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BOUNDEDNESS OF CONVOLUTION OPERATORS ON
TRIEBEL-LIZORKIN SPACES VIA FOURIER TRANSFORM

ESTIMATES

XIA XIA (1), SHANZHEN LU (2)

Abstract. In this paper, we study the boundedness of some convolution operators

defined by Tf =
∑

k∈Z σk∗f on the homogeneous Triebel-Lizorkin spaces by Fourier

transform estimates. As applications, we improve some known results, by proving

the boundedness for singular integral operators with rough kernels on homogeneous

Triebel-Lizorkin spaces.

1. Introduction

Let

TΩ,hf(x) =

∫

Rn

Ω(y)

|y|n h(|y|)f(x− y)dy ,(1.1)
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where h is a measurable function on R+ and Ω is a homogeneous function of degree

zero such that Ω ∈ L1(Sn−1) and

(1.2)

∫

Sn−1

Ω(x′)dσ(x′) = 0 .

If h = 1, then we denote TΩ,h by TΩ. This operator was first studied by Calderon

and Zygmund in [2] and [3]. In [8], Fefferman generalized this Calderon-Zygmund

singular integral by replacing the kernel Ω(x)|x|−n by h(|x|)Ω(x)|x|−n, where h is

a function in L∞. This allows the kernel to be rough not only on the sphere, but

also in the radial direction. Using a method which is different from Calderon and

Zygmund’s, Fefferman showed in [8] that if Ω satisfies a Lipschitz condition then TΩ,h

is bounded on Lp(Rn) for 1 < p < ∞. Afterwards, in [6], using Littlewood-Paley

theory and Fourier transform method, Duoandikoetxea, Rubio de Francia extended

the result of Fefferman[8], and obtained the Lp boundedness of TΩ,h for 1 < p < ∞
when h satisfies

sup
R>0

1

R

∫ R

0

|h(t)|2dt < ∞

and Ω ∈ Lq(Sn−1) for some q > 1.

On the other hand, the Triebel-Lizorkin space Ḟ s,q
p (Rn) which is denoted by the

following, is a unified setting of many well-known function spaces including Lebesgue

spaces Lp(Rn), Hardy spaces Hp(Rn) and Sobolev spaces Lα
p (Rn). It is natural interest

to extend the above mentioned results to the more general Triebel-Lizorkin spaces.

Recently, Chen, Jia and Jiang[5] obtained that a convolution operator T is bounded

on Ḟ s,q
p (Rn) if T is bounded on Lq(Rn, ω(x)dx) for all ω ∈ A1. However, many

convolution operators are not weighted bounded on Lq(Rn). As a result, we give

a method which is different from the one given in [5], to prove Ḟ s,q
p -boundedness

for convolution operator. This paper is motivated by the method in [6]. Indeed, we

study the mapping properties on the homogeneous Triebel-Lizorkin spaces for general
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convolution operator T by using the Fourier transform estimates. The operator T

can be decomposed by Tf =
∑

k∈Z σk ∗ f , where {σk}k∈Z is a sequence of measures

on Rn. As applications, in section 3, we obtain the boundedness for singular integral

operators with rough kernels on homogeneous Triebel-Lizorkin spaces . Our results

extend some known results([6],[7], [8],[10]) on the singular integral operator.

Let us recall the definition of the Triebel-Lizorkin spaces.

Fix a radial function φ ∈ C∞(Rn) satisfying that supp φ ⊂ {x : 1/2 ≤ |x| ≤
2}, 0 ≤ φ(x) ≤ 1, and φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. Let φj(x) = φ(2jx). Define

Ŝjf(ξ) = φj(ξ)f̂(ξ). For 1 < p, q < ∞ and s ∈ R, the homogeneous Triebel-Lizorkin

space Ḟ s,q
p (Rn) is the set of all distributions f satisfying

(1.3) ‖f‖Ḟ s,q
p

=

∥∥∥∥∥∥

(∑

j∈Z
2−jsq|Sjf |q

)1/q
∥∥∥∥∥∥

Lp

< ∞ .

