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GENERALIZED CLOSED SETS IN IDEAL M-SPACES

AHMAD AL-OMARI (1) AND TAKASHI NOIRI (2)

Abstract. Dontchev et al. [2] introduced and investigated the notion of I-g-closed

sets in ideal topological spaces as a modification of g-closed sets due to Levine [5].

The concept of ideal m-spaces was introduced by Al-Omari and Noiri [1]. In this

paper, we introduce and study the concept of generalized closed (Ig∗-closed) sets

in an ideal m-space.

1. Introduction

The notion of ideal topological spaces was first studied by Kuratowski [4]. Jankovic

and Hamlett [3] obtained the further properties of ideal topological spaces. In 1970,

Levine [5] initiated the investigations of generalized closed (g-closed) sets in topo-

logical spaces. As a modification of g-closed sets, Dontchev et al. [2] introduced the

notion of I-g-closed sets in an ideal topological space (X, τ, I), where τ is a topology

and I is an ideal.

Popa and Noiri [7] called a subfamily m of the power set P(X) of a nonempty set

X a minimal structure, if ∅, X ∈ m. Recently, Ozbakir and Yildirim [6] have defined

the minimal local function A∗
m in an ideal minimal space (X, m, I). As an analogous
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notion to I-g-closed sets in (X, τ, I), they defined and studied m-Ig-closed sets in

(X, m, I).

Quite recently, the present authors called a subcollection M of P(X) a minimal

structure on X if (1) ∅, X ∈M and (2) M is closed under finite intersections. They

defined the local function A∗ in an ideal minimal space (X,M, I). Then Cl∗(A) = A∪
A∗ is a Kuratowski closure operator which generates a new topology M∗ containing

the minimal structure M. In this paper, by using the local function A∗ we introduce

and investigate the notion of Ig∗-closed sets in (X,M, I). In the last section, we

introduce the notion of T∗-spaces and investigate the relationship between T∗-spaces

and T 1
2
-spaces.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a

subset A of a topological space (X, τ), Cl(A) and Int(A) denote the closure and the

interior of A in (X, τ), respectively. An ideal I on a topological space (X, τ) is a

non-empty collection of subsets of X which satisfies the following properties:

(1) A ∈ I and B ⊆ A implies that B ∈ I.

(2) A ∈ I and B ∈ I implies A ∪B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on X and is

denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) = {x ∈ X : A ∩ U /∈ I for every

open set U containing x} is called the local function of A with respect to I and τ

(see [3, 4]) and is simply denoted by A∗ instead of A∗(I, τ).

Definition 2.1. [1] A subfamily M of the power set P(X) of a nonempty set X is

called an m-structure on X if M satisfies the following conditions:

(1) M contains ∅ and X,
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(2) M is closed under the finite intersection.

The pair (X,M) is called an m-space. An m-space (X,M) with an ideal I on X is

called an ideal m-space and is denoted by (X,M, I).

A. Al-Omari and T. Noiri [1] introduced the following definitions and results

Definition 2.2. A set A ∈ P(X) is called an m-open set if A ∈ M. B ∈ P(X) is

called an m-closed set if X − B ∈ M. We set mInt(A) = ∪{U : U ⊆ A,U ∈ M}
and mCl(A) = ∩{F : A ⊆ F, X − F ∈M}.

Definition 2.3. Let (X,M, I) be an ideal m-space. For a subset A of X, we define

the following set: A∗(I,M) = {x ∈ X : A ∩ U /∈ I for every U ∈ M(x)}, where

M(x) = {U ∈ M : x ∈ U}. In this case there is no confusion A∗(I,M) is briefly

denoted by A∗ and is called the M-local function of A with respect to I and M.

Lemma 2.1. Let (X,M, I) be an ideal m-space and A, B any subsets of X. Then

the following properties hold:

(1) (∅)∗ = ∅,
(2) (A∗)∗ ⊂ A∗,

(3) A∗ ∪B∗ = (A ∪B)∗.

Definition 2.4. Let (X,M, I) be an ideal m-space. For any subset A of X, we put

Cl∗(A) = A ∪ A∗. Then the operator Cl∗ is a Kuratowski closure operator. The

topology generated by Cl∗ is denoted by M∗, that is M∗ = {U ⊆ X : Cl∗(X −U) =

X−U}. The closure and the interior of A with respect to M∗ are denoted by Cl∗(A)

and Int∗(A), respectively.

