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GENERALIZED CLOSED SETS IN IDEAL M-SPACES

AHMAD AL-OMARI U AND TAKASHI NOIRI (@

ABSTRACT. Dontchev et al. [2] introduced and investigated the notion of Z-g-closed
sets in ideal topological spaces as a modification of g-closed sets due to Levine [5].
The concept of ideal m-spaces was introduced by Al-Omari and Noiri [1]. In this
paper, we introduce and study the concept of generalized closed (Z,--closed) sets

in an ideal m-space.

1. INTRODUCTION

The notion of ideal topological spaces was first studied by Kuratowski [4]. Jankovic
and Hamlett [3] obtained the further properties of ideal topological spaces. In 1970,
Levine [5] initiated the investigations of generalized closed (g-closed) sets in topo-
logical spaces. As a modification of g-closed sets, Dontchev et al. [2] introduced the
notion of Z-g-closed sets in an ideal topological space (X, 7,7Z), where 7 is a topology
and Z is an ideal.

Popa and Noiri [7] called a subfamily m of the power set P(X) of a nonempty set
X a minimal structure, if ), X € m. Recently, Ozbakir and Yildirim [6] have defined

the minimal local function A?, in an ideal minimal space (X, m,Z). As an analogous
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notion to Z-g-closed sets in (X, 7,7), they defined and studied m-Z,-closed sets in
(X,m,T).

Quite recently, the present authors called a subcollection M of P(X) a minimal
structure on X if (1) 0, X € M and (2) M is closed under finite intersections. They
defined the local function A, in an ideal minimal space (X, M,Z). Then Cl,(A) = AU
A, is a Kuratowski closure operator which generates a new topology M, containing
the minimal structure M. In this paper, by using the local function A, we introduce
and investigate the notion of Z,«-closed sets in (X, M,Z). In the last section, we
introduce the notion of T,-spaces and investigate the relationship between T,-spaces

and Th-spaces.
2

2. PRELIMINARIES

Let (X, 7) be a topological space with no separation properties assumed. For a
subset A of a topological space (X, 1), CI(A) and Int(A) denote the closure and the
interior of A in (X, 7), respectively. An ideal Z on a topological space (X, 7) is a

non-empty collection of subsets of X which satisfies the following properties:

(1) A€ Z and B C A implies that B € Z.
(2) A€ Z and B € T implies AUB € 1.

An ideal topological space is a topological space (X, 7) with an ideal Z on X and is
denoted by (X, 7,Z). For a subset A C X, A*(Z,7) ={x € X : ANU ¢ T for every
open set U containing x} is called the local function of A with respect to Z and 7
(see [3, 4]) and is simply denoted by A* instead of A*(Z, ).

Definition 2.1. [1] A subfamily M of the power set P(X) of a nonempty set X is

called an m-structure on X if M satisfies the following conditions:

(1) M contains () and X,
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(2) M is closed under the finite intersection.

The pair (X, M) is called an m-space. An m-space (X, M) with an ideal Z on X is
called an ideal m-space and is denoted by (X, M,Z).

A. Al-Omari and T. Noiri [1] introduced the following definitions and results

Definition 2.2. A set A € P(X) is called an m-open set if A € M. B € P(X) is
called an m-closed set if X — B € M. We set mInt(A) = U{U : U C A,U € M}
and mCl(A)=n{F: ACF, X —F e M}

Definition 2.3. Let (X, M,Z) be an ideal m-space. For a subset A of X, we define
the following set: A (Z,M) ={z € X : ANU ¢ T for every U € M(z)}, where
M(x) ={U € M : x € U}. In this case there is no confusion A.(Z, M) is briefly
denoted by A, and is called the M-local function of A with respect to Z and M.
Lemma 2.1. Let (X, M,T) be an ideal m-space and A, B any subsets of X. Then
the following properties hold:

(1) (@) =0,

(2) (AL C A,

(3) A,UB, =(AUB)..

