1b + r1,b}). = d € CRD({ry,b,}) and hence
d € RD(rq). Similarly d € RD(rs),..., d € RD(r,). Hence CRD({a,b}) = RD(ry).

Therefore r,, is the greatest common right divisor of {a,b}. Hence the theorem. [

Remark 3.24. If R is a partial semiring then P(R) = {Og} U{r + 1g | 7 € R} is a

partial subsemiring of R.

Proof. Clearly Og,1g € P(R). Let (r; : i € I) be a summable family in
R>r; € P(R),i € I. Then X;c;r; exists and r; = s; + 1 for some s; € R,i € 1.
= Eielri = Eie[(si + 1R) = (EiEISi —|— ZziklR) —I— 1R € P(R) Hence EieITi - P(R)
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Let r1,73 € P(R). Then r; = s1 + 1g, 9 = s9 + 1g for some sq, 5 € R.
= 117y = (s1+ 1r)(s2 + 1r) = (5152 + 51+ 52) + 1g € P(R). Hence P(R) is a partial

subsemiring of R. O
Definition 3.25. A partial semiring R is said to be antisimple if P(R) = R.

The partial semiring N is antisimple whereas pfn(D, D) is not a antisimple partial

semiring.

Definition 3.26. Let R be a commutative antisimple partial semiring. Then a func-
tion 0 : R — N is said to be Dale norm if and only if the following conditions are
satisfied:

(i). d(a) =0 if and only if a = O,

(i1). If 3icra; exists then 0(3;cra;) > 6(a;) for any i € 1,

(iii). 6(ab) = 6(a)d(b) for all a,b € R,

(iv). If a € R and 0 # b € R then there exists q,7 € R > a = gb+ 1, wherer =0 or
d(r) < 6(b).

The functions defined by n + n or n + n? is a Dale norm on the partial semiring

N.

Remark 3.27. If R is a commutative antisimple partial semiring and 6 is a Dale

norm on R then R is entire.

Proof. Let a,b € R > ab = 0g. Then d(ab) = 6(0g) = 0. = 0(a)d(b) =0. = d(a) =0

or 0(b) =0. = a=0g or b=0g and hence R is entire. O

Clearly every Dale norm defined on a partial semiring R is a left Euclidean norm.
The following is an example of a partial semiring R in which § is a left Euclidean

norm but not Dale norm.



168 P. V. SRINIVASA RAO

Example 3.28. Consider the partial semiring R = {0, a,b, 1} in which ¥ defined on
R by

(

zj, if v; =0Vi#j, for some j,

0, if v, =x;=a for somei, j &z, =0V Ek# 1,j
1, if xi=a, x; =b for somei, j& v, =0V k# 1,
a, if v,=x;=1o0rb for somei, j& x, =0V k# i,j

b, if v;, =1, xj=a for somei, j& 2, =0V k# 4,j

unde fined, otherwise.
\

and - defined on R by the following table:

Olalb|1
o|ojol0|0
a|0|0|ala
b|Olal|l|b
110lal|b|1

Then R is a commutative antisimple partial semiring. Now 6 : R\ {0} — N defined
by 0(1) = 6(b) = 2 and d(a) = 3 is a left Euclidean norm which cannot be converted

to a Dale norm.

Theorem 3.29. If R is a commutative antisimple partial semiring and ¢ is a Dale
norm defined on R then

(1). UR) = {a € R|6(a) =1},

(7). R is a division partial semiring if and only if §(R) is finite.



EUCLIDEAN PARTIAL SEMIRINGS 169

Proof. (i). Note that 6(1g) = 0(1g - 1g) = 6(1gr) - 6(1g) and hence §(1g) = 1. Let
a € U(R). Then 3b€ R > ab= 1. = d(ab) = 0(a)dé(b) = 6(1g) = 1. = §(a) =
andé(b)zlandhenceae{c€R|5()—1}. Now let a € {c € R | §(c) = 1}.
Then §(a) =1 =09(1g). = I q,r € R > 1gr = ga +r, where r = 0 or 4(r) < d(a).
Suppose 6(r) < d(a) = 1. Then 6(r) = 0 and hence r = Og. = 1z = ga and hence
a € U(R). Hence U(R) ={a € R | d(a) = 1}.
(ii). Suppose R is a division partial semiring and let 0 # d(a) € 6(R). Then 0r #
a€ R Fbe R>ab= 1 = §(ab) = 0(1g) = 1. = d(a) = 1 and 6(b) =
d(R) = {0, 1}, a finite set.

Conversely suppose that 0(R) is a finite subset of N and suppose 3 a nonunit
r € R\ {0}. Then §(r) > 1 and r* is nonunit for all k > 1. = §(r¥) = §(r)d(r*1) >
§(r*=1) Vk > 1 and hence §(R) is not finite, a contradiction. Hence R is division

partial semiring. 0
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