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GLOBAL STABILITY AND BIFURCATION ANALYSIS OF A
HARVESTED STAGE STRUCTURE PREDATOR-PREY SYSTEM

WITH LINEAR FUNCTIONAL RESPONSE

J.F.M. AL-OMARI(1) AND S.K.Q. AL-OMARI(2)

Abstract. The global properties of a harvested stage-structured predator-prey

model with linear functional response and constant delay are studied using Lya-

punov functions and LaSalle’s invariance principle. It is shown that time delay and

the harvesting effort can cause a stable equilibrium to become unstable. A condition

which leads to the extinction of the predators is indicated. We show also, that the

predator coexists with prey permanently if and only if the predator’s recruitment

rate at the peak of prey abundance is larger than its harvesting rate. By choosing

the delay as a bifurcation parameter, we show both analytically and numerically

that Hopf bifurcation can occur as the delay crosses some critical value. We, also

present results on positivity and boundedness of the solution.

1. Introduction

Time delay are natural components of biological systems and there are numerous

reasons for including them in the mathematical models. For example, delays may be

included to present resource regeneration times, maturation periods, feeding times,

reaction times or to take account of age structure in the population. Incorporat-

ing delays into population models can be done either by using discrete delays or
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distributed delays, ( for example see [4] , [6], [3], [2]). Many of the models in the lit-

erature includes discrete delays. In general, delay differential equations exhibit much

more complicated dynamics than ordinary differential equations without delay, since

time delay could cause a stable equilibrium to become unstable.

Most of the models in the literature always assumed that all individuals of a sin-

gle species have largely similar capabilities to hunt or reproduce. However, the life

cycle of most, if not all, animals and insects consists of at least two stages, imma-

ture and mature. Therefore, it is practical to introduce the stage structure into the

competitive or predator-prey models. Stage-structured models have attracted much

attention in recent decades. Fundamental work towards a systematic approach to

stage-structured model formulation has been made by Gurney et.al. [8] , Nisbet and

Gurney [15] and Nisbet et.al. [16]. Further progress has been made by Aiello and

Freedman [1], who proposed and studied a single species model with stage structure

and discrete delay.

Several predator-prey models, in the literature, based on stage-structure of predator

have received considerable attention in recent years. See Wang [18] and Xiao and

Chen [20] for global stability and persistence analysis of a stage-structured predator-

prey model without delay terms. See also Wang and Chen [17], Wang et al. [19],

Georgescu [5] , Liu [14], Kuang [11] and Hasting [10], for stability analysis of staged

predator-prey models with time delay.

Recently, Gourley and Kuang [7] formulated a robust stage-structured predator-prey

model with the assumption that stage-structured consumer species growth is a com-

bined result of birth and death processes, both of which are closely linked to the

dynamical supply of resource. Enlightened by the modeling methods in [7], we con-

sider and study the stage-structured predator-prey model with linear harvesting and

the death rate of the mature predator population is of a logistic nature, i.e. it is

proportional to square of the population, in order to investigate the effects of stage
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structure for the predator and the harvesting of both prey and predator on the global

dynamics of the linear harvesting predator-prey model. We shall study the system

P ′(t) = rP (t)

(
1− P (t)

k

)
− aM(t)P (t)− h1P (t),

M ′(t) = bae−(γ+h3)τM(t− τ)P (t− τ)− dM2(t)− h2M(t),

I ′(t) = baM(t)P (t)− bae−(γ+h3)τM(t− τ)P (t− τ)− γI(t)− h3I(t)

P (θ),M(θ), I(θ) ≥ 0, are continuous on − τ ≤ t ≤ 0,

P (0),M(0), I(0) > 0.

(1.1)

And for the continuity of the solutions to system (1.1), in this paper, we require

I(0) = ba

∫ 0

−τ

e(γ+h3)sM(s)P (s)ds, (1.2)

System (1.1) has been built based on the following assumptions:

(i) P (t) stands for prey or renewable resource density at time t. The parame-

ters r, k, a, h1 are positive constants representing the specific growth rate of

the prey, carrying capacity, the conversion rate ( the coefficient of decrease of

prey due to predation), and the harvesting efforts of the prey, respictively. We

assume that the prey can be modeled by logistic equation when the consumer

is absent.

(ii) As in the work of Aiello and Freedman [1], we assume that the predator popu-

lation is divided into two distinctive stages: juvenile (I(t)) and adults (M(t)).

