(Short Note)

ON STRUCTURE OF H-SPACES

 $\rm H.R.SAHEBI^{(1)}$ AND $\rm S.EBRAHIMI^{(2)}$

ABSTRACT. A pair (X,A) of a topological space X and a topological ring A is called an H-space, if for each closed subset F of X and $x \notin F$, there exists $f \in C_A(X)$ such that $f(x) \neq o_A$ and $F \subseteq Z(f)$ and a topological space X is called a V-space, [4], if for points a,b,c, and d of X, where $a \neq b$, there exists a continuous functions f of X into itself such that f(a) = c and f(b) = d. In this paper we investigate some properties of H-spaces. In addition to , we show that every H-space is not a V-space.

1. Introduction

All topological spaces considered here are assumed to be Hausdroff.

If X is a topological space and A to be a topological ring ,then $C_A(X)$ denote the ring of all continuous function from X into A under the pointwis multiplication. if A is considered real number R with the usual topology $C_R(X)$ will simply be denoted by C(X) it is shown in [2]that if X is any topological space, then there is a Tychonoff space, (that is a completely regular hausdorff space), Y such that C(X) and C(Y) isomorphic.

²⁰⁰⁰ Mathematics Subject Classification. 49QJ20, 49J45, 49M25, 76D33.

Key words and phrases. H-space, zero-dimensional, completely regular, topological ring. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Jan. 15, 2010 Accepted: Dec. 23, 2010.

In this paper, we investigate some structure of H-spaces.

2. H-Space

Definition 2.1. A pair (X, A) of a topological space X and a topological ring A is called an H-space, if for each closed subset F of X and $x \notin F$, there exists $f \in C_A(X)$ such that $f(x) \neq o_A$ and $F \subseteq Z(f)$, where o_A is the zero element of the ring A.

It is easy to see that if X is completely regular and A is path connected, or if X is 0-dimensional and A is any topological ring, then (X, A) is an H-space.

Theorem 2.1. If $\{(X_{\alpha}, A_{\alpha})\}_{\alpha \in I}$ is a family of H-spaces, then $(\prod_{\alpha \in I} X_{\alpha}, \prod_{\alpha \in I} A_{\alpha})$ is also an H-space, where $\prod_{\alpha \in I} X_{\alpha}$ denotes the product space of the space X while $\prod_{\alpha \in I} A_{\alpha}$ denoted the direct product of the rings A.

Definition 2.2. A topological space X is called a V-space, [4], if for points a, b, c, and d of X, where $a \neq b$, there exists a continuous functions f of X into itself such that f(a) = c and f(b) = d.

K.D.Magill is shown [4], that every completely regular path connected space and every zero-dimensional space is a V-space.

As the following example, we show that if A is a topological ring such that (A, A) is a H-space, (A, A) will not be V-space.

Example 2.1. Let X be the ring of real numbers with the usual topology, and let Y be the ring of integers with the discrete topology. Then X is path connected while Y is zero-dimensional, thus (X,X) and (Y,Y) are H-spaces. Hence $(X \times Y, X \times Y)$ is also an H-space. Since $X \times Y$ is not connected with all components homeomorphic to X, it follows from [4, Theorem 3.5, p. 178] that $X \times Y$ is not a V-space.

3. Equivalence Class on H-space

Let X be a topological space, and A be a topological ring. For x and y in X, define $x \equiv_A y$ if and only if f(x) = f(y) for each $f \in C_A(X)$. Then " \equiv_A " is an equivalence relation in X. Let $[Y]_A$ be the set of all equivalence classes, and let $\varphi : X \to [Y]_A$ be the natural map. For each $f \in C_A(X)$, let $f_{\varphi} : [Y]_A \to R$ defined by $f_{\varphi}([x]) = f(x)$. Then f_{φ} is well-defined and $f_{\varphi}o\varphi = f$ for each $f \in C_A(X)$.

$$[C]_A = \{ f_{\omega} : f \in C_A(X) \} = \{ g : go\varphi \in C_A(X) \}$$

and let $\dot{\tau}$ be the weak topology on $[Y_A]$ induced by the family C_A . Note that the construction of the space $[Y]_A$ is analogous.