It is also known space (see[12]) that the choice of φ in the definition of Ḟ s,q
p is quite

flexible. For instance, for the above φ and any fixed number ρ ∈ [1/2, 1], let φj,ρ =

φ(2jρx) and Ŝj,ρf(ξ) = φj,ρ(ξ)f̂(ξ). Then using Sj,ρ instead of Sj in (1.3), we obtain

a Triebel-Lizorkin norm equivalent to the norm in (1.3). Also the ratio of these

two norms is between two positive constants C1 and C2 that are independent of

ρ ∈ [1/2, 1]. Furthermore, Let us recall the following Lemma.

Lemma 1.1 ([4]). For any ρ > 0, we have

(1.4) C1‖f‖Ḟ s,q
p
≤

∥∥∥∥∥∥

(∑

j∈Z
(2jρ)−sq|Sj,ρf |q

)1/q
∥∥∥∥∥∥

Lp

≤ C2‖f‖Ḟ s,q
p

where C2 ≥ C1 are independent of ρ.
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2. Main Results

Theorem 2.1. Let α, ρ be positive and {σk}k∈Z be a sequence of measures on Rn

such that

(i) ‖σk‖ ≤ 1 for all k ∈ Z;

(ii) ‖σ∗(f)‖Lr = ‖ supk | |σk| ∗ f | ‖Lr ≤ C‖f‖Lr , for some 1 < r < ∞;

(iii) |σ̂k(ξ)| ≤ Cmin
{
2k+1ρ|ξ| , (2kρ|ξ|)−α

}
, for all ξ ∈ Rn and k ∈ Z.

Suppose that s ∈ R and 1 < p, q < ∞ satisfy

(a) q ≤ p, 1/q − 1/2 < r(1/q − 1/p) < 1/q; or

(b) p ≤ q, 1/2− 1/p < r(1/p− 1/q) < 1− 1/q; or

(c) p = q = 2.

Then, the operator

(2.1) Tf(x) =
∞∑

k=−∞
σk ∗ f(x)

is bounded on Ḟ s,q
p (Rn), and ‖Tf‖Ḟ s,q

p
≤ C‖f‖Ḟ s,q

p
, where C is independent of ρ.

Proof. Let φ be a C∞ function and φj,ρ(x) = φ(2jρx) for j ∈ Z, and assume that

∞∑
j=−∞

[φj,ρ(x)]2 = 1 ∀x 6= 0.

Then for all f ∈ S(Rn), define the multiplier operators Sj,ρ by

Ŝj,ρf(ξ) = φj,ρ(ξ)f̂(ξ) , j ∈ Z .

Decompose T as follows

Tf =
∑

k∈Z
σk ∗

(∑

j∈Z
Sj+k,ρSj+k,ρf

)

=
∑

j∈Z

(∑

k∈Z
Sj+k,ρ(σk ∗ Sj+k,ρf)

)
:=

∑

j∈Z
Tjf .(2.2)
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Let Γj = {ξ ∈ Rn : 2−j−1ρ−1 ≤ |ξ| ≤ 2−j+1ρ−1}. By Plancherel’s theorem,

‖Tjf‖2
L2 ≤

∑

k∈Z

∫

Rn

|f̂(ξ)|2|σ̂k(ξ)|2χΓj+k
(ξ)dξ .

For j ≥ 2 and k ∈ Z,

|σ̂k(ξ)|2χΓj+k
(ξ) ≤ C

(
2k+1ρ|ξ|)2

χΓj+k
(ξ) ≤ C

(
2k+1/2j+k−1

)2 ≤ C2−2(j−2) .

Then, we have

‖Tjf‖L2 ≤ C2−(j−2)

(∑

k∈Z

∫

Γj+k

|f̂(ξ)|2dξ

)1/2

≤ C2−(j−2)‖f‖L2 .

For j ≤ −1 and k ∈ Z,

|σ̂k(ξ)|2χΓj+k
(ξ) ≤ C

(
2kρ|ξ|)−2α

χΓj+k
(ξ) ≤ C

(
2j+k+1/2k

)2α ≤ C22α(j+1) .

Then, ‖Tjf‖L2 ≤ C2α(j+1)‖f‖L2 . It follows from |σ̂k(ξ)| ≤ ‖σk‖ ≤ 1 that ‖Tjf‖L2 ≤
C‖f‖L2 for j = 0, 1. Consequently, we have ‖Tjf‖L2 ≤ C2−α|j|‖f‖L2 for all j ∈ Z.