And d, b, γ, h2, h3 > 0, which represent, the adult predators’ death rate, the
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adult predators’ birth rate, the juvenile predators mortality rate, the har-

vesting efforts for adult predator, and immature predator, respectively. We

assume that the death rate of the mature predator population is of a logistic

nature. The constant τ ≥ 0 denotes a time delay due to an immature stage.

Also, we assume that only adult predators are capable of preying on the prey

species. Because for many animals whose babies are raised by their parants

or are dependent on the nutrition from the eggs they stay in, the immature

are much weaker than the mature, their competition with other individuals

of the community can be ignored.

(iii) The expression e−(γ+h3)τ denotes the fraction of those born at time t− τ who

are still alive now and are not harvested, which accounts for mortality and

harvesting during the juvenile phase, follows from the assumption that the

death and harvesting of the immature are following a linear law given by

−γI(t) and −h3I(t).

Now, both r and k of system (1.1) can be easily scaled off by appropriate rescaling

of time and the P variable. Therefore, in the following, we will consider the system

P ′(t) = P (t) (1− P (t))− aM(t)P (t)− h1P (t),

M ′(t) = bae−(γ+h3)τM(t− τ)P (t− τ)− dM2(t)− h2M(t),

I ′(t) = baM(t)P (t)− bae−(γ+h3)τM(t− τ)P (t− τ)− γI(t)− h3I(t)

P (θ),M(θ), I(θ) ≥ 0, are continuous on − τ ≤ t ≤ 0,

P (0),M(0), I(0) > 0.

(1.3)

By the third equation of system (1.3), and the initial condition (1.2) we have
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I(t) = ba

∫ t

t−τ

e−(γ+h3)(t−s)M(s)P (s)ds, (1.4)

that is, I(t) is completely determined by M(t) and P (t), and thus the following

system can be separated from system (1.1)

P ′(t) = P (t) (1− P (t))− aM(t)P (t)− h1P (t),

M ′(t) = bae−(γ+h3)τM(t− τ)P (t− τ)− dM2(t)− h2M(t),

P (θ),M(θ) ≥ 0, are continuous on − τ ≤ t ≤ 0, P (0),M(0) > 0.

(1.5)

Before we have the main results, we need to give some propositions which will be

used in the next.

Proposition 1.1. If P (0),M(0), I(0) > 0, then every solution (P (t),M(t), I(t)) of

system (1.3) with initial condition (1.2) is positive for all t > 0.

Proof. Since the right hand side of the equation for P contains a factor of P (t),

positivity for P (t) follows by standard arguments. For M(t), if there exists t0 such

that M(t0) = 0, then t0 > 0. Assume that t0 is the first such time that M(t) = 0,

that is, t0 = inf{t > 0 : M(t) = 0}, then M ′(t0) = abe−(γ+h3)τM(t0−τ)P (t0−τ) > 0.

Hence for sufficiently small ε > 0, M ′(t0 − ε) > 0. But by the definition of t0,

M ′(t0 − ε) ≤ 0. This contradiction shows that M(t) > 0 for all t > 0.

Finally, for I(t), since I(t) is strictly positive on some [0, ε), as it starts with strictly

positive I(0), then, using (1.4), I is the integral of a continuous function which is

strictly positive at least on [0, t].

Now we prove the following proposition.

Proposition 1.2. System (1.3) is always dissipative in the first quadrant.
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Proof. By positivity of solutions

P ′(t) ≤ P (t)(1− P (t)).

Thus we have

lim sup
t→∞

P (t) ≤ 1. (1.6)

Choose the function

W (t) = be−(γ+h3)τP (t) + M(t + τ),

and calculating the derivative of W (t) along the solution of (1.3), we have

W ′(t) = be−(γ+h3)τP (t)(1− P (t))− bh1e
−(γ+h3)τP (t)− dM2(t + τ)− h2M(t + τ)

≤ be−(γ+h3)τP (t)(1− P (t))− bh1e
−(γ+h3)τP (t)− h2M(t + τ)

= −h2W (t) + h2be
−(γ+h3)τP (t) + be−(γ+h3)τP (t)(1− P (t))

−bh1e
−(γ+h3)τP (t).

By (1.6), there exist some positive constants B and T , such that

W ′(t) ≤ B − h2W (t), for all t ≥ T .