Definition 2.4. Let (X, M,Z) be an ideal m-space. For any subset A of X, we put
Cl.(A) = AU A,. Then the operator Cl, is a Kuratowski closure operator. The
topology generated by Cl, is denoted by M,, that is M, ={U C X : Cl.(X - U) =
X —U}. The closure and the interior of A with respect to M, are denoted by Cl,.(A)

and Int,(A), respectively.

Theorem 2.1. Let (X, M,Z) be an ideal m-space. Then M. is a topology containing

the minimal structure M.
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Lemma 2.2. Let (X, M) be an m-space, T and J be ideals on X, and let A, B be
subsets of X. Then the following properties hold:

(1) If AC B, then A, C B..

(2) IfT C T, then A(T) D A.(J).

(3) A, = mCI(A,) € mCI(A)

(4) If A C A,, then A, = mCI(A,) = mCI(A).
(5)

5) If A€ I, then A, = 0.

3. Z,+-CLOSED SETS

In this section 3 we investigate the class of generalized m-closed sets in an ideal

m-space.

Definition 3.1. A subset A of an ideal m-space (X, M,Z) is said to be Z«-closed
(resp. mg-closed) if A, C U (resp. mCI(A) C U) whenever A C U and U € M.
The complement of an Zy--closed (resp. mg-closed) set is said to be Z--open (resp.
mg-open).

Definition 3.2. [5] Let (X, 7) be a topological space. A subset A of X is called a
g-closed set if C1(A) C U whenever A C U and U is open.

Definition 3.3. [2] Let (X, 7,Z) be an ideal topological space. A subset A of X is
called an Z-g-closed set if A* C U whenever A C U and U € 7. The complement of

an Z-g-closed set is said to be Z-g-open.

Remark 1. Let (X, 7) be a topological space and Z be an ideal on X. If we take the
m-structure M = 7, then Z,«-closed (resp. mg-closed) sets coincide with Z-g-closed

(resp. g-closed) sets.
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Proposition 3.1. Let (X, M,T) be an ideal m-space. Then the following properties
are hold:

(1) Every m-closed set is mg-closed.

(2) Every mg-closed set is Ly--closed.

Proposition 3.2. The union of two Z,«-closed sets in an ideal m-space (X, M,T) is

ZL+-closed.

Proof. Let A, B be two Z,.-closed sets, and AU B C U, where U € M. Since
A and B are Z,-closed sets, then A, C U and B, € U. Hence by Lemma 2.1,

A, UB,=(AUB), CU and hence AU B is Z-closed. O

Definition 3.4. A subset A of an ideal m-space (X, M,Z) is said to be M,-closed
(resp. M.-dense in itself, M,-perfect) if A, C A (resp. A C A,, A, = A).

Proposition 3.3. Let (X, M,Z) be an ideal m-space and A be a subset of X. If A

is Lg«-closed and m-open, then A is M., -closed.

Proposition 3.4. Let (X, M,Z) be an ideal m-space. Then every subset of X is

Z,+-closed if and only if every m-open set is M,-closed.

Proof. Suppose every subset of X is Zg«-closed. If U is m-open, then it is Zg--closed
and hence U, C U. Hence U is M,-closed. Conversely, suppose that every m-open
set is M,-closed. If A is any subset of X and U is an m-open set such that A C U,
then A, C U, C Cl,(U) = U and hence A is Z--closed.
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Theorem 3.1. Let (X, M,I) be an ideal m-space. For a subset A of X, the following

properties are hold:

(1) A is Zy--closed if and only if Cl.(A) C U whenever AC U and U € M.
(2) If A is T«-closed, then the following equivalent properties hold:
(a) Cl.(A) — A contains no a nonempty m-closed set.

(b) A, — A contains no a nonempty m-closed set.

Proof. (1) Suppose that A is Z,«-closed. Then A, C U whenever A C U and U € M
and hence Cl,(A) = AU A, C U whenever A C U and U € M. The converse is
obvious.

