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THE EXISTENCE OF PERIODIC SOLUTIONS FOR SECOND
ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS CAUSED BY

IMPULSES EFFECTS

YUJI LIU(1) AND LIUMAN OU(2)

Abstract. The existence for solutions of the periodic boundary value problems

concerning the second order impulsive functional differential equation




x′′(t) + αx′(t) + βx(t) = f(t, x(t), x(α1(t)) · · · , x(αn(t))), a.e. on [0, T ],

∆x(tk) = Ik(x(tk), x′(tk)), k = 1, · · · ,m,

∆x′(tk) = Jk(x(tk), x′(tk)), k = 1, · · · ,m,

and the boundary conditions x(0) = x(T ), x′(0) = x′(T ) at resonance case are

established. The method is based upon the theory of coincidence due to Mawhin,

which shows that the impulse infects cause the existence of solutions. Related

examples are mentioned to support the results of this paper.

1. Introduction

The motivations of this paper are as follows. First, there has been a large number

of papers concerning with the solvability of the following periodic boundary value
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problems ( PBVP for short )for second-order ordinary differential equations

(1.1)





x′′(t) = f(t, x(t)), t ∈ (0, 2π),

x(0) = x(2π), x′(0) = x′(2π).

For example, in [1], it was proved that if f satisfies the non-resonance condition

−(N + 1)2 + ε ≤ fu(t, u) ≤ −ε−N2,

then PBVP (1.1) has a unique solution, where N is a nonnegative integer and ε is a

positive constant. The related researches on PBVP(1.1) can be seen in [10, 11, 12,

16, 17, 18] and the references therein.

Second, in [2], Nieto and Rodriguez-Lopez gave a Green′s function to express the

unique solution for the following second-order functional differential equation with pe-

riodic boundary conditions and functional dependence given by a piecewise constant

function

(1.2)





x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = σ(t), t ∈ (0, T ),

x(0) = x(T ), x′(0) = x′(T ).

Using upper and lower solution method, they presented sufficient conditions to assure

the existence of solutions of PBVP(1.2). The authors in [4] and [5] also studied the

solvability of above problem by the similar methods.

In [3, 6], the authors studied the following PBVP

(1.3)





x′′(t) + f(t, x(t), x(θ(t))) = 0, t ∈ (0, T ),

x(0) = x(T ), x′(0) = x′(T ),

where θ is defined by

θ(t) =





t− r, t ≥ r,

0, t < r.
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Sufficient conditions for the existence of solutions of PBVP(1.3) were given by using

upper and lower solution method. We note that in PBVP(1.2) or PBVP(1.3), the

functions [t] or θ(t) is not differentiable on [0,1]. It is interesting to establish existence

results for solutions of PBVP(1.3) when θ(t) is differentiable.

Third, the periodic boundary value problems for second order impulsive ordinary

differential equations ( IPBVP for short ) were studied in papers [7, 8, 9, 14, 15, 20–

25] and the references therein. In [9], Rachunkova and Tvrdy studied the existence

of solutions of the following nonlinear IPBVP

(1.4)





x′′(t) = f(t, x(t), x′(t)), t ∈ (0, T ),

x(T+
i ) = Ji(x(ti)), i = 1, · · · ,m,

x′(t+i ) = Mi(x
′(ti)), i = 1, · · · ,m,

x(0) = x(T ), x′(0) = x′(T )

under the existence of lower and upper solutions.

In [14, 20, 21], Chen and Sun, Liang and Shen, Wang and Chen, respectively,

studied the existence of solutions of the IPBVP

(1.5)





x′′(t) + f(t, x(t), x(θ(t))) = 0, t ∈ (0, T ),

∆x(tk) = Ik(x(tk)), k = 1, · · · , p,

∆x′(tk) = I∗k(x(tk)), k = 1, · · · , p,

x(0) = x(T ) + k1, x′(0) = λx′(T ) + k2,

which contains IPBVP

(1.6)





x′′(t) + f(t, x(t), x(θ(t))) = 0, t ∈ (0, T ),

x(0) = x(T ), x′(0) = x′(T ),

∆x(i)(tk) = Ii,k(x(tk)), k = 1, · · · , p, i = 0, 1

as special case. In (1.5), that θ : [0, T ] → [0, T ] is continuous is supposed and in (1.6)

that 0 ≤ θ(t) ≤ t is supposed. IPBVP(6) was studied in [15]. The methods used
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in [14, 15] are lower and upper solutions methods and monotone iterative technique.

Similar problems were studied in papers [D-H, L-G].

In recent papers [22, 23, 24, 25], the authors studied the existence of solutions of

different classes of IPBVPs, but their proofs are based upon the methods of upper and

lower solutions and the monotone iterative technique. In [27], by using Schaeffer′s

fixed-point theorem and monotone iterative technique, some existence results for

IPBVPs were obtained.