Theorem 2.1. Let (X,M, I) be an ideal m-space. Then M∗ is a topology containing

the minimal structure M.



174 AHMAD AL-OMARI AND TAKASHI NOIRI

Lemma 2.2. Let (X,M) be an m-space, I and J be ideals on X, and let A, B be

subsets of X. Then the following properties hold:

(1) If A ⊆ B, then A∗ ⊆ B∗.

(2) If I ⊆ J , then A∗(I) ⊇ A∗(J ).

(3) A∗ = mCl(A∗) ⊆ mCl(A)

(4) If A ⊆ A∗, then A∗ = mCl(A∗) = mCl(A).

(5) If A ∈ I, then A∗ = ∅.

3. Ig∗-closed sets

In this section 3 we investigate the class of generalized m-closed sets in an ideal

m-space.

Definition 3.1. A subset A of an ideal m-space (X,M, I) is said to be Ig∗-closed

(resp. mg-closed) if A∗ ⊆ U (resp. mCl(A) ⊆ U) whenever A ⊆ U and U ∈ M.

The complement of an Ig∗-closed (resp. mg-closed) set is said to be Ig∗-open (resp.

mg-open).

Definition 3.2. [5] Let (X, τ) be a topological space. A subset A of X is called a

g-closed set if Cl(A) ⊆ U whenever A ⊆ U and U is open.

Definition 3.3. [2] Let (X, τ, I) be an ideal topological space. A subset A of X is

called an I-g-closed set if A∗ ⊆ U whenever A ⊆ U and U ∈ τ . The complement of

an I-g-closed set is said to be I-g-open.

Remark 1. Let (X, τ) be a topological space and I be an ideal on X. If we take the

m-structure M = τ , then Ig∗-closed (resp. mg-closed) sets coincide with I-g-closed

(resp. g-closed) sets.
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Proposition 3.1. Let (X,M, I) be an ideal m-space. Then the following properties

are hold:

(1) Every m-closed set is mg-closed.

(2) Every mg-closed set is Ig∗-closed.

Proposition 3.2. The union of two Ig∗-closed sets in an ideal m-space (X,M, I) is

Ig∗-closed.

Proof. Let A, B be two Ig∗-closed sets, and A ∪ B ⊆ U , where U ∈ M. Since

A and B are Ig∗-closed sets, then A∗ ⊆ U and B∗ ⊆ U . Hence by Lemma 2.1,

A∗ ∪B∗ = (A ∪B)∗ ⊆ U and hence A ∪B is Ig∗-closed. ¤

Definition 3.4. A subset A of an ideal m-space (X,M, I) is said to be M∗-closed

(resp. M∗-dense in itself, M∗-perfect) if A∗ ⊆ A (resp. A ⊆ A∗, A∗ = A).

Proposition 3.3. Let (X,M, I) be an ideal m-space and A be a subset of X. If A

is Ig∗-closed and m-open, then A is M∗-closed.

Proposition 3.4. Let (X,M, I) be an ideal m-space. Then every subset of X is

Ig∗-closed if and only if every m-open set is M∗-closed.

Proof. Suppose every subset of X is Ig∗-closed. If U is m-open, then it is Ig∗-closed

and hence U∗ ⊆ U . Hence U is M∗-closed. Conversely, suppose that every m-open

set is M∗-closed. If A is any subset of X and U is an m-open set such that A ⊆ U ,

then A∗ ⊆ U∗ ⊆ Cl∗(U) = U and hence A is Ig∗-closed.

¤
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Theorem 3.1. Let (X,M, I) be an ideal m-space. For a subset A of X, the following

properties are hold:

(1) A is Ig∗-closed if and only if Cl∗(A) ⊆ U whenever A ⊆ U and U ∈M.

(2) If A is Ig∗-closed, then the following equivalent properties hold:

(a) Cl∗(A)− A contains no a nonempty m-closed set.

(b) A∗ − A contains no a nonempty m-closed set.

Proof. (1) Suppose that A is Ig∗-closed. Then A∗ ⊆ U whenever A ⊆ U and U ∈M
and hence Cl∗(A) = A ∪ A∗ ⊆ U whenever A ⊆ U and U ∈ M. The converse is

obvious.