Therefore, there is a constant C independent of ρ such that

‖Tjf‖Ḟ 0,2
2
≤ C2−α|j|‖f‖Ḟ 0,2

2
.(2.3)

Setting 1/r + 1/r′ = 1. If 1 < q ≤ p < ∞ and 1/q − 1/2 < r(1/q − 1/p) < 1/q,

then 0 < r′/p− 1/q < (r′ − 1)/2. We choose 1 < q0 ≤ p0 < ∞ such that

0 < θ =
2( r′

p
− 1

q
)

r′ − 1
< 1 ,

1

p
=

θ

2
+

1− θ

p0

,
1

q
=

θ

2
+

1− θ

q0

.

Then

p0

q0

=
1/q − θ/2

1/p− θ/2
= r′ > 1 .
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For s ∈ R, taking s = (1− θ)s0. For any g ∈ Ḟ
−s0, q′0
p′0

(Rn), it follows from (1.4) that

|〈Tjf, g〉| =

∣∣∣∣∣
∑

k∈Z
〈σk ∗ Sj+k,ρf, S∗j+k,ρg〉

∣∣∣∣∣

≤ ‖g‖
Ḟ
−s0, q′0
p′0

∥∥∥∥∥∥

(∑

k∈Z
(2k+jρ)−s0q0 |σk ∗ Sj+k,ρf |q0

)1/q0

∥∥∥∥∥∥
Lp0

.

Therefore,

‖Tjf‖Ḟ
s0,q0
p0

≤
∥∥∥∥∥∥

(∑

k∈Z
(2k+jρ)−s0q0 |σk ∗ Sj+k,ρf |q0

)1/q0

∥∥∥∥∥∥
Lp0

.

As ‖σk‖ ≤ 1 we get at the end of the line, for all 1 < q < ∞

|σk ∗ Sj+k,ρf(x)| ≤
∫

Rn

|Sj+k,ρf(x− y)| d|σk(y)|

≤
(∫

Rn

|Sj+k,ρf(x− y)|qd|σk(y)|
)1/q

‖σk‖1/q′

≤ [|σk| ∗ |Sj+k,ρf |q(x)]1/q .
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Hence, we choose u(x) ∈ L
(

p0
q0

)′
(Rn) = Lr(Rn) with ‖u‖Lr = 1 such that

∥∥∥∥∥∥

(∑

k∈Z
(2k+jρ)−s0q0 |σk ∗ Sj+k,ρf |q0

)1/q0

∥∥∥∥∥∥

q0

Lp0

=

∫

Rn

∑

k∈Z
(2k+jρ)−s0q0 |σk ∗ Sj+k,ρf(x)|q0 u(x)dx

≤
∫

Rn

∑

k∈Z
(2k+jρ)−s0q0|σk| ∗ |Sj+k,ρf |q0(x)u(x)dx

≤
∫

Rn

∑

k∈Z
(2k+jρ)−s0q0|Sj+k,ρf(x)|q0 sup

i∈Z
||σi| ∗ u(x)| dx

≤ ‖σ∗(u)‖
L

(
p0
q0

)′





∫

Rn

[∑

k∈Z
(2k+jρ)−s0q0|Sj+k,ρf(x)|q0

]p0/q0

dx





q0/p0

= ‖σ∗(u)‖Lr

∥∥∥∥∥∥

(∑

k∈Z
(2k+jρ)−s0q0|Sj+k,ρf |q0

)1/q0

∥∥∥∥∥∥

q0

Lp0

≤ C‖u‖Lr‖f‖q0

Ḟ
s0,q0
p0

.

Therefore,

‖Tjf‖Ḟ
s0,q0
p0

≤ C‖f‖Ḟ
s0,q0
p0

,(2.4)

where C is a constant independent of j and ρ. By interpolation between (2.3) and

(2.4)(see [9]), noting (2.2), we get

‖Tf‖Ḟ s,q
p

=
∑

j∈Z
‖Tjf‖Ḟ s,q

p
≤ C

∑

j∈Z
2−θα|j|‖f‖Ḟ s,q

p
= C‖f‖Ḟ s,q

p
,

where 1 < q ≤ p < ∞, 1/q − 1/2 < r(1/q − 1/p) < 1/q.
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Setting 1/p′+1/p = 1 for each real number p > 1. If 1 < p ≤ q < ∞, 1/2−1/p <

r(1/p − 1/q) < 1 − 1/q, then 1 < q′ ≤ p′ < ∞ and 0 < 2(r′/p′ − 1/q′) < r′ − 1. By

duality, we can obtain ‖Tf‖Ḟ s,q
p
≤ C‖f‖Ḟ s,q

p
for all s ∈ R.