Consider the following periodic boundary value problem for the impulsive func-

tional Duffing equation:

(1.7)





x′′(t) + αx′(t) + βx(t) = f(t, x(t), x(α1(t)) · · · , x(αn(t))), a.e. on [0, T ],

∆x(tk) = Ik(x(tk), x
′(tk)), k = 1, · · · ,m,

∆x′(tk) = Jk(x(tk), x
′(tk)), k = 1, · · · ,m,

x(0) = x(T ), x′(0) = x′(T ),

where α, β ∈ R, T > 0, 0 = t0 < t1 < · · · < tm < tm+1 = T are fixed,

f : [0, T ]×Rn+1 → R is an impulsive Carathéodory function, Ii, Ji : R×R → R are

continuous, ∆y(t) stands for ∆y(t) = limt→t+ y(t) − limt→t− y(t), αi : [0, T ] → [0, T ]

with αi ∈ C1[0, T ] and its inverse function βi ∈ C0[0, T ](i = 1, · · · , n).

In recent paper [28], the authors investigated the solvability of IPBVP (1.7) under

the assumption that system

(1.8)





x′′(t) + αx′(t) + βx(t) = 0, a.e. on [0, T ],

∆x(tk) = 0, k = 1, · · · ,m,

∆x′(tk) = 0, k = 1, · · · ,m,

x(0) = x(T ), x′(0) = x′(T )

has unique trivial solution x(t) ≡ 0, which is called non-resonance case.



PERIODIC SOLUTIONS FOR IFDES 223

In this paper, we investigate the solvability of IPBVP (1.7) under the assumption

that system (1.8) has nontrivial solution, which is called resonance case. This is done

by applying the well known coincidence degree theory and inequality techniques.

Since we do not rely on the existence of Lipschitzian condition and the existence

of upper and lower solutions and the method used in this paper is based upon the

coincidence degree theory of Mawhin, our methods are different from known ones

used [1, 2, 11, 14, 15, 16, 20, 21, 22, 23, 24, 25, 27], and also different from those ones

in [19] since the autonomous curvature bound sets are used there.

The remainder of the paper is as follows: In Section 2, we present the main results

and the examples to illustrate the main results. In Section 3, we prove the main

results.

2. Main Results and Examples

In this section, the main results are presented, as well as the examples are given

to illustrate efficiency of the main theorems.

Suppose u : J = [0, T ] → R, and 0 = t0 < t1 < · · · < tm < tm+1 = T . For

k = 0, · · · , m, define the function uk : (tk, tk+1) → R by uk(t) = u(t). Choose

X =





u : J → R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk ∈ C0(tk, tk+1), k = 0, · · · ,m,

there exist the limits

limt→t−k
u(t) = u(tk),

limt→t+k
u(t),

limt→0+ u(t) = u(0),

limt→T− u(t) = u(T )




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with the norm

||u||X = sup
t∈[0,T ]

|u(t)|

for u ∈ X. Choose

Y = X ×Rm ×Rm

with the norm

||y||Y = max

{
sup

t∈[0,T ]

|u(t)|, max
1≤k≤m

{|xk|}, max
1≤k≤m

|yk|
}

for y = {u, x1, · · · , xm, y1, · · · , ym} ∈ Y . Then X and Y real Banach spaces.

Lemma 2.1. ( see [28]) A function F : [0, 1] × Rn+1 → R is called an impulsive

Carathéodory function if

∗ F (•, u0, u1, · · · , un) ∈ X for each u = (u0, · · · , un) ∈ Rn+1;

∗ F (t, •, · · · , •) is continuous for t 6= tk(k = 1, · · · ,m).

Lemma 2.2. By a solution of IPBVP(1.7) we mean a function x : [0, T ] → R

satisfying the following conditions:

• x ∈ X is differentiable in (tk, tk+1) (k = 0, 1, · · · ,m), there exist the limits

limt→t+k
x′(t), limt→t−k

x′(t) = x′(tk) (k = 0, 1, · · · ,m) and limt→0+ x′(t) = x′(0) and

limt→T− x′(t) = x′(T );

• x′ ∈ X is differentiable in(tk, tk+1) (k = 0, 1, · · · ,m), there exist the limits

limt→t+k
x′′(t), limt→t−k

x′′(t) = x′′(tk) (k = 0, 1, · · · ,m) and limt→0+ x′′(t) = x′′(0) and

limt→T− x′′(t) = x′′(T );

• x′′ ∈ X;

• The equations in (1.7) are satisfied.
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We set the following assumptions which should be used in the main results.

(A1). Ik(x, y)(2x + Ik(x, y)) ≤ 0 for all x, y ∈ R and k = 1, · · · ,m.

(A2). xIk(x, y) ≥ 0 for all x, y ∈ R and k = 1, · · · ,m.

(A3). Ik(x, y)Jk(x, y) ≤ 0 and yIk(x, y) + xJk(x, y) + Ik(x, y)Jk(x, y) ≥ 0 for all

x, y ∈ R and k = 1, · · · ,m.

(A4). There exist constants θk ≥ 0 such that |Ik(x, y)| ≤ θk|x| for all x, y ∈ R with
∑m

k=1 θk < 1.

(C1). There exist impulsive Carathéodory functions h : [0, T ]×Rn → R,

gi : [0, T ]×R → R, r ∈ X and constants q ≥ 1 and θ > 0 such that

f(t, x0, · · · , xn) = h(t, x0, · · · , xn) +
n∑

i=0

gi(t, xi) + r(t)

and

h(t, x0, · · · , xn)x0 ≥ θ|x0|q+1

hold for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1 and

lim
|x|→+∞

sup
t∈[0,T ]

|gi(t, x)|
|x|q = ri ∈ [0, +∞)

for i = 0, · · · , n.