(2) Suppose F ⊆ Cl∗(A)−A and F is m-closed. Since F ⊆ X −A, A ⊆ X − F and

X−F ∈M. Since A is Ig∗-closed, Cl∗(A) ⊆ X−F and F ⊆ X−Cl∗(A). Therefore,

F ⊆ Cl∗(A) ∩ (X − Cl∗(A)) = ∅. Thus, (a) is proved.

(a) ⇔ (b): This follows from the fact that Cl∗(A)− A = A∗ − A. ¤

Corollary 3.1. For a subset of an ideal m-space (X,M, I), the following diagram

holds:

m-closed

²²

// M∗-closed

²²

mg-closed // Ig∗-closed

None of these implications in Corollary 3.1 is reversible as shown by the below

examples.

Example 3.1. Let X = {a, b, c}, M = {∅, X, {a}, {b}, {b, c}}, and I = {∅, {a}}.
Then A = {a, b} is an mg-closed set but it is not M∗-closed.

Example 3.2. Let X = {a, b, c, d}, M = {∅, X, {a, c}, {d}}, and I = {∅, {a}}. Then

A = {a} is an M∗-closed set but it is not mg-closed.
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Remark 2. (1) By Lemma 2.2, since I∗ = ∅, for every I ∈ I, I is Ig∗-closed for every

I ∈ I.

(2) By Lemma 2.1, since (A∗)∗ ⊆ A∗, it follows that A∗ is always Ig∗-closed for

every subset A of X.

Corollary 3.2. Let (X,M, I) be an ideal m-space and A be an Ig∗-closed set. Then

the following properties are equivalent:

(1) A is an M∗-closed set;

(2) Cl∗(A)− A is an m-closed set;

(3) A∗ − A is an m-closed set.

Proof. (1) ⇒ (2): If A is M∗-closed, then Cl∗(A) = A∪A∗ = A and hence Cl∗(A)−
A = ∅ is m-closed.

(2) ⇒ (3): This follows from the fact that Cl∗(A)− A = A∗ − A.

(3) ⇒ (1): Let A∗−A be m-closed. Since A is Ig∗-closed, by Theorem 3.1, A∗−A = ∅
and hence A∗ ⊆ A. Therefore Cl∗(A) = A ∪ A∗ = A and A is M∗-closed. ¤

Corollary 3.3. Let (X,M, I) be an ideal m-space and A be a subset of X. Then A

is M∗-closed if and only if A∗ − A is m-closed and A is Ig∗-closed.

Proof. Let A be an M∗-closed set. Then Cl∗(A) = A∗ ∪ A = A and A∗ ⊆ A. Since

A∗ − A = ∅, then A∗ − A is an m-closed set. By Corollary 3.1, every M∗-closed set

is Ig∗-closed and hence A is Ig∗-closed.

Conversely. Let A∗−A be m-closed and A is Ig∗-closed. Then by Corollary 3.2, A is

M∗-closed. ¤

Theorem 3.2. Let (X,M, I) be an ideal m-space. If A is M∗-dense in itself and

Ig∗-closed in X, then A is mg-closed.
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Proof. Suppose A is an M∗-dense in itself and Ig∗-closed subset of X. If U ∈M and

A ⊆ U , then by Theorem 3.1, Cl∗(A) = A∗ ∪ A = A∗ ⊆ U . Since A is M∗-dense in

itself, by Lemma 2.2 mCl(A) = A∗ ⊆ U and hence A is mg-closed. ¤

Theorem 3.3. Let (X,M, I) be an ideal m-space and A, B be subsets of X. If

A ⊆ B ⊆ Cl∗(A) and A is Ig∗-closed, then B is Ig∗-closed.

Proof. Let B ⊆ U and U ∈ M. Since A ⊆ B ⊆ U and A is Ig∗-closed, then

by Theorem 3.1, Cl∗(A) ⊆ U and hence Cl∗(B) ⊆ Cl∗(Cl∗(A)) = Cl∗(A) ⊆ U .

Therefore, by Theorem 3.1, B is Ig∗-closed. ¤

Corollary 3.4. Let (X,M, I) be an ideal m-space and A, B be subsets of X. If

A ⊆ B ⊆ A∗ and A is Ig∗-closed, then A and B are mg-closed.