If p = q = 2 and s ∈ R, taking p0 = q0 = 4, s0 = s/2, then p0, q0 satisfy the

condition (a). Similarly, taking p1 = q1 = 4/3, s1 = s/2, then p1, q1 satisfy the

condition (b). Thus

‖Tf‖Ḟ
s0,q0
p0

≤ C‖f‖Ḟ
s0,q0
p0

, ‖Tf‖Ḟ
s1,q1
p1

≤ C‖f‖Ḟ
s1,q1
p1

.

By interpolation between the two inequalities above, we have that T is a bounded

operator on Ḟ s,q
p (Rn). This completes the proof. �

Remark 2.1. When q = 2 and s = 0, T is bounded on Lp(Rn) where |1/p− 1/2| <
1/(2r). This is Theorem B in [6] when ak = 2kρ.

Remark 2.2. If (ii) holds for all 1 < r < ∞, then T is bounded on Ḟ s,q
p (Rn) for

all 1 < p, q < ∞, s ∈ R.

Theorem 2.2. Let α, ρ > 0 and {σk}k∈Z be a sequence of measures on Rn satisfying

(i) and (ii) of Theorem 2.1 and

(iii) |σ̂k(ξ)| ≤ Cmin{2k+1ρ|ξ|, [log+(2kρ|ξ|)]−(1+α)} for all ξ ∈ Rn and k ∈ Z.

Suppose s ∈ R and 1 < p, q < ∞ satisfy

(a) q ≤ p, 1/q − 1/2 < r(1/q − 1/p) < 1/q − 1/(2 + 2α); or

(b) p ≤ q, 1/2− 1/q < r(1/p− 1/q) < (1 + 2α)/(2 + 2α)− 1/q; or

(c) p = q = 2.

Then operator T , defined by (2.1) is bounded on Ḟ s,q
p (Rn), and ‖Tf‖Ḟ s,q

p
≤ C‖f‖Ḟ s,q

p
,

where C is independent of ρ.
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Proof. As in the proof of Theorem 2.1, decompose T as follows

Tf =
∑

k∈Z
σk ∗

(∑

j∈Z
Sj+k,ρSj+k,ρf

)
=

∑

j∈Z

(∑

k∈Z
Sj+k,ρ(σk ∗ Sj+k,ρf)

)
:=

∑

j∈Z
Tjf .

Let Γj = {ξ ∈ Rn : 2−j−1ρ−1 ≤ |ξ| ≤ 2−j+1ρ−1}. By Plancherel’s theorem,

‖Tjf‖2
L2 ≤

∑

k∈Z

∫

Rn

|f̂(ξ)|2|σ̂k(ξ)|2χΓj+k
(ξ)dξ .

For j ≥ 2 and k ∈ Z, we get

|σ̂k(ξ)|2χΓj+k
(ξ) ≤ C

(
2k+1ρ|ξ|)2

χΓj+k
(ξ) ≤ C

(
2k+1/2j+k−1

)2 ≤ C2−2(j−2) .

Then, ‖Tjf‖L2 ≤ C2−(j−2)‖f‖L2 . For j ≤ −1 and k ∈ Z, we get

|σ̂k(ξ)|2χΓj+k
(ξ) ≤ C

[
log+(2kρ|ξ|)]−2(1+α)

χΓj+k
(ξ)

≤ C
[
log+(2−j−1)

]−2(1+α) ≤ C|j|−2(1+α) .

Then, ‖Tjf‖L2 ≤ C|j|−(1+α)‖f‖L2 . As the inequality |σ̂k(ξ)| ≤ ‖σk‖ ≤ 1, for j = 0, 1,

we have ‖Tjf‖L2 ≤ C‖f‖L2 . Consequently, ‖Tjf‖L2 ≤ C(1 + |j|)−(1+α)‖f‖L2 for all

j ∈ Z. Therefore, there is a constant C independent of ρ such that

‖Tjf‖Ḟ 0,2
2
≤ C(1 + |j|)−(1+α)‖f‖Ḟ 0,2

2
.(2.5)

If 1 < q ≤ p < ∞ and 1/q − 1/2 < r(1/q − 1/p) < 1/q − 1/(2 + 2α), then

(r′ − 1)/(1 + α) < 2(r′/p− 1/q) < r′ − 1 .

