Jordan Journal of Mathematics and Statistics (JJMS) 4(3), 2011, pp.171 - 183

GENERALIZED CLOSED SETS IN IDEAL \mathcal{M} -SPACES

AHMAD AL-OMARI (1) AND TAKASHI NOIRI (2)

ABSTRACT. Dontchev et al. [2] introduced and investigated the notion of \mathcal{I} -g-closed sets in ideal topological spaces as a modification of g-closed sets due to Levine [5]. The concept of ideal m-spaces was introduced by Al-Omari and Noiri [1]. In this paper, we introduce and study the concept of generalized closed (\mathcal{I}_{g^*} -closed) sets in an ideal m-space.

1. Introduction

The notion of ideal topological spaces was first studied by Kuratowski [4]. Jankovic and Hamlett [3] obtained the further properties of ideal topological spaces. In 1970, Levine [5] initiated the investigations of generalized closed (g-closed) sets in topological spaces. As a modification of g-closed sets, Dontchev et al. [2] introduced the notion of \mathcal{I} -g-closed sets in an ideal topological space (X, τ, \mathcal{I}), where τ is a topology and \mathcal{I} is an ideal.

Popa and Noiri [7] called a subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X a minimal structure, if \emptyset , $X \in m$. Recently, Ozbakir and Yildirim [6] have defined the minimal local function A_m^* in an ideal minimal space (X, m, \mathcal{I}) . As an analogous

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. ideal, generalized closed sets, ideal m-space.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Aug.19, 2010 Accepted: Oct. 27, 2011.

notion to \mathcal{I} -g-closed sets in (X, τ, \mathcal{I}) , they defined and studied m- \mathcal{I}_g -closed sets in (X, m, \mathcal{I}) .

Quite recently, the present authors called a subcollection \mathcal{M} of $\mathcal{P}(X)$ a minimal structure on X if (1) \emptyset , $X \in \mathcal{M}$ and (2) \mathcal{M} is closed under finite intersections. They defined the local function A_* in an ideal minimal space $(X, \mathcal{M}, \mathcal{I})$. Then $Cl_*(A) = A \cup A_*$ is a Kuratowski closure operator which generates a new topology \mathcal{M}_* containing the minimal structure \mathcal{M} . In this paper, by using the local function A_* we introduce and investigate the notion of \mathcal{I}_{g^*} -closed sets in $(X, \mathcal{M}, \mathcal{I})$. In the last section, we introduce the notion of T_* -spaces and investigate the relationship between T_* -spaces and $T_{\frac{1}{5}}$ -spaces.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

- (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$ is called the local function of A with respect to \mathcal{I} and τ (see [3, 4]) and is simply denoted by A^* instead of $A^*(\mathcal{I}, \tau)$.

Definition 2.1. [1] A subfamily \mathcal{M} of the power set $\mathcal{P}(X)$ of a nonempty set X is called an m-structure on X if \mathcal{M} satisfies the following conditions:

(1) \mathcal{M} contains \emptyset and X,

(2) \mathcal{M} is closed under the finite intersection.

The pair (X, \mathcal{M}) is called an m-space. An m-space (X, \mathcal{M}) with an ideal \mathcal{I} on X is called an ideal m-space and is denoted by $(X, \mathcal{M}, \mathcal{I})$.

A. Al-Omari and T. Noiri [1] introduced the following definitions and results

Definition 2.2. A set $A \in \mathcal{P}(X)$ is called an m-open set if $A \in \mathcal{M}$. $B \in \mathcal{P}(X)$ is called an m-closed set if $X - B \in \mathcal{M}$. We set $mInt(A) = \bigcup \{U : U \subseteq A, U \in \mathcal{M}\}$ and $mCl(A) = \bigcap \{F : A \subseteq F, X - F \in \mathcal{M}\}$.

Definition 2.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For a subset A of X, we define the following set: $A_*(\mathcal{I}, \mathcal{M}) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \mathcal{M}(x)\}$, where $\mathcal{M}(x) = \{U \in \mathcal{M} : x \in U\}$. In this case there is no confusion $A_*(\mathcal{I}, \mathcal{M})$ is briefly denoted by A_* and is called the \mathcal{M} -local function of A with respect to \mathcal{I} and \mathcal{M} .