Thus

lim sup
t→∞

W (t) ≤ B

h2

,

and consequently P (t) and M(t) are ultimately bounded. Using (1.4), we also have

that I(t) is ultimately bounded, proving the proposition.
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2. The Feasibility and Local Stability of the Equilibria

The equilibria of our model are determined by setting P ′ = M ′ = I ′ = 0 in

system (1.3) and solving the resulting algebraic equations. It is clear that if h1 > 1,

the origin E0 = (0, 0, 0) is the only nonnegative equilibrium of system (1.3). Also, if

h1 < 1, then system (1.3) has the boundary equilibrium E1 = (1 − h1, 0, 0) and the

interior equilibrium E2 = (P̂ , M̂ , Î), where

P̂ =
d(1− h1) + ah2

ba2e−(γ+h3)τ + d
,

M̂ =
ba(1− h1)e

−(γ+h3)τ − h2

ba2e−(γ+h3)τ + d
,

Î =
ba(1− e−(γ+h3)τ )

[
(ba(1− h1)e

−(γ+h3)τ − h2)(d(1− h1) + ah2)
]

(γ + h3)(ba2e−(γ+h3)τ + d)
.

(2.1)

Obviously, the interior equilibrium will exist if and only if

bae−(γ+h3)τ (1− h1) > h2, (2.2)

which means that whether the interior equilibrium is feasible or not depends on the

values of the parameters. Note that, condition (2.2) can only possibly be satisfied for

τ up to a certain finit value on the interval [0, τ ∗), where

τ ∗ =
1

γ + h3

ln

(
ba(1− h1)

h2

)
.

Increasing τ in [0, τ ∗) causing the coincidence of E2 with E1 at the finite value τ ∗,

that is, as τ approaches τ ∗, then P̂ approaches 1− h1 and M̂ approaches 0. Also, we

may observe that the interior equilibrium does not exist if the immature populations

have a high death rate. On the other hand, the harvesting efforts h1, h2, and h3 also

affect the existence of the positive equilibrium since they are involved in (2.2). We see

how the harvesting rate affect the dynamics of system (1.3), for example, the more a
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prey population is harvested, the lower is the number of predators at the equilibrium,

and the less a prey population is harvested, the higher is the number of predators at

the equilibrium.

2.1. Local Stability Analysis. We will now study the local stability of equilibria

E0, E1, and E2. We shall linearise system (1.3) to determine whether trajectories

that start sufficiently close to an equilibrium point are drawn towards or repelled

away from that point. To do so, and for convenience, let

x(t) = col (P (t)− P ∗,M(t)−M∗, I(t)− I∗) , x ∈ R3, t > 0,

where (P ∗,M∗, I∗) is any arbitrary equilibrium point of system (1.3). Then, sys-

tem (1.3) can be written as

d

dt
X(t) = F (x(t), x(t− τ),

where F : C([−τ, 0],R3) → R3 is continuously differentiable function. Hence, define

the matrices A,B ∈ R3×3

A =

[
∂F

∂x(t)

]

x∗
; B =

[
∂F

∂x(t− τ)

]

x∗
.

System (1.3), linearised around x∗, takes the form

dx(t)

dt
= Ax(t) + Bx(t− τ),

and the corresponding characteristic equation is

det
[
A + Be−λτ − λI

]
= 0,
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where λ are the corresponding characteristic roots.

It is easy to check that the linearised system of (1.3) will be

P ′(t) = (1− 2P ∗ − aM∗ − h1) P (t)− aP ∗M(t)

M ′(t) = baM∗e−(γ+h3)τP (t− τ) + baP ∗e−(γ+h3)τM(t− τ)− 2dM∗M(t)− h2M(t)

I ′(t) = baP ∗M(t) + baM∗P (t)− bae−(γ+h3)τP ∗M(t− τ)− bae−(γ+h3)τM∗P (t− τ)

−γI(t)− h3I(t).

The characteristic equation resulting from the linearised system at (P ∗,M∗, I∗) is

(λ + γ + h3) [(λ− A)(λ + B) + C] = 0, (2.3)

where

A = 1− 2P ∗ − aM∗ − h1

B = 2dM∗ + h2 − baP ∗e−(γ+h3+λ)τ

C = ba2P ∗M∗e−(γ+h3+λ)τ .