(2) Suppose F' C Cl.(A) — A and F is m-closed. Since FF C X — A, AC X — F and
X —F € M. Since A is Zy-closed, Cl,(A) C X —F and F' C X —Cl.(A). Therefore,
F CClL(A)N(X —Cl.(A)) = 0. Thus, (a) is proved.

(a) < (b): This follows from the fact that Cl.(A) — A = A, — A. O
Corollary 3.1. For a subset of an ideal m-space (X, M,I), the following diagram
holds:

m-closed — M.-closed

| |

mg-closed —— Zy«-closed

None of these implications in Corollary 3.1 is reversible as shown by the below

examples.

Example 3.1. Let X = {a,b,c}, M = {0, X, {a},{b},{b,c}}, and T = {0,{a}}.
Then A = {a, b} is an mg-closed set but it is not M,-closed.

Example 3.2. Let X = {a,b,c,d}, M ={0,X,{a,c},{d}}, andZ = {0,{a}}. Then

A ={a} is an M.-closed set but it is not mg-closed.
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Remark 2. (1) By Lemma 2.2, since I, = 0, for every I € Z, I is Zy--closed for every
leT.

(2) By Lemma 2.1, since (A,). C A,, it follows that A, is always Z,.-closed for
every subset A of X.
Corollary 3.2. Let (X, M,T) be an ideal m-space and A be an Z,-closed set. Then

the following properties are equivalent:

(1) A is an M, -closed set;
(2) Cl.(A) — A is an m-closed set;
(3) A. — A is an m-closed set.

Proof. (1) = (2): If A is M,-closed, then Cl,(A) = AU A, = A and hence CI,(A) —
A = () is m-closed.

(2) = (3): This follows from the fact that Cl,(A) — A= A, — A.

(3) = (1): Let A, — A be m-closed. Since A is Z --closed, by Theorem 3.1, A,.— A =0
and hence A, C A. Therefore Cl,(A) = AU A, = A and A is M,-closed. O

Corollary 3.3. Let (X, M,Z) be an ideal m-space and A be a subset of X. Then A
is M-closed if and only if A, — A is m-closed and A is Ty-closed.

Proof. Let A be an M.,-closed set. Then CIl,(A) = A,UA = A and A, C A. Since
A, — A =10, then A, — A is an m-closed set. By Corollary 3.1, every M,-closed set
is Z4+-closed and hence A is Z,--closed.

Conversely. Let A, — A be m-closed and A is Zg--closed. Then by Corollary 3.2, A is
M ,.-closed. O

Theorem 3.2. Let (X, M,I) be an ideal m-space. If A is M,-dense in itself and

Zy--closed in X, then A is mg-closed.
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Proof. Suppose A is an M-dense in itself and Z,--closed subset of X. If U € M and
A C U, then by Theorem 3.1, Cl,(A) = A,UA = A, CU. Since A is M,-dense in
itself, by Lemma 2.2 mCI(A) = A, C U and hence A is mg-closed. O
Theorem 3.3. Let (X, M,T) be an ideal m-space and A, B be subsets of X. If
AC B CClL(A) and A is Ty-closed, then B is Ly-closed.

Proof. Let B C U and U € M. Since A C B C U and A is Zg-closed, then
by Theorem 3.1, Cl.(A) C U and hence Cl.(B) C CL(Cl.(A)) = Cl.(A) C U.

Therefore, by Theorem 3.1, B is Z,«-closed. U

Corollary 3.4. Let (X, M,Z) be an ideal m-space and A, B be subsets of X. If
AC B CA, and A is Ly-closed, then A and B are mg-closed.

Proof. Let A C B C A,. Then by Lemmas 2.1 and 2.2, we have A, C B, C
(A.)s € A, and hence A, = B,. Therefore, A and B are M,-dense in itself. Since
A C B C A, C Cl.(A), then by Theorem 3.3, B is Z -closed. Therefore, by
Theorem 3.2, A and B are mg-closed. O

Corollary 3.5. Let (X, M,Z) be an ideal m-space and T = (. Then A is Zy-closed

if and only if A is mg-closed.