Lemma 2.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B any subsets of X. Then the following properties hold:

- $(1) (\emptyset)_* = \emptyset,$
- $(2) (A_*)_* \subset A_*,$
- (3) $A_* \cup B_* = (A \cup B)_*$.

Definition 2.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For any subset A of X, we put $Cl_*(A) = A \cup A_*$. Then the operator Cl_* is a Kuratowski closure operator. The topology generated by Cl_* is denoted by \mathcal{M}_* , that is $\mathcal{M}_* = \{U \subseteq X : Cl_*(X - U) = X - U\}$. The closure and the interior of A with respect to \mathcal{M}_* are denoted by $Cl_*(A)$ and $Int_*(A)$, respectively.

Theorem 2.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then \mathcal{M}_* is a topology containing the minimal structure \mathcal{M} .

Lemma 2.2. Let (X, \mathcal{M}) be an m-space, \mathcal{I} and \mathcal{J} be ideals on X, and let A, B be subsets of X. Then the following properties hold:

- (1) If $A \subseteq B$, then $A_* \subseteq B_*$.
- (2) If $\mathcal{I} \subseteq \mathcal{J}$, then $A_*(\mathcal{I}) \supseteq A_*(\mathcal{J})$.
- (3) $A_* = mCl(A_*) \subseteq mCl(A)$
- (4) If $A \subseteq A_*$, then $A_* = mCl(A_*) = mCl(A)$.
- (5) If $A \in \mathcal{I}$, then $A_* = \emptyset$.

3. \mathcal{I}_{a^*} -CLOSED SETS

In this section 3 we investigate the class of generalized m-closed sets in an ideal m-space.

Definition 3.1. A subset A of an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is said to be \mathcal{I}_{g^*} -closed (resp. mg-closed) if $A_* \subseteq U$ (resp. $mCl(A) \subseteq U$) whenever $A \subseteq U$ and $U \in \mathcal{M}$. The complement of an \mathcal{I}_{g^*} -closed (resp. mg-closed) set is said to be \mathcal{I}_{g^*} -open (resp. mg-open).

Definition 3.2. [5] Let (X, τ) be a topological space. A subset A of X is called a g-closed set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 3.3. [2] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called an \mathcal{I} -g-closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$. The complement of an \mathcal{I} -g-closed set is said to be \mathcal{I} -g-open.

Remark 1. Let (X, τ) be a topological space and \mathcal{I} be an ideal on X. If we take the m-structure $\mathcal{M} = \tau$, then \mathcal{I}_{g^*} -closed (resp. mg-closed) sets coincide with \mathcal{I} -g-closed (resp. g-closed) sets.

Proposition 3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then the following properties are hold:

- (1) Every m-closed set is mg-closed.
- (2) Every mg-closed set is \mathcal{I}_{g^*} -closed.

Proposition 3.2. The union of two \mathcal{I}_{g^*} -closed sets in an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is \mathcal{I}_{g^*} -closed.

Proof. Let A, B be two \mathcal{I}_{g^*} -closed sets, and $A \cup B \subseteq U$, where $U \in \mathcal{M}$. Since A and B are \mathcal{I}_{g^*} -closed sets, then $A_* \subseteq U$ and $B_* \subseteq U$. Hence by Lemma 2.1, $A_* \cup B_* = (A \cup B)_* \subseteq U$ and hence $A \cup B$ is \mathcal{I}_{g^*} -closed.

Definition 3.4. A subset A of an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is said to be \mathcal{M}_* -closed (resp. \mathcal{M}_* -dense in itself, \mathcal{M}_* -perfect) if $A_* \subseteq A$ (resp. $A \subseteq A_*$, $A_* = A$).

Proposition 3.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. If A is \mathcal{I}_{g^*} -closed and m-open, then A is \mathcal{M}_* -closed.

Proposition 3.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then every subset of X is \mathcal{I}_{q^*} -closed if and only if every m-open set is \mathcal{M}_* -closed.

Proof. Suppose every subset of X is \mathcal{I}_{g^*} -closed. If U is m-open, then it is \mathcal{I}_{g^*} -closed and hence $U_* \subseteq U$. Hence U is \mathcal{M}_* -closed. Conversely, suppose that every m-open set is \mathcal{M}_* -closed. If A is any subset of X and U is an m-open set such that $A \subseteq U$, then $A_* \subseteq U_* \subseteq Cl_*(U) = U$ and hence A is \mathcal{I}_{g^*} -closed.