(E1). There exist a constant M0 > 0 such that

c

(
−βTc +

∫ T

0

f(t, c, c, · · · , c)dt +
m∑

k=1

Jk(c, 0) + α

m∑

k=1

Ik(c, 0)

)
> 0
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for all |c| > M0 or

c

(
−βTc +

∫ T

0

f(t, c, c, · · · , c)dt +
m∑

k=1

Jk(c, 0) + α

m∑

k=1

Ik(c, 0)

)
< 0

for all |c| > M0.

Theorem 2.1. Suppose that α ≥ 0, (E1), (A2), (A3), (A4) and (C1) hold. Then

IPBVP(1.7) has at least one solution if

(2.1) θ >





r0 +
∑n

k=1 rk||β′k||
q

q+1 for β ≤ 0,

β + r0 +
∑n

k=1 rk||β′k||
q

q+1 for β > 0, q = 1,

r0 +
∑n

k=1 rk||β′k||
q

q+1 for β > 0, q > 1.

Theorem 2.2. Suppose that α ≤ 0, (E1), (A1), (A3), (A4) and (C1) hold. Then

IPBVP(1.7) has at least one solution if (2.1) holds.

Now, we give examples to illustrate the main results.

Example 2.1. Consider the following IPBVP

(2.2)





x′′(t) + αx′(t) =
∑2n+1

k=1 γkx
k(t) + r(t),

t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,

∆x(tk) = bkx(tk), k = 1, · · · ,m,

∆x′(tk) = akx
′(tk), k = 1, · · · ,m,

x(0) = x(T ), x′(0) = x′(T ),

where

• m,n are positive integers;

• 0 < t1 < · · · < tm < T , α ≥ 0, T > 0;

• bk ≥ 0 and ak ∈ R for all k = 1, · · · ,m with ak + bk ≥ 0 and ak + bk + akbk = 0

for all k = 1, · · · ,m and
∑m

k=1 |bk| < 1;
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• γ2n+1 > 0, γi ∈ R for i = 1, 2, · · · , 2n;

• r is continuous on [0, T ].

Corresponding to IBVP(1.7), we have

f(t, x0) =
2n+1∑

k=1

γkx
k
0 + r(t), Ik(x, y) = bkx, Jk(x, y) = aky.

Choose h(t, x0) = γ2n+1x
2n+1
0 and g0(t, x0) =

∑2n
k=0 γkx

k
0. One sees that

f(t, x0) = h(t, x0) + g0(t, x0) + r(t). Then we see that (C1) holds with θ = γ2n+1,

q = 2n + 1, and r0 = 0

It is easy to see that

(i). bk ≥ 0 implies that (A2) holds.

(ii). akbk ≤ 0 and ak + bk + akbk = 0 implies that (A3) holds.

(iii). ∆x(tk) = bkx(tk), k = 1, · · · ,m and
∑m

k=1 |bk| < 1 imply that (A4) holds.

(iv). One finds that

c

(∫ T

0

f(s, c) +
m∑

k=1

Jk(c, 0) + α

m∑

k=1

Ik(c, 0)

)

= c

(∫ T

0

(
2n+1∑

k=1

γkc
k + r(s)

)
ds + c

(
m∑

k=1

ak + α

m∑

k=1

bk

))

= γ2n+1Tc2n+2 + cT

2n∑

k=1

γkc
k + c

∫ T

0

r(s)ds + c

m∑

k=1

(ak + αbk).

Since γ2n+1 > 0, we find that (E1) holds.

It follows from Theorem 2.1 that IPBVP(2.2) has at least one solution.
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Example 2.2. Consider the following IPBVP

(2.3)





x′′(t) + αx′(t) + βx(t) =
∑2n+1

k=1 ckx
k(t) +

∑l
k=1 dkx

2n+1
(

1
k+1

t
)

+ r(t),

t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,

∆x(tk) = bkx(tk), k = 1, · · · ,m,

∆x′(tk) = akx
′(tk), k = 1, · · · , m,

x(0) = x(T ), x′(0) = x′(T ),

where

• α ≤ 0, β < 0, T > 0, m,n, l are positive integers;

• 0 < t1 < · · · < tm < T ;

• c2n+1 > 0, ck, dk ∈ R, n is a positive integer;

• ak, bk ∈ R;

• r is continuous.

It is easy to see that

(i). if bk(2 + bk) ≤ 0, then (A1) holds.

(ii). if akbk ≤ 0 and ak + bk + akbk = 0, then (A3) holds.

(iii). if
∑m

k=1 |bk| < 1, then (A4) holds.