We will begin by investigating the linearised stability of each equilibrium. Starting

with E0 = (0, 0, 0), it is clear that the characteristic equation (2.3) reduces to

(λ + γ + h3)(λ− (1− h1))(λ + h2) = 0

Clearly, λ = −(γ + h3), λ = −h2 and λ = 1 − h1 are always negative eigenvalues,

therefore E0 = (0, 0, 0) is locally asymptotically stable for h1 > 1.

For the equilibrium E1 = (1 − h1, 0, 0) the characteristic equation can be found by

setting (P ∗,M∗, I∗) = (1− h1, 0, 0) in (2.3) for h1 < 1 to obtain

(λ + γ + h3)(λ− (h1 − 1))
(
λ + h2 − ba(1− h1)e

−(γ+h3+λ)τ
)

= 0.

Hence, if condition (2.2) holds, then the boundary equilibrium E1 = (1 − h1, 0, 0) is

locally unstable. However, if bae−(γ+h3)τ (1 − h1) < h2, then E1 = (1 − h1, 0, 0) is
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linearly stable, because it can be shown under this condition that the equation

λ + h2 = ba(1− h1)e
−(γ+h3+λ)τ ,

does not have roots with Reλ ≥ 0. In fact we will prove in the next section that

E1 = (1− h1, 0, 0) is globally asymptotically stable in this case.

For the equilibrium E2 = (P̂ , M̂ , Î) the characteristic equation takes the form

(λ + d + h3)
(
λ2 + a1λ + a2 + (a3λ + a4)e

−λτ
)

= 0, (2.4)

where

a1 = 2dM̂ + h2 + P̂ ,

a2 = P̂ (2dM̂ + h2)

a3 = −(dM̂ + h2)

a4 = (dM̂ + h2)(aM̂ − P̂ ).

One eigenvalue is λ = −(d + h3) < 0. The remaining eigenvalues are the roots of

λ2 + a1λ + a2 + (a3λ + a4)e
−λτ = 0. (2.5)

We will try to understand the situation by finding conditions for stability when τ = 0.

In the absence of delay (τ = 0) equation (2.5) is of the form

λ2 + (a1 + a3) + a2 + a4 = 0, (2.6)

where, in this case P̂ =
d(1− h1) + ah2

ba2 + d
, M̂ =

ba(1− h1)− h2

ba2 + d
and Î = 0. We can

see that (2.6) has negative roots if and only if a1 + a3 > 0 and a2 + a4 > 0. But it is

easy to show that

a1 + a3 = dM̂ + P̂ > 0.

Also

a2 + a4 = M̂(dP̂ + adM̂ + ah2) > 0.

Therefore, the equilibrium E2 = (P̂ , M̂ , Î) is locally asymptotically stable for τ = 0.

In the following, we shall discuss the global properties of nonnegative equilibria.
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Theorem 2.1. (i) If h1 > 1, then the trivial equilibrium E0 = (0, 0, 0) (i.e., the

case in which all species tend to extinction) of the system (1.3) is globally

asymptotically stable.

(ii) If h1 < 1, and b <
h2

a(1− h1)
, then the boundary equilibrium

E1 = (1− h1, 0, 0) (i.e., the case in which the predator classes tend to extinc-

tion) of the system (1.3) is globally asymptotically stable.

(iii) If ba(1 − h1) > h2, τ = 0, then the interior equilibrium E2 = (P̂ , M̂ , Î) (i.e.,

the case in which the coexistence of both species is assured for all future time)

of the system (1.3) is globally asymptotically stable.

Proof: (i) Let us consider the Liapunov function, defined by

V1 = bP (t) + M(t) + I(t).

Note that V1(P, M, I) ≥ 0 and V1(P, M, I) = 0 if and only if P = 0, M = 0, I = 0.

We now calculate the derivative of V1 along the solution of system (1.3). We have

dV1

dt
= bP (t) (1− P (t))− baM(t)P (t)− bh1P (t) + bae−(γ+h3)τM(t− τ)P (t− τ)

−dM2(t)− h2M(t) + baM(t)P (t)− bae−(γ+h3)τM(t− τ)P (t− τ)

−γI(t)− h3I(t)

= bP (t)(1− h1)− bP 2(t)− dM2(t)− h2M(t)− γI(t)− h3I(t) ≤ 0.

Set

D1 =
{
(P,M, I) ∈ R3

+ : V ′(t) = 0
}

=
{
(P, M, I) ∈ R3

+ : P = M = I = 0
}

= E0.

According to LaSalle Theorem ([12]), E0 is globally asymptotically stable for h1 > 1.