Theorem 3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For a subset A of X, the following properties are hold:

- (1) A is \mathcal{I}_{g^*} -closed if and only if $Cl_*(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \mathcal{M}$.
- (2) If A is \mathcal{I}_{g^*} -closed, then the following equivalent properties hold:
 - (a) $Cl_*(A) A$ contains no a nonempty m-closed set.
 - (b) $A_* A$ contains no a nonempty m-closed set.

Proof. (1) Suppose that A is \mathcal{I}_{g^*} -closed. Then $A_* \subseteq U$ whenever $A \subseteq U$ and $U \in \mathcal{M}$ and hence $Cl_*(A) = A \cup A_* \subseteq U$ whenever $A \subseteq U$ and $U \in \mathcal{M}$. The converse is obvious.

(2) Suppose $F \subseteq Cl_*(A) - A$ and F is m-closed. Since $F \subseteq X - A$, $A \subseteq X - F$ and $X - F \in \mathcal{M}$. Since A is \mathcal{I}_{g^*} -closed, $Cl_*(A) \subseteq X - F$ and $F \subseteq X - Cl_*(A)$. Therefore, $F \subseteq Cl_*(A) \cap (X - Cl_*(A)) = \emptyset$. Thus, (a) is proved.

(a)
$$\Leftrightarrow$$
 (b): This follows from the fact that $Cl_*(A) - A = A_* - A$.

Corollary 3.1. For a subset of an ideal m-space $(X, \mathcal{M}, \mathcal{I})$, the following diagram holds:

$$m\text{-}closed \longrightarrow \mathcal{M}_*\text{-}closed$$

$$\downarrow \qquad \qquad \downarrow$$

$$mg\text{-}closed \longrightarrow \mathcal{I}_{g^*}\text{-}closed$$

None of these implications in Corollary 3.1 is reversible as shown by the below examples.

Example 3.1. Let $X = \{a, b, c\}$, $\mathcal{M} = \{\emptyset, X, \{a\}, \{b\}, \{b, c\}\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{a, b\}$ is an mg-closed set but it is not \mathcal{M}_* -closed.

Example 3.2. Let $X = \{a, b, c, d\}$, $\mathcal{M} = \{\emptyset, X, \{a, c\}, \{d\}\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{a\}$ is an \mathcal{M}_* -closed set but it is not mg-closed.

Remark 2. (1) By Lemma 2.2, since $I_* = \emptyset$, for every $I \in \mathcal{I}$, I is \mathcal{I}_{g^*} -closed for every $I \in \mathcal{I}$.

(2) By Lemma 2.1, since $(A_*)_* \subseteq A_*$, it follows that A_* is always \mathcal{I}_{g^*} -closed for every subset A of X.

Corollary 3.2. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be an \mathcal{I}_{g^*} -closed set. Then the following properties are equivalent:

- (1) A is an \mathcal{M}_* -closed set;
- (2) $Cl_*(A) A$ is an m-closed set;
- (3) $A_* A$ is an m-closed set.

Proof. (1) \Rightarrow (2): If A is \mathcal{M}_* -closed, then $Cl_*(A) = A \cup A_* = A$ and hence $Cl_*(A) - A = \emptyset$ is m-closed.

- (2) \Rightarrow (3): This follows from the fact that $Cl_*(A) A = A_* A$.
- (3) \Rightarrow (1): Let $A_* A$ be m-closed. Since A is \mathcal{I}_{g^*} -closed, by Theorem 3.1, $A_* A = \emptyset$ and hence $A_* \subseteq A$. Therefore $Cl_*(A) = A \cup A_* = A$ and A is \mathcal{M}_* -closed.

Corollary 3.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. Then A is \mathcal{M}_* -closed if and only if $A_* - A$ is m-closed and A is \mathcal{I}_{g^*} -closed.

Proof. Let A be an \mathcal{M}_* -closed set. Then $Cl_*(A) = A_* \cup A = A$ and $A_* \subseteq A$. Since $A_* - A = \emptyset$, then $A_* - A$ is an m-closed set. By Corollary 3.1, every \mathcal{M}_* -closed set is \mathcal{I}_{g^*} -closed and hence A is \mathcal{I}_{g^*} -closed.

Conversely. Let $A_* - A$ be m-closed and A is \mathcal{I}_{g^*} -closed. Then by Corollary 3.2, A is \mathcal{M}_* -closed.