(iv). corresponding to IPBVP(1.7), we have

f(t, x0, x1, · · · , xl) = c2n+1x
2n+1
0 +

2n∑

k=1

ckx
k
0 +

l∑

k=1

dkx
2n+1
k + r(t),

choose h(t, x) = c2n+1x
2n+1, g0(t, x) =

∑2n
k=1 ckx

k and gk(t, x) = dkx
2n+1 for

k = 1, · · · , l. If c2n+1 > 0, then (C1) holds with θ = c2n+1, q = 2n+1, r0 = 0, rk = dk.
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(v). One sees that

c

(
−βTc +

∫ T

0

f(s, c, · · · , c) +
m∑

k=1

Jk(c, 0) + α

m∑

k=1

Ik(c, 0)

)

= c

(
−βTc +

∫ T

0

(
2n+1∑

k=1

ckc
k +

l∑

k=1

dkc
2n+1 + r(s)

)
ds + c

(
m∑

k=1

ak + α

m∑

k=1

bk

))

=

(
c2n+1T + T

l∑

k=1

dk

)
c2n+2 + c

2n∑

k=1

ckc
k + c

∫ T

0

r(s)ds + c

m∑

k=1

(ak + αbk)− βTc2.

Since c2n+1 +
∑l

k=1 dk 6= 0 and n ≥ 1, we find that (E1) holds.

(vi). choose αi(t) = 1
i+1

t, then βi(t) = (i + 1)t and ||βi|| = (i + 1)T .

It follows from Theorem 2.2 that IPBVP(2.3) has at least one solution if

bk(2 + bk) ≤ 0, akbk ≤ 0, ak + bk + akbk = 0, k = 1, · · · ,m,

and
m∑

k=1

|bk| < 1, c2n+1 > 0,
l∑

k=1

dk + c2n+1 6= 0,

and

T (2n+1)/(2n+2)

l∑

k=1

dk(k + 1)(2n+1)/(2n+2) < c2n+1.

Remark 1. It is easy to see that f(t, x0) in IPBVP(2.2) and f(t, x0, x1, · · · , xl) in

IPBVP(2.3) do not satisfy either the Lipschitzian condition, or left Lipschitzian con-

dition, or right Lipschitzian condition. Hence Example 2.1 and Example 2.2 can not

be solved by known theorems in [7-9, 14, 15, 20-25].

3. Proofs of the Main Results

Let X and Y be real Banach spaces, L : D(L)(⊂ X) → Y be a Fredholm operator

of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.
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It follows that

L|
D(L)∩Ker P

: D(L) ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp.

If Ω is an open bounded subset of X, D(L) ∩ Ω 6= ∅, the map N : X → Y will be

called L−compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω → X is compact.

We need the following fixed point theorems, one may see the text book [13].

Lemma 3.1. ([13], Theorem IV) Let L be a Fredholm operator of index zero and let

N be L−compact on Ω. Assume that the following conditions are satisfied:

(i). Lx 6= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);

(ii). Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;

(iii). deg(∧QN
∣∣
KerL

, Ω ∩ KerL, 0) 6= 0, where ∧ : KerL → Y/ImL is an

isomorphism.

Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

Now, we define the linear operator L : D(L)(⊆ X) → Y by

Lx(t) =




x′′(t) + αx′(t)

∆x(t1)
...

∆x(tm)

∆x′(t1)
...

∆x′(tm)




for x ∈ D(L)
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where

D(L) =





u : [0, T ] → R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ X is differentiable in (tk, tk+1)(k = 0, 1, · · · ,m),

there exist the limits limt→t+k
x′(t),

limt→t−k
x′(t) = x′(tk)(k = 0, 1, · · · ,m),

limt→0+ x′(t) = x′(0), limt→T− x′(t) = x′(T ),

x′ ∈ X there exist the limits limt→t+k
x′′(t),

limt→t−k
x′′(t) = x′′(tk)(k = 0, 1, · · · ,m),

limt→0+ x′′(t) = x′′(0), limt→T− x′′(t) = x′′(T ),

x′′ ∈ X





and the nonlinear operator N : X → Y by

Nx(t) =




−βx(t) + f(t, x(t), x(α1(t)), · · · , x(αn(t)))

I1(x(t1), x
′(t1))

·
·
·

Im(x(tm), x′(tm))

J1(x(t1), x
′(t1))

·
·
·

Jm(x(tm), x′(tm))




for x ∈ X.

Lemma 3.2. The following results hold:

(i). KerL = {x(t) = c, t ∈ [0, T ], c ∈ R}.
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(ii). it holds that

ImL =

{
(y(t), a1, · · · , am, b1, · · · , bm) ∈ Y,

∫ T

0

y(s)ds +
m∑

k=1

bk + α

m∑

k=1

ak = 0

}
.

(iii). L is a Fredholm operator of index zero.

(iv). There exist projectors P : X → X and Q : Y → Y such that KerL = ImP ,

KerQ = ImL. Furthermore, let Ω ⊂ X be an open bounded subset with Ω∩D(L) 6= ∅,
then N is L−compact on Ω.

(v). x ∈ D(L) is a solution of IPBVP(1.7) if and only if x is a solution of the

operator equation Lx = Nx in D(L).