(ii) We construct the Liapunov function V2, defined by

V2 =

[
P (t) + h1 − 1− (1− h1) ln

(
P (t)

1− h1

)]
+ λ(M(t) + I(t)).
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Calculating the derivative of V2 along each solution of (1.3), we have

V ′
2 =

(
P ′(t)− (1− h1)

P ′(t)
P (t)

)
+ λ(M ′(t) + I ′(t))

= (P (t)− (1− h1))(1− P (t)− h1) + (1− h1)aM(t)− aP (t)M(t)

−λdM2(t)− λh2M(t) + λbaM(t)P (t)− λγI(t)− λh3I(t)

= − (P (t)− (1− h1))
2 − λdM2 − (λh2 − (1− h1)a) M(t)

− (a− λba) P (t)M(t)− λ (γ + h3) I(t).

Therefore, V ′
2 ≤ 0 and V ′

2 = 0 if and only if (P, M, I) coincides with E1 provided that

the arbitrary positive constant λ in V2 can be chosen in such a way that

(1− h1)a

h2

≤ λ ≤ 1

b
. (2.7)

Hence (2.7) becomes a sufficient condition for the global asymptotic stability of

E1 = (1− h1, 0, 0). But (2.7) reduces to b <
h2

a(1− h1)
, this completes the proof

of (ii).

(iii) We make use of the general Liapunov function V3, defined by

V3 = b

[
P (t)− P̂ − P̂ ln

(
P (t)

P̂

)]
+

[
M(t)− M̂ − M̂ ln

(
M(t)

M̂

)]

+ I(t).
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Now calculating the derivative of V3 along each solution of system (1.3), with τ = 0,

we have

V ′
3 = b

(
P ′(t)− P̂

P ′(t)
P (t)

)
+

(
M ′(t)− M̂

M ′(t)
M(t)

)
+ I ′(t)

= b
[
P (t)− P 2(t)− aM(t)P (t)− h1P (t)− P̂ (1− P (t)− aM(t)− h1)

]

+
[
baM(t)P (t)− dM2(t)− h2M(t)− M̂ (baP (t)− dM(t)− h2)

]

−(γ + h3)I(t)

= b
(
P (t)− P̂

)
[1− P (t)− aM(t)− h1] +

(
M(t)− M̂

)
[baP (t)− dM(t)− h2]

−(γ + h3)I(t)

= b(P (t)− P̂ )− b(P (t)− P̂ )2 − bP̂ (P (t)− P̂ )

−ab(P (t)− P̂ )M̂ − bh1(P (t)− P̂ ) + ab(M(t)− M̂)P̂

−d(M(t)− M̂)2 − d(M(t)− M̂)M̂ − h2(M(t)− M̂)

= b(P − P̂ )
[
1− P̂ − aM̂ − h1

]
− b(P (t)− P̂ )2

+(M(t)− M̂)
[
abP̂ − dM̂ − h2

]
− (M(t)− M̂)2

= −b(P (t)− P̂ )2 − (M(t)− M̂)2 ≤ 0,

where we have used

1− P̂ − aM̂ − h1 = 0, and abP̂ − dM̂ − h2 = 0,

when τ = 0.

Now, set

D2 =
{
(P,M, I) ∈ R3 : V ′

3 = 0
}

=
{

(P, M, I) ∈ R3 : P = P̂ ,M = M̂, I = Î
}

= E2

Hence, according to LaSalle theorem [12], E2 = (P̂ , M̂ , Î) is globally asymptotically

stable for bp(1− h1) > h2 and τ = 0.
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3. Hopf Bifurcation of the Positive Equilibrium

In this section, we focus on investigating the existence of Hopf bifurcation at the

positive equilibrium E2 = (P̂ , M̂ , Î) of system (1.3) by using the time delay as a

parameter of bifurcation.

According to Theorem 2.1 the positive equilibrium E2 is asymptotically stable at

τ = 0. Stability switches for increasing τ in [0, τ ∗) may occur only with a pair of

roots λ = ±ω(τ)i, ω(τ) real positive, that cross the imaginary axis. To determine

the stability switch delay values we proceed as follows.

For τ > 0, assume λ = ω(τ)i (ω(τ) > 0) is a root of

λ2 + a1λ + a2 + (a3λ + a4)e
−λτ = 0, (3.1)

where

a1 = 2dM̂ + h2 + P̂ ,

a2 = P̂ (2dM̂ + h2)

a3 = −(dM̂ + h2)

a4 = (dM̂ + h2)(aM̂ − P̂ ).

then we have

−ω2(τ) + ia1ω(τ) + a2 + (ia3ω(τ) + a4)e
−iω(τ)τ = 0.