Theorem 3.2. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. If A is \mathcal{M}_* -dense in itself and \mathcal{I}_{g^*} -closed in X, then A is mg-closed.

Proof. Suppose A is an \mathcal{M}_* -dense in itself and \mathcal{I}_{g^*} -closed subset of X. If $U \in \mathcal{M}$ and $A \subseteq U$, then by Theorem 3.1, $Cl_*(A) = A_* \cup A = A_* \subseteq U$. Since A is \mathcal{M}_* -dense in itself, by Lemma 2.2 $mCl(A) = A_* \subseteq U$ and hence A is mg-closed.

Theorem 3.3. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X. If $A \subseteq B \subseteq Cl_*(A)$ and A is \mathcal{I}_{g^*} -closed, then B is \mathcal{I}_{g^*} -closed.

Proof. Let $B \subseteq U$ and $U \in \mathcal{M}$. Since $A \subseteq B \subseteq U$ and A is \mathcal{I}_{g^*} -closed, then by Theorem 3.1, $Cl_*(A) \subseteq U$ and hence $Cl_*(B) \subseteq Cl_*(Cl_*(A)) = Cl_*(A) \subseteq U$. Therefore, by Theorem 3.1, B is \mathcal{I}_{g^*} -closed.

Corollary 3.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X. If $A \subseteq B \subseteq A_*$ and A is \mathcal{I}_{g^*} -closed, then A and B are mg-closed.

Proof. Let $A \subseteq B \subseteq A_*$. Then by Lemmas 2.1 and 2.2, we have $A_* \subseteq B_* \subseteq (A_*)_* \subseteq A_*$ and hence $A_* = B_*$. Therefore, A and B are \mathcal{M}_* -dense in itself. Since $A \subseteq B \subseteq A_* \subseteq Cl_*(A)$, then by Theorem 3.3, B is \mathcal{I}_{g^*} -closed. Therefore, by Theorem 3.2, A and B are mg-closed.

Corollary 3.5. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and $\mathcal{I} = \emptyset$. Then A is \mathcal{I}_{g^*} -closed if and only if A is mg-closed.

Proof. The proof follows from the fact that for $\mathcal{I} = \emptyset$, $A \subseteq mCl(A) = A_*$ and hence every subset of X is \mathcal{M}_* -dense in itself. Therefore, by Theorem 3.2 every \mathcal{I}_{g^*} -closed set is mg-closed.

The following theorem gives a characterization of \mathcal{I}_{q^*} -open sets.

Theorem 3.4. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. Then A is \mathcal{I}_{g^*} -open if and only if $F \subseteq Int_*(A)$ whenever F is m-closed and $F \subseteq A$.

Proof. Suppose A is \mathcal{I}_{g^*} -open. If F is m-closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $Cl_*(X - A) \subseteq X - F$. Therefore, $F \subseteq Int_*(A)$. Conversely, suppose the condition holds. Let $U \in \mathcal{M}$ such that $X - A \subseteq U$. Then $X - U \subseteq A$ and so $X - U \subseteq Int_*(A)$ which implies that $Cl_*(X - A) \subseteq U$. Therefore, X - A is \mathcal{I}_{g^*} -closed and so A is \mathcal{I}_{g^*} -open.

Theorem 3.5. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X. If A is \mathcal{I}_{g^*} -open and $Int_*(A) \subseteq B \subseteq A$, then B is \mathcal{I}_{g^*} -open.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4.

Theorem 3.6. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A be a subset of X. Then for the following statements, (1) implies (2) and (2) is equivalent to (3).

- (1) A is \mathcal{I}_{q^*} -closed.
- (2) $A \cup (X A_*)$ is \mathcal{I}_{q^*} -closed.
- (3) $A_* A$ is \mathcal{I}_{g^*} -open.

Proof. (1) \Rightarrow (2): Suppose A is \mathcal{I}_{g^*} -closed. If $U \in \mathcal{M}$ and $(A \cup (X - A_*)) \subseteq U$, then $X - U \subseteq X - (A \cup (X - A_*)) = A_* - A$. Since A is \mathcal{I}_{g^*} -closed, by Theorem 3.1, it follows that $X - U = \emptyset$ and hence X = U. Since X is the only m-open set containing $A \cup (X - A_*)$, clearly, $A \cup (X - A_*)$ is \mathcal{I}_{g^*} -closed.