Proof. The proofs of (i), (ii), (iii) and (v) are standard. We omit the details. To

show (iv), we present the projectors P : X → X and Q : Y → Y , the isomorphism

∧ : KerL → Y/ImL and the generalized inverse Kp : ImL → D(L) ∩ ImP :

Px(t) = x′(0) + αx(0) for x ∈ X,

Q(y(t), a1, · · · , am, b1, · · · , bm)

=

(
1

T

(∫ T

0

y(s)ds +
m∑

k=1

bk + α

m∑

k=1

ak

)
, 0, · · · , 0

)
,

∧ (c) = (c, 0, · · · , 0), c ∈ R,

Kp(y(t), a1, · · · , am, b1, · · · , bm)

= e−αt

[ ∑
0<tk<t

ake
αtk +

∫ t

0

eαs
∑

0<tk<s

(bk + αak)ds

+

∫ t

0

∫ s

0

y(u)dueαsds +

(∫ t

0

eαsds

)(∫ T

0

eαsds

)−1

×
(

m∑

k=1

ake
αtk +

∫ T

0

eαs
∑

0<tk<s

(bk + αak)ds +

∫ T

0

∫ s

0

y(u)dueαsds

)]
.
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Lemma 3.3. Let

Ω1 = {x ∈ D(L) : Lx = λNx, ∃λ ∈ (0, 1)}.

Suppose that (A2), (A3), (A4) and (C1) hold. Then Ω1 is bounded if

θ >





r0 +
∑n

k=1 rk||β′k||q/(q+1) for β ≤ 0 or q > 1,

β + r0 +
∑n

k=1 rk||β′k||q/(q+1) for β > 0 and q = 1.

Proof. Suppose x ∈ Ω1, then

(3.1)





x′′(t) + αx′(t) = −λβx(t) + λf(t, x(t), x(α1(t)), · · · , x(αn(t))),

∆x(tk) = λIk(x(tk), x
′(tk)), k = 1, · · · ,m,

∆x′(tk) = λJk(x(tk), x
′(tk)), k = 1, · · · ,m,

x(0) = x(T ), x′(0) = x′(T ).

Step 1. Prove that there exists a constant M1 > 0 so that
∫ T

0
|x(s)|q+1ds ≤ M1

for each x ∈ Ω1.

Multiplying both sides of the first equation of (3.1) by x(t), integrating it from 0

to T , we get from (C1) that

x′(T )x(T )− x′(0)x(0)−
m∑

k=1

[x′(t+k )x(t+k )− x′(tk)x(tk)]−
∫ T

0

[x′(s)]2ds

+
α

2
[(x(T ))2 − (x(0))2]− α

2

m∑

k=1

[(
x(t+k )

)2 − (x(tk))
2
]

= −λβ

∫ T

0

|x(t)|2dt + λ

∫ T

0

f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= −λβ

∫ T

0

|x(t)|2dt + λ

(∫ T

0

h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+

∫ T

0

g0(s, x(s))x(s)ds +
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds +

∫ T

0

r(s)x(s)ds

)
.
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It follows from (A2) that

m∑

k=1

[(
x(t+k )

)2 − (x(tk))
2
]

=
m∑

k=1

(
x(t+k )− x(tk)

) (
x(t+k ) + x(tk)

)

=
m∑

k=1

∆x(tk) (2x(tk) + ∆x(tk))

= λ

m∑

k=1

Ik(x(tk), x
′(tk)) (2x(tk) + λIk(x(tk), x

′(tk)))

= 2λ
m∑

k=1

Ik(x(tk), x
′(tk))x(tk) + λ2

m∑

k=1

[Ik(x(tk), x
′(tk))]2

≥ 2λ
m∑

k=1

Ik(x(tk), x
′(tk))x(tk) ≥ 0.

On the other hand, (A3) implies that

m∑

k=1

(
x′(t+k )x(t+k )− x′(tk)x(tk)

)

=
m∑

k=1

(
x′(t+k )(x(t+k )− x(tk)) + (x′(t+k )− x′(tk))x(tk)

)

= λ

m∑

k=1

(
x′(tk)Ik(x(tk), x

′(tk)) + x(tk)Jk(x(tk), x
′(tk))

)

+λ2

m∑

k=1

Ik(x(tk), x
′(tk))Jk(x(tk), x

′(tk))

≥ λ

m∑

k=1

(
x′(tk)Ik(x(tk), x

′(tk)) + x(tk)Jk(x(tk), x
′(tk))

+ Ik(x(tk), x
′(tk))Jk(x(tk), x

′(tk))
)

≥ 0.



PERIODIC SOLUTIONS FOR IFDES 235

We get

∫ T

0

h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds +

∫ T

0

g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds +

∫ T

0

r(s)x(s)ds ≤ β

∫ T

0

|x(t)|2dt.

It follows from (C1) that

θ

∫ T

0

|x(s)|q+1ds ≤ −
∫ T

0

g0(s, x(s))x(s)ds−
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds

−
∫ T

0

r(s)x(s)ds + β

∫ T

0

|x(t)|2dt

≤
∫ T

0

|g0(s, x(s))||x(s)|ds +
n∑

i=1

∫ T

0

|gi(s, x(αi(s))||x(s)|ds

+

∫ T

0

|r(s)||x(s)|ds + σ(β)

∫ T

0

|x(t)|2dt,

where σ(β) = 0 if β ≤ 0 and σ(β) = β if β > 0. Let ε > 0 satisfy that

(3.2) θ >





(r0 + ε) +
∑n

k=1(rk + ε)||β′k||
q

q+1 for β ≤ 0,

β + (r0 + ε) +
∑n

k=1(rk + ε)||β′k||
q

q+1 for β > 0 and q = 1,

(r0 + ε) +
∑n

k=1(rk + ε)||β′k||
q

q+1 for β > 0 and q > 1.