We choose 1 < q0 ≤ p0 < ∞ such that

1

1 + α
< θ =

2( r′
p
− 1

q
)

r′ − 1
< 1 ,

1

p
=

θ

2
+

1− θ

p0

,
1

q
=

θ

2
+

1− θ

q0

.

Hence,

p0

q0

=
1/q − θ/2

1/p− θ/2
= r′ > 1 .
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Using similar arguments as in proof of Theorem 2.1, we have

‖Tjf‖Ḟ
s0,q0
p0

≤ C‖f‖Ḟ
s0,q0
p0

,(2.6)

where C is a constant independent of j and ρ. By interpolation between (2.5) and

(2.6)(see [9]), noting θ(1 + α) > 1, we get

‖Tf‖Ḟ s,q
p

=
∑

j∈Z
‖Tjf‖Ḟ s,q

p
≤ C

∑

j∈Z
(1 + |j|)−θ(1+α)‖f‖Ḟ s,q

p
= C‖f‖Ḟ s,q

p
.

If p < q, 1/2− 1/q < r(1/p− 1/q) < (1 + 2α)/(2 + 2α)− 1/q, then

1 < q′ < p′ < ∞, 1/q − 1/2 < r(1/q − 1/p) < 1/q − 1/(2 + 2α)

which satisfying (a). By duality, we obtain the same result.

If p = q = 2 and s ∈ R, taking p0 = q0 = 2 + α, s0 = s/2, then p0, q0 satisfy the

condition (a). Similarly, taking p1 = q1 = (2+α)/(1+α), s1 = s/2, then p1, q1 satisfy

the condition (b). Thus

‖Tf‖Ḟ
s0,q0
p0

≤ C‖f‖Ḟ
s0,q0
p0

, ‖Tf‖Ḟ
s1,q1
p1

≤ C‖f‖Ḟ
s1,q1
p1

.

By interpolation between the two inequalities above, we have T is bounded on

Ḟ s,q
p (Rn). This completes the proof. �

Remark 2.3. Let q = 2 and s = 0. If (ii) holds for all 1 < r < ∞, then T is

bounded on Lp(Rn) where (2+2α)/(1+2α) < p < 2+2α. This is the corresponding

result in [1] when ak = 2kρ.

3. Applications to Singular Integral Operators with Rough Kernels

In this section, we apply the main theorems obtained in section 2 to prove the

boundedness for singular integral operators with rough kernels on homogeneous Triebel-

Lizorkin spaces. Let TΩ,h be the singular integral operator defined by (1.1) and
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h ∈ ∆γ(R+) for some γ > 1, where ∆γ(R+), γ > 1 is defined by

∆γ(R+) =

{
h : sup

R>0

1

R

∫ R

0

|h(t)|γdt < ∞
}

.

It is easy to see that L∞ ⊂ ∆β(R+) ⊂ ∆γ(R+) for any 1 < γ < β and the inclusions

are proper. We will use Theorem 2.1 to show TΩ,h is bounded on Ḟ s,q
p ,which improves

the corresponding results in [6] and [8].

Now in order to prove Theorem 4.1, Let us recall the following Lemmas, which are

proved by Duoandikoetxea and Van der Corput, respectively.

Lemma 3.1 ([6]). Let α > 0 and {µk}k∈Z be a sequence of measures on Rn such that

for all k ∈ Z, µk ≥ 0 and

|µ̂k(ξ)− 1| ≤ C|2kξ| , |µ̂k(ξ)| ≤ C|2kξ|−α .

Then the maximal operator µ∗(f)(x) = supk∈Z |µk ∗ f(x)| is bounded on Lp(Rn) for

all 1 < p < ∞.

Lemma 3.2 ([11]). Let u(t) be a real-valued function, which satisfies u′(t) is mono-

tonic on (a, b) and u′(t) ≥ 1 for all t ∈ (a, b). If ψ(t) is a function on (a, b) with

integrable derivative, then

∣∣∣∣
∫ b

a

eiλu(t)ψ(t)dt

∣∣∣∣ ≤ Cλ−1

[
|ψ(b)|+

∫ b

a

|ψ′(s)|ds

]
.