Theorem 3.1. (1) The topological space $([Y]_A, A)$ is Hausdorff.

- (2) $([Y]_A, A)$ is completely regular.
- (3) The mapping $\varphi: X \to ([Y]_A, \acute{\tau})$ is continuous.

Theorem 3.2. If the ring A is path connected, then:

- (1) $(([Y]_A, \acute{\tau}), A)$ is an H-space
- (2) $[Y]_A = [Y]_R$
- $(3) \ \dot{\tau} = \tau$

Proof: Since A is assumed to be path connected while $([Y]_A, A)$ is completely regular by Theorem 2, (1) is clear.

(2) it is sufficient to show that $x \equiv_R y$ if and only if $x \neq_A y$ whenever $x, y \in X$. Let $x \equiv_R y$ and $x \neq_A y$. Then there exists $f \in C_A(X)$ such that $f(x) \neq f(y)$. Let $g \in C(A)$ such that $g(f(x)) \neq g(f(y))$ This would imply that $x \neq_R y$ since $g \circ f \in C(X)$, a contradiction. Conversely, if $x \equiv_A y$ but $x \neq_R y$. Then there exists $f \in C(X)$ such that $f(x) \neq f(y)$. Then there exists $h \in C_A(R)$ such that h(f(x)) = 0 but $h(f(y)) \neq 0$. If g = hof, then $g \in C_A(X)$ but $g(x) \neq g(y)$ which leads to a contradiction again.

(3). Since A is completely regular C(A) separates points from closed sets in A, thus sets of the form $g^{-1}(V)$, where $g \in C(A)$ and V open in R, form a subbase for the topology of A. Let $f_{\varphi}^{-1}(U)$ be a subbasic open set in $\dot{\tau}$. Then U is open in A, hence we may let $U = \bigcap_{i=1}^n g_i^{-1}(V_i)$ where V_i open in R. Thus we have

$$f_{\varphi}^{-1}(U) = f_{\varphi}^{-1}(\bigcap_{i=1}^{n} g_{i}^{-1}(V_{i})) = \bigcap_{i=1}^{n} (g_{i}of_{i})^{-1}(V_{i})$$

by (2) $\dot{\tau} \subset \tau$ (Since $[Y]_A = [Y]_R$).

Conversely, let $h^{-1}(U)$ be a sub basic open set in τ , where U is open in R and $ho\varphi\in C(X)$. Let $y\in h^{-1}(U)$. Since $([Y]_R,\tau)$ is completely regular, $(([Y]_R,\tau),A)$ is an H-space, hence there exists $f\in C([Y]_R)_A$ such that $f(y)\neq 0$ but $f([Y]_R-h^{-1}(U))=0$. Then $y\in f^{-1}(A-\{0\})$. Since $fo\varphi\in C_A(X)$, this shows that $h^{-1}(U)\in \tau$. Hence $\tau\subset \tau$

Acknowledgement

I would like to thank the referee for his useful comments and suggestions.

References

- [1] R. Engelking, General Topology, PWN, Warsaw, 1977.
- [2] L. Gillman and M. Jerrison, Rings of continuous functions, D. Van Nostrand, N. Y. 1960.
- [3] I. Kaplansky, Topological rings Amer. J. Math. 69 (1974), 153–183

ON STRUCTURE OF H-SPACES

- 5
- [4] K. D. Magill, Some homomorphism theorems for a class of semigroups, Proc. London Math. Soc. 15(1965), 517–526
- [5] S. Willard, General Topology, Addison Wesley, 1970.
- $^{(1)}$ Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian-Iran.

E-mail address: sahebi@mail.aiau.ac.ir

 $^{(2)}$ Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian-Iran.

E-mail address: ebrahimi@mail.aiau.ac.ir