Proof. Let A ⊆ B ⊆ A∗. Then by Lemmas 2.1 and 2.2, we have A∗ ⊆ B∗ ⊆
(A∗)∗ ⊆ A∗ and hence A∗ = B∗. Therefore, A and B are M∗-dense in itself. Since

A ⊆ B ⊆ A∗ ⊆ Cl∗(A), then by Theorem 3.3, B is Ig∗-closed. Therefore, by

Theorem 3.2, A and B are mg-closed. ¤

Corollary 3.5. Let (X,M, I) be an ideal m-space and I = ∅. Then A is Ig∗-closed

if and only if A is mg-closed.

Proof. The proof follows from the fact that for I = ∅, A ⊆ mCl(A) = A∗ and hence

every subset of X is M∗-dense in itself. Therefore, by Theorem 3.2 every Ig∗-closed

set is mg-closed. ¤

The following theorem gives a characterization of Ig∗-open sets.

Theorem 3.4. Let (X,M, I) be an ideal m-space and A be a subset of X. Then A

is Ig∗-open if and only if F ⊆ Int∗(A) whenever F is m-closed and F ⊆ A.
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Proof. Suppose A is Ig∗-open. If F is m-closed and F ⊆ A, then X−A ⊆ X−F and

so Cl∗(X−A) ⊆ X−F . Therefore, F ⊆ Int∗(A). Conversely, suppose the condition

holds. Let U ∈M such that X −A ⊆ U . Then X −U ⊆ A and so X −U ⊆ Int∗(A)

which implies that Cl∗(X − A) ⊆ U . Therefore, X − A is Ig∗-closed and so A is

Ig∗-open. ¤

Theorem 3.5. Let (X,M, I) be an ideal m-space and A, B be subsets of X. If A

is Ig∗-open and Int∗(A) ⊆ B ⊆ A, then B is Ig∗-open.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4. ¤

Theorem 3.6. Let (X,M, I) be an ideal m-space and A be a subset of X. Then for

the following statements, (1) implies (2) and (2) is equivalent to (3).

(1) A is Ig∗-closed.

(2) A ∪ (X − A∗) is Ig∗-closed.

(3) A∗ − A is Ig∗-open.

Proof. (1) ⇒ (2): Suppose A is Ig∗-closed. If U ∈M and (A∪ (X −A∗)) ⊆ U , then

X − U ⊆ X − (A ∪ (X − A∗)) = A∗ − A. Since A is Ig∗-closed, by Theorem 3.1, it

follows that X−U = ∅ and hence X = U . Since X is the only m-open set containing

A ∪ (X − A∗), clearly, A ∪ (X − A∗) is Ig∗-closed.

(2) ⇔ (3): This follows from the fact that A ∪ (X − A∗) = X − (A∗ − A). ¤

Definition 3.5. Let (X,M, I) be an ideal m-space and A, B be subsets of X such

that B ⊆ A. Then

(1) The family {U ⊆ A : U = V ∩ A for some V ∈ M} is an M-structure on A

and is denoted by MA.

(2) The family {I ⊆ A : I ∈ I} is an ideal on A and is denoted by IA.
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(3) For the ideal m-space (A,MA, IA), the local function B∗(A) is defined as

follows: B∗(A) = {x ∈ A : B ∩ U /∈ IA for any U ∈MA(x)}, where

MA(x) = {U ∈MA : x ∈ U}.
Lemma 3.1. Let (X,M, I) be an ideal m-space and B ⊆ A ⊆ X. Then

B∗(A) = B∗ ∩ A holds.

Proof. First we prove B∗(A) ⊆ B∗ ∩ A. Let x /∈ B∗ ∩ A. We consider the following

two cases:

Case 1. x /∈ A. Since B∗(A) ⊆ A, then x /∈ B∗(A).

Case 2. x ∈ A. In this case x /∈ B∗. There exists a set V ∈ M such that x ∈ V

and V ∩ B ∈ I. Since x ∈ A, we have a set A ∩ V ∈ MA such that x ∈ A ∩ V and

(B ∩ V ) ∩ A ∈ IA. Consequently x /∈ B∗(A).