Theorem 3.1. Let h ∈ ∆γ(R+) for some γ > 1. Let Ω ∈ Lq0(Sn−1) be a homogeneous

function of degree zero and satisfy (1.2), where max{0, 1 − 2/γ′} < 1/q0 < 1. Then

for all 1 < p, q < ∞, s ∈ R,

‖TΩ,hf‖Ḟ s,q
p
≤ C‖Ω‖Lq0 (Sn−1)‖f‖Ḟ s,q

p
.
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Proof. As ∆γ(R+) ⊂ ∆2(R+), where γ > 2. Define a measure 1 < γ ≤ 2 and

1− 2/γ′ < 1/q0 < 1. Define measure σk on Rn by

∫

Rn

fdσk =
1

‖Ω‖Lq0

∫

2k≤|y|<2k+1

f(y)h(|y|)Ω(y)

|y|n dy .

Then

TΩ,hf = ‖Ω‖Lq0

∑

k∈Z
σk ∗ f .

It follows from Hölder inequality that

‖σk‖ ≤ 1

‖Ω‖Lq0

∫

Sn−1

|Ω(y)|
(∫ 2k+1

2k

|h(t)|
t

dt

)
dσ(y)

≤ C

(
1

2k+1

∫ 2k+1

0

|h(t)|γdt

)1/γ

≤ C .

Write

|σ̂k(ξ)| =
1

‖Ω‖Lq0

∣∣∣∣∣
∫ 2k+1

2k

∫

Sn−1

e−2πitξ·yΩ(y)dσ(y)
h(t)

t
dt

∣∣∣∣∣

≤ C

‖Ω‖Lq0

(∫ 2k+1

2k

∣∣∣∣
∫

Sn−1

e−2πitξ·yΩ(y)dσ(y)

∣∣∣∣
γ′

dt

t

)1/γ′

≤ C

‖Ω‖Lq0

(∫ 2

1

∣∣∣∣
∫

Sn−1

e−2πi2ktξ·yΩ(y)dσ(y)

∣∣∣∣
γ′

dt

)1/γ′

.(3.1)

Setting Hξ(Ω)(t) = χ[1,2](t)
∫

Sn−1 e−2πi2ktξ·yΩ(y)dσ(y), we have

‖Hξ(g)‖L∞(R) ≤ C‖g‖L1(Sn−1) .(3.2)

Since

(3.3) |Hξ(g)|2 =

∫

Sn−1

∫

Sn−1

e−2πi2ktξ·(y−z)g(y)g(z)dσ(y)dσ(z) ,



BOUNDEDNESS OF CONVOLUTION OPERATORS... 213

it follows from Lemma 3.2 that

∣∣∣∣
∫ 2

1

e−2πi2ktξ·(y−z)dt

t

∣∣∣∣ ≤ C2−k |ξ · (y − z)|−1 = C(2k|ξ|)−1 |ξ′ · (y − z)|−1
.

On the other hand,
∣∣∣
∫ 2

1
e−2πi2ktξ·(y−z) dt

t

∣∣∣ ≤ 1. Since 0 < 1 − 1/q0 < 2/γ′, we choose

1 < q1 < ∞ such that

1

q1

= 1− γ′

2

(
1− 1

q0

)

Thus, we have for all 0 < α < 1/q′1,

(3.4)

∣∣∣∣
∫ 2

1

e−2πi2ktξ·(y−z)dt

t

∣∣∣∣ ≤ C(2k|ξ|)−α |ξ′ · (y − z)|−α
.

Therefore, it follows from (3.3) and (3.4) that

‖Hξ(g)‖L2(R) ≤ C

(∫ 2

1

|Hξ(g)(t)|2dt

t

)1/2

= C

(∫ 2

1

∫

Sn−1

∫

Sn−1

e−2πi2ktξ·(y−z)g(y)g(z)dσ(y)dσ(z)
dt

t

)1/2

= C

(∫

Sn−1

∫

Sn−1

∣∣∣∣
∫ 2

1

e−2πi2ktξ·(y−z)dt

t

∣∣∣∣ g(y)g(z)dσ(y)dσ(z)

)1/2

≤ C
(
2k|ξ|)−α/2

(∫

Sn−1

∫

Sn−1

g(y)g(z)

|ξ′ · (y − z)|α dσ(y)dσ(z)

)1/2

≤ C
(
2k|ξ|)−α/2 ‖g‖Lq1 (Sn−1)

(∫

Sn−1

∫

Sn−1

1

|ξ′ · (y − z)|αq′1
dσ(y)dσ(z)

)1/2q′1

.