(2)
$$\Leftrightarrow$$
 (3): This follows from the fact that $A \cup (X - A_*) = X - (A_* - A)$.

Definition 3.5. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and A, B be subsets of X such that $B \subseteq A$. Then

- (1) The family $\{U \subseteq A : U = V \cap A \text{ for some } V \in \mathcal{M}\}$ is an \mathcal{M} -structure on A and is denoted by \mathcal{M}_A .
- (2) The family $\{I \subseteq A : I \in \mathcal{I}\}$ is an ideal on A and is denoted by \mathcal{I}_A .

(3) For the ideal m-space $(A, \mathcal{M}_A, \mathcal{I}_A)$, the local function $B_{*(A)}$ is defined as follows: $B_{*(A)} = \{x \in A : B \cap U \notin \mathcal{I}_A \text{ for any } U \in \mathcal{M}_A(x)\}$, where $\mathcal{M}_A(x) = \{U \in \mathcal{M}_A : x \in U\}$.

Lemma 3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space and $B \subseteq A \subseteq X$. Then $B_{*(A)} = B_* \cap A$ holds.

Proof. First we prove $B_{*(A)} \subseteq B_* \cap A$. Let $x \notin B_* \cap A$. We consider the following two cases:

Case 1. $x \notin A$. Since $B_{*(A)} \subseteq A$, then $x \notin B_{*(A)}$.

Case 2. $x \in A$. In this case $x \notin B_*$. There exists a set $V \in \mathcal{M}$ such that $x \in V$ and $V \cap B \in \mathcal{I}$. Since $x \in A$, we have a set $A \cap V \in \mathcal{M}_A$ such that $x \in A \cap V$ and $(B \cap V) \cap A \in \mathcal{I}_A$. Consequently $x \notin B_{*(A)}$.

Secondly. we prove $B_* \cap A \subseteq B_{*(A)}$. Let $x \notin B_{*(A)}$. Then, there exists $V \in \mathcal{M}$ such that $x \in V \cap A \in \mathcal{M}_A$ and $(V \cap A) \cap B \in \mathcal{I}_A$. Since $B \subseteq A$, then $V \cap B \in \mathcal{I}_A \subseteq \mathcal{I}$, thus $V \cap B \in \mathcal{I}$ for some $V \in \mathcal{M}$ containing x. This shows that $x \notin B_*$. Therefore, we obtain $x \notin B_* \cap A$.

Theorem 3.7. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Let $B \subseteq A \subseteq X$, where A is an \mathcal{I}_{g^*} -closed and m-open set. Then B is \mathcal{I}_{g^*} -closed in $(A, \mathcal{M}_A, \mathcal{I}_A)$ if and only if B is \mathcal{I}_{g^*} -closed in $(X, \mathcal{M}, \mathcal{I})$.

Proof. We first note that since $B \subseteq A$ and A is both \mathcal{I}_{g^*} -closed and m-open, then $A_* \subseteq A$ and thus $B_* \subseteq A_* \subseteq A$. By Lemma 3.1, $A \cap B_* = B_{*(A)}$ and we have $B_* = B_{*(A)} \subseteq A$.

Necessity. Suppose that B is \mathcal{I}_{g^*} -closed in A. If U is an m-open subset of X such that $B \subseteq U$, then $B = B \cap A \subseteq U \cap A$, where $U \cap A$ is m-open in A. Since B is \mathcal{I}_{g^*} -closed in A, $B_* = B_{*(A)} \subseteq U \cap A \subseteq U$. Therefore B is \mathcal{I}_{g^*} -closed in X.

Sufficiency. Suppose that B is \mathcal{I}_{g^*} -closed in X. Let U be an m-open subset of A such that $B \subseteq U$. Then $U = V \cap A$ for some m-open subset V of X. Since $B \subseteq V$ and B is \mathcal{I}_{g^*} -closed in X, $B_* \subseteq V$. Thus $B_{*(A)} = B_* \cap A \subseteq V \cap A = U$. Therefore B is \mathcal{I}_{g^*} -closed in A.

4. T_* -spaces

Proposition 4.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. For $x \in X$, the set $X - \{x\}$ is \mathcal{I}_{g^*} -closed or m-open.