For such ε > 0, there is δ > 0 so that for every i = 0, 1, · · · , n,

(3.3) |gi(t, x)| < (ri + ε)|x|q for a.e.t ∈ [0, T ] and all x such that |x| > δ.



236 YUJI LIU AND LIUMAN OU

Denote, for i = 1, · · · , n,

∆1,i = {t : t ∈ [0, T ], |x(αi(t))| ≤ δ},

∆2,i = {t : t ∈ [0, T ], |x(αi(t))| > δ},

gδ,i = max
t∈[0,T ],|x|≤δ

|gi(t, x)|,

∆1 = {t ∈ [0, T ], |x(t)| ≤ δ},

∆2 = {t ∈ [0, T ], |x(t)| > δ},

δ′ = max{gδ,k : k = 0, · · · , n}.

Using Holder’s inequality, we get

θ

∫ T

0

|x(s)|q+1ds

=

∫

∆1

|g0(s, x(s))||x(s)|ds +

∫

∆2

|g0(s, x(s))||x(s)|ds

+
n∑

i=1

∫

∆1,i

|gi(s, x(αi(s))||x(s)|ds

+
n∑

i=1

∫

∆2,i

|gi(s, x(αi(s))||x(s)|ds +

∫ T

0

|r(s)||x(s)|ds + σ(β)

∫ T

0

|x(t)|2dt

≤ (r0 + ε)

∫ T

0

|x(s)|q+1ds +
n∑

k=1

(rk + ε)

∫ T

0

|x(αk(s))|q|x(s)|ds

+

∫ T

0

|r(s)||x(s)|ds + gδ,0

∫ T

0

|x(s)|ds +
n∑

k=1

gδ,k

∫ T

0

|x(s)|ds

+σ(β)

∫ T

0

|x(t)|2dt
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≤ σ(β)

∫ T

0

|x(t)|2dt + (r0 + ε)

∫ T

0

|x(s)|q+1ds

+
n∑

k=1

(rk + ε)

(∫ T

0

|x(αk(s))|q+1ds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′
∫ T

0

|x(s)|ds

= σ(β)

∫ T

0

|x(t)|2dt + (r0 + ε)

∫ T

0

|x(s)|q+1ds

+
n∑

k=1

(rk + ε)

∣∣∣∣∣
∫ αk(T )

αk(0)

|x(u)|q+1|β′k(u)|du

∣∣∣∣∣

q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

≤ σ(β)

∫ T

0

|x(t)|2dt + (r0 + ε)

∫ T

0

|x(s)|q+1ds

+
n∑

k=1

(rk + ε)||β′k||q/(q+1)

(∫ T

0

|x(u)|1+q|du

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

= σ(β)

∫ T

0

|x(t)|2dt +

(
(r0 + ε) +

n∑

k=1

(rk + ε)||β′k||q/(q+1)

)∫ T

0

|x(s)|q+1ds

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

.
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If β ≤ 0, we get

θ

∫ T

0

|x(s)|q+1ds ≤
(

(r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(q+1)

)∫ T

0

|x(s)|q+1ds

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

.

Then (3.1) implies that there exists a constant M1 > 0 such that
∫ T

0
|x(s)|q+1ds ≤ M1.

If β > 0, one sees from q ≥ 1 that

θ

∫ T

0

|x(s)|q+1ds

≤ β

∫ T

0

|x(t)|2dt +

(
(r0 + ε) +

n∑

k=1

(rk + ε)||β′k||q/(q+1)

)∫ T

0

|x(s)|q+1ds

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

≤ βT (q−1)/(q+1)

(∫ T

0

|x(t)|q+1dt

)2/(q+1)

+

(
(r0 + ε) +

n∑

k=1

(rk + ε)||β′k||q/(q+1)

) ∫ T

0

|x(s)|q+1ds

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

.

Then (3.1) implies that there exists a constant M1 > 0 such that
∫ T

0
|x(s)|q+1ds ≤ M1.
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Step 2. Prove that there exists a constant M2 > 0 such that ||x||X ≤ M2 for each

x ∈ Ω1.

It follows from Step 1 that there exists ξ ∈ [0, T ] such that |x(ξ)| ≤ (M1/T )1/(q+1).