Hence

(3.5) ‖Hξ(g)‖L2(R) ≤ C
(
2k|ξ|)−α/2 ‖g‖Lq1(Sn−1) .

Taking θ = 2/γ′, then 1/q0 = θ/q1 + 1− θ. By interpolation between (3.2) and (3.5),

we have

‖Hξ(g)‖Lγ′ (R) ≤ C
(
2k|ξ|)−α/γ′ ‖g‖Lq0 (Sn−1) .
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It follows from (3.1) that |σ̂k(ξ)| ≤ C
(
2k|ξ|)−α/γ′

. Moreover, since
∫

Sn−1 Ω(y)dσ(y) = 0, we have

|σ̂k(ξ)| =
1

‖Ω‖Lq0

∫ 2

1

∫

Sn−1

∣∣∣e−2πi2kty·ξ − 1
∣∣∣ |Ω(y)|dσ(y)

|h(t)|
t

dt

≤ C2k|ξ| 1

‖Ω‖Lq0

∫

Sn−1

|y · ξ′| |Ω(y)|dσ(y)

(
sup

R

1

R

∫ R

0

|h(t)|dt

)1/γ

≤ C2k|ξ| .

Let µk = |σk|, note that µ̂k(0) = ‖σk‖ ≤ C < ∞, then the similar arguments as

above yield:

|µ̂k(ξ)| ≤ C(2k|ξ|)−α/γ′ , |µ̂k(ξ)− µ̂k(0)| ≤ C2k|ξ| .

By Lemma 3.1, σ∗(f)(x) = supk∈Z | |σk| ∗ f(x)| = µ∗(f)(x) is a bounded operator on

Lr(Rn) for all 1 < r < ∞. It follows from Theorem 2.1 and Remark 2.2 that for all

1 < p, q < ∞, s ∈ R,

‖TΩ,hf‖Ḟ s,q
p

= ‖Ω‖Lq0

∥∥∥∥∥
∑

k∈Z
σk ∗ f

∥∥∥∥∥
Ḟ s,q

p

≤ C‖Ω‖Lq0‖f‖Ḟ s,q
p

.

This completes the proof. �

Let h ≡ 1. Grafakos and Stefanov in [10] introduced the following condition

(3.6) sup
ξ∈Sn−1

∫

Sn−1

|Ω(y)|
(

log
1

|ξ · y|
)1+α

dσ(y) < ∞ ,

where α > 0 is a fixed constant. They showed that it implies the Lp-boundedness of

TΩ = TΩ,1 which defined in (1.1), where (2+α)/(1+α) < p < 2+α. The range for p

was improved later to (2 + 2α)/(1 + 2α) < p < 2 + α in [7]. Let Fα(Sn−1) denote the

space of all integrable functions Ω on Sn−1 satisfying (3.6). It should be noted that
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Grafakos and Stefanov showed that

⋂
α>0

Fα(Sn−1) 6⊂ H1(Sn−1) 6⊂
⋃
α>0

Fα(Sn−1) ,

where H1 is the Hardy space. We will use Theorem 2.2 to improve the results stated

above.

Now, let us recall the following Lemma, which will be used in order to prove

Theorem 3.2.

Lemma 3.3 ([11]). Let y ∈ Sn−1 and

(Myf)(x) = sup
r>0

1

r

∣∣∣∣
∫

|t|<r

f(x− ty)dt

∣∣∣∣ .

For every 1 < p ≤ ∞, there exists a positive constant Cp = C(p, d) which is indepen-

dent of y such that

‖Myf‖Lp ≤ Cp‖f‖Lp .

Theorem 3.2. Let Ω be a homogeneous function of degree zero satisfied (1.2) and

(3.6). Then TΩ is bounded on Ḟ s,q
p (Rn) where s ∈ R and p, q satisfy

(a) (2 + 2α)/(1 + 2α) < p < q < ∞;

(b) 1 < q < p < 2 + 2α;

(c) 1 < p = q < ∞.

Proof. Using similar arguments as in [1]. Define a measure σk on Rn by

∫

Rn

fdσk =

∫

2k≤|y|<2k+1

f(y)
Ω(y)

|y|n dy .