Proof. The proof follows from the fact that for Z = (), A C mCI(A) = A, and hence
every subset of X is M,-dense in itself. Therefore, by Theorem 3.2 every Z,«-closed

set is mg-closed. O

The following theorem gives a characterization of Z,«-open sets.
Theorem 3.4. Let (X, M,Z) be an ideal m-space and A be a subset of X. Then A
is Ly--open if and only if F C Int,(A) whenever F is m-closed and F' C A.
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Proof. Suppose A is Z--open. If F'is m-closed and F' C A, then X — A C X — F' and
so Cl,(X — A) C X — F. Therefore, F' C Int,(A). Conversely, suppose the condition
holds. Let U € M such that X — A CU. Then X —U C Aand so X —U C Int.(A)
which implies that Cl,(X — A) C U. Therefore, X — A is Z,«-closed and so A is
T,--open. 0
Theorem 3.5. Let (X, M,Z) be an ideal m-space and A, B be subsets of X. If A
is Ly--open and Int.(A) C B C A, then B is I,«-open.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4. 0

Theorem 3.6. Let (X, M,Z) be an ideal m-space and A be a subset of X. Then for
the following statements, (1) implies (2) and (2) is equivalent to (3).

(1) A is Z+-closed.
(2) AU (X — A,) is Zy--closed.
(3) A, — A is Z--open.

Proof. (1) = (2): Suppose A is Z,«-closed. If U € M and (AU (X — A,)) C U, then
X-UCX-(AU(X —-A,)) =A, — A Since A is Zj--closed, by Theorem 3.1, it
follows that X —U = () and hence X = U. Since X is the only m-open set containing
AU (X —A,), clearly, AU (X — A,) is Z,«-closed.

(2) < (3): This follows from the fact that AU (X — A,) =X — (A, — A). O

Definition 3.5. Let (X, M,Z) be an ideal m-space and A, B be subsets of X such
that B C A. Then

(1) The family {U C A: U =V N A for some V € M} is an M-structure on A
and is denoted by M 4.
(2) The family {I C A: [ € 7} is an ideal on A and is denoted by Z4.
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(3) For the ideal m-space (A, Ma,Z4), the local function B4 is defined as
follows: Byay={r € A: BNU ¢ I, for any U € M(x)}, where
Muy(z) ={U e My :xzecU}.
Lemma 3.1. Let (X, M,Z) be an ideal m-space and B C A C X. Then
B.(4) = B. N A holds.

Proof. First we prove B4y € B, NA. Let z ¢ B, N A. We consider the following
two cases:

Case 1. x ¢ A. Since B,(ay C A, then x ¢ B, (a).

Case 2. x € A. In this case v ¢ B,. There exists a set V' € M such that x € V
and VN B eZ. Sincex € A, we have aset ANV € My such that t € ANV and
(BNV)NA €Iy Consequently x ¢ B,(a.

Secondly. we prove B, N A C B,a). Let x ¢ B,(4). Then, there exists V' € M such
that r€e VNAe Myand (VNA)NBETZy Since BC A thenVNBeZyCT,
thus V' N B € T for some V € M containing x. This shows that x ¢ B,. Therefore,
we obtain x ¢ B, N A. O

Theorem 3.7. Let (X, M,I) be an ideal m-space. Let B C A C X, where A is an
Z,-closed and m-open set. Then B is Ly-closed in (A, Ma,Z4) if and only if B is
Zy+-closed in (X, M,T).

Proof. We first note that since B C A and A is both Z--closed and m-open, then
A, € A and thus B, € A, € A. By Lemma 3.1, AN B, = B, and we have
B, = B, C A.