Multiplying both sides of the first equation of (3.1) by x(t), integrating it from 0 to

T , we get, using (A2), (A3) and (C1) that

∫ T

0

[x′(s)]2ds

= −α

2

m∑

k=1

[(
x(t+k )

)2 − (x(tk))
2
]
−

m∑

k=1

[x′(t+k )x(t+k )− x′(tk)x(tk)]

−λ

∫ T

0

f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds + λβ

∫ T

0

|x(t)|2dt

≤ −λ

∫ T

0

f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds + λβ

∫ T

0

|x(t)|2dt

≤ −λ

(∫ T

0

h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds +

∫ T

0

g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds +

∫ T

0

r(s)x(s)ds

)
+ λβ

∫ T

0

|x(t)|2dt

≤ −λ

∫ T

0

g0(s, x(s))x(s)ds− λ

n∑
i=1

∫ T

0

gi(s, x(αi(s))x(s)ds− λ

∫ T

0

r(s)x(s)ds

+λβ

∫ T

0

|x(t)|2dt

≤
∫ T

0

|g0(s, x(s))||x(s)|ds +
n∑

i=1

∫ T

0

|gi(s, x(αi(s))||x(s)|ds +

∫ T

0

|r(s)||x(s)|ds

+λβ

∫ T

0

|x(t)|2dt

≤
[(

(r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(1+q)

)∫ T

0

|x(s)|q+1ds
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+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1) (∫ T

0

|x(s)|q+1ds

)1/(q+1)
]

+(n + 1)δ′T q/(q+1)

(∫ T

0

|x(s)|q+1ds

)1/(q+1)

+ σ(β)

∫ T

0

|x(t)|2dt.

If β ≤ 0, then

∫ T

0

[x′(s)]2ds

≤
[(

(r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(1+q)

)
M1

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1)

M
1/(q+1)
1

]
+ (n + 1)δ′T q/(q+1)M

1/(q+1)
1

=: M2.

If β > 0, then

∫ T

0

[x′(s)]2ds

≤
[(

(r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(1+q)

)
M1 + β

∫ T

0

|x(t)|2dt

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1)

M
1/(q+1)
1

]
+ (n + 1)δ′T q/(q+1)M

1/(q+1)
1

≤
[(

(r0 + ε) +
n∑

k=1

(rk + ε)||β′k||q/(1+q)

)
M1 + βT (q−1)/(q+1)M

2/(q+1)
1

+

(∫ T

0

|r(s)|(q+1)/qds

)q/(q+1)

M
1/(q+1)
1

]
+ (n + 1)δ′T q/(q+1)M

1/(q+1)
1

=: M2.
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Due to (A4) one sees that

|x(t)| =





∣∣∣x(ξ) + λ
∑

ξ≤tk<t Ik(x(tk), x
′(tk)) +

∫ t

ξ
x′(s)ds

∣∣∣ if t ≥ ξ,∣∣∣x(ξ)− λ
∑

t≤tk<ξ Ik(x(tk), x
′(tk))−

∫ ξ

t
x′(s)ds

∣∣∣ if t < ξ,

≤ (M1/T )1/(q+1) +
m∑

k=1

θk||x||X +

∫ T

0

|x′(s)|ds

≤ (M1/T )1/(q+1) +
m∑

k=1

θk||x||X + T 1/2

(∫ T

0

|x′(s)|2ds

)1/2

≤ (M1/T )1/(q+1) +
m∑

k=1

θk||x||X + T 1/2M
1/2
2 .

It follows from (A4) that

||x||X ≤ 1

1−∑m
k=1 θk

(
(M1/T )1/(q+1) + T 1/2M

1/2
2

)
.

It follows that Ω1 is bounded. This completes the proof of Lemma 3.3.

Lemma 3.4. Let

Ω2 = {x ∈ KerL, Nx ∈ ImL}.

Suppose that (E1) holds, then Ω2 is bounded.

Proof. Suppose x ∈ Ω2, then x(t) = c ∈ R and

Nx(t) =




−βc + f(t, c, c, · · · , c)

I1(c, 0)

· · ·
Im(c, 0)

J1(c, 0)

· · ·
Jm(c, 0)




,
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then Nx ∈ ImL implies that

−βTc +

∫ T

0

f(t, c, c, · · · , c)dt +
m∑

k=1

Jk(c, 0) + α

m∑

k=1

Ik(c, 0) = 0.

It follows from (E1) that |c| ≤ M0.

Lemma 3.5. If the first case in (E1) holds, let

Ω3 = {x ∈ KerL, λ ∧ x + (1− λ)QNx = 0, ∃λ ∈ [0, 1]},

where ∧ : KerL → ImQ is the linear isomorphism given by ∧(c) = (c, 0, · · · , 0) for

all c ∈ R. If the second case in (E1) holds, let

Ω3 = {x ∈ KerL, λ ∧ x− (1− λ)QNx = 0, ∃λ ∈ [0, 1]}.

Then Ω3 is bounded.

Proof. Suppose xn(t) = cn ∈ Ω3 and |cn| → +∞ as n tends to infinity. Then

Nxn(t) =




−βcn + f(t, cn, cn, · · · , cn)

I1(cn, 0)

· · ·
Im(cn, 0)

J1(cn, 0)

· · ·
Jm(cn, 0)




.

It follows that

QNxn =

(
−βTcn +

∫ T

0
f(t, cn, cn, · · · , cn)dt

T

+

∑m
k=1 Jk(cn, 0) + α

∑m
k=1 Ik(cn, 0)

T
, 0, · · · , 0

)
.
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Hence

0 = λ ∧ (cn) +
1− λ

T

(
−βTcn +

∫ T

0

f(t, cn, cn, · · · , cn)dt

+
m∑

k=1

Jk(cn, 0) + α

m∑

k=1

Ik(cn, 0)

)
.