Then TΩf =
∑

k∈Z σk ∗ f . There exist finite numbers: {η1, · · · , ηm} in Sn−1 and

Ai ⊂ Sn−1, 1 ≤ i ≤ m such that
⋃m

i=1 Ai = Sn−1 and |y · ηi| < 1/10 for all y ∈ Ai. It
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follows from (3.6) that

‖σk‖ =

∫

Sn−1

|Ω(y)|dσ(y) ≤
m⋃

i=1

∫

Ai

|Ω(y)|
(

log
1

|ηi · y|
)1+α

dσ(y)

≤ C sup
ξ∈Sn−1

∫

Sn−1

|Ω(y)|
(

log
1

|ξ · y|
)1+α

dσ(y) ≤ C .

Since

|σ∗(f)(x)| = sup
k∈Z

∫

Sn−1

|Ω(y)|
∫ 2k+1

2k

|f(x− ty)|t−1dtdσ(y)

≤ C

∫

Sn−1

|Ω(y)| sup
k∈Z

1

2k+1

∫

|t|<2k+1

|f(x− ty)| dtdσ(y)

≤ C

∫

Sn−1

|Ω(ξ)| [My|f |(x)] dσ(y) ,

by Lemma 3.3, we have for all 1 < r < ∞

‖σ∗(f)‖Lr ≤ C

∫

Sn−1

‖My(|f |)‖Lr |Ω(y)|dσ(y) ≤ C‖f‖Lr .

Moreover, since
∫

Sn−1 Ω(y)dσ(y) = 0, we have

|σ̂k(ξ)| =

∫ 2

1

∫

Sn−1

∣∣∣e−2πi2kty·ξ − 1
∣∣∣ |Ω(y)|dσ(y)

dt

t

≤ C2k|ξ|
∫

Sn−1

|y · ξ′| |Ω(y)|dσ(y) ≤ C2k|ξ| .

Write

σ̂k(ξ) =

∫

Sn−1

(∫ 2

1

e−2πi2kty·ξ dt

t

)
Ω(y)dσ(y) .

It follows from Van der Corput’s Lemma 3.2 that

|Ik(ξ, y)| =
∣∣∣∣
∫ 2

1

e−i2kty·ξ dt

t

∣∣∣∣ ≤ C
∣∣2k(ξ · y)

∣∣−1
= C

(
2k|ξ| |ξ′ · y|)−1

.

On the other hand, |Ik(ξ, y)| ≤ 1. If
(
2k|ξ| |ξ′ · y|)−1 ≥ 1, then log 1

|ξ′·y| ≥ log+ (2k|ξ|).
If

(
2k|ξ| |ξ′ · y|)−1

< 1, then 1 ≤ 1
|ξ′·y| < 2k|ξ|. Since t−1/(1+α)log t is a decreasing
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function when log t ≥ 1 + α and is a increasing function when 0 < log t < 1 + α, we

have for log 1
|ξ′·y| ≥ 1 + α,

log+ (2k|ξ|)
(2k|ξ|)1/(1+α)

− log(1/|ξ′ · y|)
(1/|ξ′ · y|)1/(1+α)

≤ 0 <
1 + α

(1/|ξ′ · y|)1/(1+α)
,

and for 0 < log 1
|ξ′·y| < 1 + α,

log+ (2k|ξ|)
(2k|ξ|)1/(1+α)

≤ max
t>1

{t−1/(1+α)log t} =
1 + α

10
≤ 1 + α

(1/|ξ′ · y|)1/(1+α)
.

Therefore,

(
2k|ξ| |ξ′ · y|)−1/(1+α) ≤ [

log+ (2k|ξ|)]−1
(

1 + α + log
1

|ξ′ · y|
)

.

Thus

|Ik(ξ, y)| ≤ C min
{

1,
(
2k|ξ| |ξ′ · y|)−1

}
≤ [

log+ (2k|ξ|)]−(1+α)
(

1 + α + log
1

|ξ′ · y|
)1+α

.

Therefore,

|σ̂k(ξ)| ≤ C
[
log+ (2k|ξ|)]−(1+α)

sup
x∈Sn−1

∫

Sn−1

|Ω(y)|
(

log
1

|x · y|
)1+α

dσ(y)

≤ C
[
log+ (2k|ξ|)]−(1+α)

.

Moreover, TΩ is a bounded operator on Ḟ s,q
p (Rn), follows from Theorem 2.2. �
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