Secondly. we prove B∗ ∩ A ⊆ B∗(A). Let x /∈ B∗(A). Then, there exists V ∈ M such

that x ∈ V ∩ A ∈ MA and (V ∩ A) ∩ B ∈ IA. Since B ⊆ A, then V ∩ B ∈ IA ⊆ I,

thus V ∩ B ∈ I for some V ∈ M containing x. This shows that x /∈ B∗. Therefore,

we obtain x /∈ B∗ ∩ A. ¤

Theorem 3.7. Let (X,M, I) be an ideal m-space. Let B ⊆ A ⊆ X, where A is an

Ig∗-closed and m-open set. Then B is Ig∗-closed in (A,MA, IA) if and only if B is

Ig∗-closed in (X,M, I).

Proof. We first note that since B ⊆ A and A is both Ig∗-closed and m-open, then

A∗ ⊆ A and thus B∗ ⊆ A∗ ⊆ A. By Lemma 3.1, A ∩ B∗ = B∗(A) and we have

B∗ = B∗(A) ⊆ A.

Necessity. Suppose that B is Ig∗-closed in A. If U is an m-open subset of X such

that B ⊆ U , then B = B ∩ A ⊆ U ∩ A, where U ∩ A is m-open in A. Since B is

Ig∗-closed in A, B∗ = B∗(A) ⊆ U ∩ A ⊆ U . Therefore B is Ig∗-closed in X.
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Sufficiency. Suppose that B is Ig∗-closed in X. Let U be an m-open subset of A

such that B ⊆ U . Then U = V ∩ A for some m-open subset V of X. Since B ⊆ V

and B is Ig∗-closed in X, B∗ ⊆ V . Thus B∗(A) = B∗ ∩A ⊆ V ∩A = U . Therefore B

is Ig∗-closed in A.

¤

4. T∗-spaces

Proposition 4.1. Let (X,M, I) be an ideal m-space. For x ∈ X, the set X − {x}
is Ig∗-closed or m-open.

Proof. Suppose X − {x} is not m-open. Then X is the only m-open set containing

X − {x}. This implies that (X − {x})∗ ⊆ X. Hence X − {x} is Ig∗-closed. ¤

Definition 4.1. An ideal m-space (X,M, I) is called a T∗-space if every Ig∗-closed

set in (X,M, I) is M∗-closed.

Theorem 4.1. Let (X,M, I) be an ideal m-space. Then the following properties are

equivalent:

(1) X is a T∗-space.

(2) Every singleton of X is either m-closed or M∗-open.

Proof. (1) ⇒ (2): Let x ∈ X. If {x} is not m-closed. Then X − {x} is not m-open

and hence by Proposition 4.1 X − {x} is Ig∗-closed. Since (X,M, I) is a T∗-space,

X − {x} is M∗-closed and thus {x} is M∗-open.

(2) ⇒ (1): Let A be an Ig∗-closed subset of (X,M, I) and x ∈ A∗. We show that

x ∈ A.

Case 1. If {x} is m-closed and x /∈ A, then A ⊆ X−{x} ∈ M. Since A is Ig∗-closed,

A∗ ⊆ X − {x}. This is contrary to x ∈ A∗. Hence x ∈ A.
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Case 2. If {x} is M∗-open, since x ∈ A∗ ⊆ Cl∗(A), then {x} ∩A 6= ∅. Hence x ∈ A.

Thus in both cases we have x ∈ A . Therefore, A∗ ⊆ A and hence A is M∗-closed.

This shows that X is a T∗-space. ¤

We recall that a topological space (X, τ) is called a T 1
2
-space [5] if every g-closed

set of X is closed in X.

Proposition 4.2. If an ideal m-space (X,M, I) is a T∗-space, then the topological

space (X,M∗) is a T 1
2
-space.

Proof. Let A be any g-closed set of (X,M∗). Suppose that A ⊆ U and U ∈M. Then

U ∈M∗ and hence Cl∗(A) ⊆ U . Therefore, A is Ig∗-closed and by the hypothesis A

is M∗-closed. This shows that (X,M∗) is a T 1
2
-space. ¤

Definition 4.2. [2] An ideal topological space (X, τ, I) is called a TI-space if every

I-g-closed set of X is τ ∗-closed.

Corollary 4.1. Let (X, τ, I) be an ideal topological space. Then the following impli-

cations hold:

(X, τ) is T 1
2

// (X, τ, I) is TI // (X, τ ∗) is T 1
2

Proof. The first implication follows from Corollary 3.4 of [2]. By putting τ = M in

Proposition 4.2, we obtain the second implication. ¤
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