Necessity. Suppose that B is Zy«-closed in A. If U is an m-open subset of X such
that B C U, then B = BNA CUnNA, where U N A is m-open in A. Since B is
Zge-closed in A, B, = B,a CUNACU. Therefore B is Z,--closed in X.
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Sufficiency. Suppose that B is Z,«-closed in X. Let U be an m-open subset of A
such that B C U. Then U = V N A for some m-open subset V of X. Since B C V
and B is Zg«-closed in X, B, C V. Thus B,y = B,NACVNA=U. Therefore B

is Z,+-closed in A.

4. T,.-SPACES

Proposition 4.1. Let (X, M,Z) be an ideal m-space. For x € X, the set X — {x}

is Ly«-closed or m-open.

Proof. Suppose X — {z} is not m-open. Then X is the only m-open set containing

X — {z}. This implies that (X — {z}). € X. Hence X — {z} is Z --closed. O

Definition 4.1. An ideal m-space (X, M,Z) is called a T,-space if every Z,--closed
set in (X, M,Z) is M,-closed.

Theorem 4.1. Let (X, M,Z) be an ideal m-space. Then the following properties are
equivalent:
(1) X is a T.-space.

(2) Every singleton of X is either m-closed or M-open.

Proof. (1) = (2): Let x € X. If {z} is not m-closed. Then X — {z} is not m-open
and hence by Proposition 4.1 X — {z} is Z--closed. Since (X, M,T) is a T\-space,
X — {z} is M,-closed and thus {z} is M,-open.

(2) = (1): Let A be an Zy--closed subset of (X, M,Z) and x € A,. We show that
x € A.
Case 1. If {z} is m-closed and = ¢ A, then A C X —{z} € M. Since A is Z,+-closed,

A, € X — {«}. This is contrary to x € A,. Hence z € A.
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Case 2. If {z} is M,-open, since € A, C Cl,(A), then {x} N A # (). Hence x € A.
Thus in both cases we have x € A . Therefore, A, C A and hence A is M,-closed.

This shows that X is a T,-space. O

We recall that a topological space (X, 7) is called a T -space [5] if every g-closed
set of X is closed in X.
Proposition 4.2. If an ideal m-space (X, M,T) is a Ti-space, then the topological
space (X, M,) is a T, -space.

Proof. Let A be any g-closed set of (X, M,). Suppose that A C U and U € M. Then
U € M, and hence Cl,(A) C U. Therefore, A is Z+-closed and by the hypothesis A
is M,-closed. This shows that (X, M,) is a T%—space. O
Definition 4.2. [2] An ideal topological space (X, 7,7) is called a Tz-space if every

Z-g-closed set of X is 7*-closed.

Corollary 4.1. Let (X, 7,7) be an ideal topological space. Then the following impli-

cations hold:
(X,7)is Ty —— (X,7,T) is Ty — (X, 7%) is T1

Proof. The first implication follows from Corollary 3.4 of [2]. By putting 7 = M in

Proposition 4.2, we obtain the second implication. O

ACKNOWLEDGEMENT
The authors wishes to thank the referees for useful comments and suggestions.

REFERENCES

[1] A. Al-Omari and T. Noiri, A topology via M-local functions in ideal m-spaces (submitted).
[2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets
via topological ideals, Math. Japon. 49 (1999), 395-401.



GENERALIZED CLOSED SETS IN IDEAL M-SPACES 183

[3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97
(4) (1990), 295-310.

[4] K. Kuratowski, Topology I, Warszawa, 1933.

[5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.

[6] O. B. Ozbakir and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math.
Hungar., 125 (3) (2009), 227-235.

[7] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. Dunarea Jos-Galati, Ser. Mat.
Fiz. Mec. Teor. Fasc. 11, 18 (23) (2000), 31-41.

(WAL AL-BAYT UNIVERSITY, DEPARTMENT OF MATHEMATICS, MAFRAQ, JORDAN

E-mail address: omarimutah1@yahoo.com

(2) 2049-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142 JAPAN

E-mail address: t.noiri@nifty.com