Proof. Suppose $X - \{x\}$ is not m-open. Then X is the only m-open set containing $X - \{x\}$. This implies that $(X - \{x\})_* \subseteq X$. Hence $X - \{x\}$ is \mathcal{I}_{g^*} -closed. \square

Definition 4.1. An ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is called a T_* -space if every \mathcal{I}_{g^*} -closed set in $(X, \mathcal{M}, \mathcal{I})$ is \mathcal{M}_* -closed.

Theorem 4.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal m-space. Then the following properties are equivalent:

- (1) X is a T_* -space.
- (2) Every singleton of X is either m-closed or \mathcal{M}_* -open.

Proof. (1) \Rightarrow (2): Let $x \in X$. If $\{x\}$ is not m-closed. Then $X - \{x\}$ is not m-open and hence by Proposition 4.1 $X - \{x\}$ is \mathcal{I}_{g^*} -closed. Since $(X, \mathcal{M}, \mathcal{I})$ is a T_* -space, $X - \{x\}$ is \mathcal{M}_* -closed and thus $\{x\}$ is \mathcal{M}_* -open.

 $(2) \Rightarrow (1)$: Let A be an \mathcal{I}_{g^*} -closed subset of $(X, \mathcal{M}, \mathcal{I})$ and $x \in A_*$. We show that $x \in A$.

Case 1. If $\{x\}$ is m-closed and $x \notin A$, then $A \subseteq X - \{x\} \in \mathcal{M}$. Since A is \mathcal{I}_{g^*} -closed, $A_* \subseteq X - \{x\}$. This is contrary to $x \in A_*$. Hence $x \in A$.

Case 2. If $\{x\}$ is \mathcal{M}_* -open, since $x \in A_* \subseteq Cl_*(A)$, then $\{x\} \cap A \neq \emptyset$. Hence $x \in A$. Thus in both cases we have $x \in A$. Therefore, $A_* \subseteq A$ and hence A is \mathcal{M}_* -closed. This shows that X is a T_* -space.

We recall that a topological space (X, τ) is called a $T_{\frac{1}{2}}$ -space [5] if every g-closed set of X is closed in X.

Proposition 4.2. If an ideal m-space $(X, \mathcal{M}, \mathcal{I})$ is a T_* -space, then the topological space (X, \mathcal{M}_*) is a $T_{\frac{1}{2}}$ -space.

Proof. Let A be any g-closed set of (X, \mathcal{M}_*) . Suppose that $A \subseteq U$ and $U \in \mathcal{M}$. Then $U \in \mathcal{M}_*$ and hence $Cl_*(A) \subseteq U$. Therefore, A is \mathcal{I}_{g^*} -closed and by the hypothesis A is \mathcal{M}_* -closed. This shows that (X, \mathcal{M}_*) is a $T_{\frac{1}{2}}$ -space.

Definition 4.2. [2] An ideal topological space (X, τ, \mathcal{I}) is called a $T_{\mathcal{I}}$ -space if every \mathcal{I} -g-closed set of X is τ^* -closed.

Corollary 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following implications hold:

$$(X,\tau)$$
 is $T_{\frac{1}{2}} \longrightarrow (X,\tau,\mathcal{I})$ is $T_{\mathcal{I}} \longrightarrow (X,\tau^*)$ is $T_{\frac{1}{2}}$

Proof. The first implication follows from Corollary 3.4 of [2]. By putting $\tau = \mathcal{M}$ in Proposition 4.2, we obtain the second implication.

ACKNOWLEDGEMENT

The authors wishes to thank the referees for useful comments and suggestions.

References

- [1] A. Al-Omari and T. Noiri, A topology via M-local functions in ideal m-spaces (submitted).
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon. 49 (1999), 395-401.

- [3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [4] K. Kuratowski, Topology I, Warszawa, 1933.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- [6] O. B. Ozbakir and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125 (3) (2009), 227-235.
- [7] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. Dunarea Jos-Galati, Ser. Mat. Fiz. Mec. Teor. Fasc. II, 18 (23) (2000), 31-41.
- $^{(1)}$ AL AL-BAYT UNIVERSITY, DEPARTMENT OF MATHEMATICS, MAFRAQ, JORDAN $E\text{-}mail\ address:}$ omarimutah1@yahoo.com
- $^{(2)}$ 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan $E\text{-}mail\ address:}$ t.noiri@nifty.com