So

λc2
n = −1− λ

T
cn

(
−βTcn +

∫ T

0

f(t, cn, · · · , cn)dt

+
m∑

k=1

Jk(cn, 0) + α

m∑

k=1

Ik(cn, 0)

)
.

If λ = 1, then cn = 0. If λ ∈ [0, 1) and |cn| > M0, then λc2
n < 0, a contradiction.

Hence |cn| ≤ M0. Ω3 is bounded.

If the second case in (E1) holds, similar to above discussion, we get Ω3 is bounded.

Proof of Theorem 2.1. We show that all conditions of Lemma 3.1 are satisfied.

Let Ω be a non-empty open bounded subset of X centered at zero such that

Ω ⊃ ∪3
i=1Ωi centered at zero. since L is a Fredholm operator of index zero and N is

L−compact on Ω. By the definition of Ω, we have

(a). Lx 6= λNx for x ∈ (D(L) \KerL) ∩ ∂Ω and λ ∈ (0, 1);

(b). Nx /∈ ImL for x ∈ KerL ∩ ∂Ω.

We prove (c). deg(QN |KerL
, Ω ∩KerL, 0) 6= 0.

In fact, let H(x, λ) = λ∧ x± (1−λ)QNx. According the definition of Ω, we know

H(x, λ) 6= 0 for x ∈ ∂Ω ∩ KerL and λ ∈ (0, 1), thus by the homotopy property of

degree,

deg(QN |KerL
, Ω ∩KerL, 0) = deg(H(·, 0), Ω ∩KerL, 0)

= deg(H(·, 1), Ω ∩KerL, 0) = deg(I, Ω ∩KerL, 0) 6= 0.
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Thus by Lemma 3.1, Lx = Nx has at least one solution in domL ∩ Ω, which is a

solution of IPBVP(1.7). The proof is complete.

Lemma 3.6. Let

Ω1 = {x ∈ D(L) : Lx = λNx, ∃λ ∈ (0, 1)}.

Suppose that (A1), (A3), (A4) and (C1) hold. Then Ω1 is bounded if

θ >





r0 +
∑n

k=1 rk||β′k||q/(q+1) for β ≤ 0 or q > 1,

β + r0 +
∑n

k=1 rk||β′k||q/(q+1) if β > 0 and q = 1.

Proof. Suppose x ∈ Ω1, we get (3.1). Multiplying both sides of the first equation

of (3.1) by x(t), integrating it from 0 to T , we get from (C1) that

x′(T )x(T )− x′(0)x(0)−
m∑

k=1

[x′(t+k )x(t+k )− x′(tk)x(tk)]−
∫ T

0

[x′(s)]2ds

+
α

2
[(x(T ))2 − (x(0))2]− α

2

m∑

k=1

[(
x(t+k )

)2 − (x(tk))
2
]

= −λβ

∫ T

0

|x(t)|2dt + λ

∫ T

0

f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= −λβ

∫ T

0

|x(t)|2dt + λ

(∫ T

0

h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+

∫ T

0

g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds +

∫ T

0

r(s)x(s)ds

)
.



PERIODIC SOLUTIONS FOR IFDES 245

It follows from (A1) that

m∑

k=1

[(
x(t+k )

)2 − (x(tk))
2
]

=
m∑

k=1

(
x(t+k )− x(tk)

) (
x(t+k ) + x(tk)

)

=
m∑

k=1

∆x(tk) (2x(tk) + ∆x(tk))

= λ

m∑

k=1

Ik(x(tk), x
′(tk)) (2x(tk) + λIk(x(tk), x

′(tk)))

≤ λ

m∑

k=1

Ik(x(tk), x
′(tk)) (2x(tk) + Ik(x(tk), x

′(tk)))

≤ 0.

On the other hand, (A3) implies that

m∑

k=1

(
x′(t+k )x(t+k )− x′(tk)x(tk)

)

=
m∑

k=1

(
x′(t+k )(x(t+k )− x(tk)) + (x′(t+k )− x′(tk))x(tk)

)

= λ

m∑

k=1

(
x′(tk)Ik(x(tk), x

′(tk)) + x(tk)Jk(x(tk), x
′(tk))

)

+λ2

m∑

k=1

Ik(x(tk), x
′(tk))Jk(x(tk), x

′(tk))

≥ λ2

m∑

k=1

(
x′(tk)Ik(x(tk), x

′(tk)) + x(tk)Jk(x(tk), x
′(tk))

+ Ik(x(tk), x
′(tk))Jk(x(tk), x

′(tk))
)

≥ 0.
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We get

∫ T

0

h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds +

∫ T

0

g0(s, x(s))x(s)ds

+
n∑

i=1

∫ T

0

gi(s, x(αi(s))x(s)ds +

∫ T

0

r(s)x(s)ds ≤ β

∫ T

0

|x(t)|2dt.

The remainder of the proof ia similar to that of Lemma 3.3 and is omitted.

Proof of Theorem 2.2. It is similar to that of Theorem 2.1 and is omitted.
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