Separating the real and imaginary parts, we have

−ω2(τ) + a2 + a4 cos ω(τ)τ + a3ω(τ) sin ω(τ)τ = 0 (3.2)

a1ω(τ) + a3ω(τ) cos ω(τ)τ − a4 sin ω(τ)τ = 0.

Squaring both sides and adding them, we obtain the following fourth degree polyno-

mial

F (ω(τ), τ) = ω4(τ) + (a2
1 − a2

3 − 2a2)ω
2(τ) + a2

2 − a2
4 = 0. (3.3)
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Depending on the sign of a2
1− a2

3− 2a2 and a2
2− a2

4, the system may have no positive

real roots, or the root

ω+(τ) =
1√
2

{
a2

3 − a2
1 + 2a2 +

√
(a2

3 − a2
1 + 2a2)2 − 4(a2

2 − a2
4)

} 1
2

,

(3.4)

or otherwise the root

ω−(τ) =
1√
2

{
a2

3 − a2
1 + 2a2 −

√
(a2

3 − a2
1 + 2a2)2 − 4(a2

2 − a2
4)

} 1
2

,

(3.5)

or, as a last case, both the roots ω+(τ) and ω−(τ). Note that if (3.3) has no positive

roots ω(τ) in [0, τ ∗), then no stability switches can occur. But its easy to show that

a2
1 − a2

3 − 2a2 = 3d2M̂2 + 2dh2M̂ + P̂ 2 > 0.

Thus F (ω, τ) 6= 0 for all τ ∈ [0, τ ∗) if a2
2 > a2

4, this means that, no stability switches

occur as we increase τ ∈ [0, τ ∗).

Summarizing the above, we have the following theorem.

Theorem 3.1. If a2
2 > a2

4, then the positive equilibrium E2 = (P̂ , M̂ , Î) of sys-

tem (1.3) is asymptotically stable for all τ ∈ [0, τ ∗).

Next, we want to find the τ values of the stability switches that require for each

positive root ω(τ) of (3.3). These values can be found by substituting ω+ into sys-

tem (3.3) and solving for τ , we obtain

τ+
j =

1

ω+

cos−1

{
ω+a4 − a2a4 − a1a3ω+

a2
4 + a2

3ω
2
+

}
+

2πj

ω+

, j = 0, 1, 2, . . . (3.6)

where τ+
j < τ ∗.

To see if bifurcations occur, we need to verify the transversality condition

d

dτ
Reλ(τ+

0 ) > 0.
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This will signify that there exists at least one eigenvalue with positive real part

for τ > τ+
0 , that is, if a root of 3.1, crosses the imaginary axis while τ increases,

it must cross from left to right. Moreover, the conditions for the existence of a

Hopf bifurcation ([9]) are then satisfied yielding a periodic solution. Differentiating

equation (3.1) with respect to τ we obtain

(
2λ + a1 − τ(a3λ + a4)e

−λτ + a3e
−λτ

) dλ

dτ
= λ(a3λ + a4)e

−λτ .

Hence, (
dλ

dτ

)−1

=
(2λ + a1)e

λτ

λ(a3λ + a4)
+

a3

λ(a3λ + a4)
− τ

λ
.

Notice that at λ = iω+,

sign = sign

{
Re

[
(2λ + a1)e

λτ

λ(a3λ + a4)

]
+ Re

[
a3

λ(a3λ + a4)

]}

= sign

{
Re

[
a1 cos ω+τj − 2ω+ sin ω+τj + (2ω+ cos ω+τj + a1 sin ω+τj)

−a3ω2
+ + ia4ω+

]

+ Re

[
a3

−a3ω2
+ + ia4ω+

]}

= sign

{
1

Λ

[−a3ω
2
+ (a1 cos ω+τj − 2ω+ sin ω+τj)

+ a4ω+(2ω+ cos ω+τj + a1 sin ω+τj)− a2
3ω

2
+

]}

= sign

{
1

Λ
[a1ω+(a4 sin ω+τj − a3ω+ cos ω+τj)

+ 2ω2
+(a4 cos ω+τj + a3ω+ sin ω+τj)− a2

3ω
2
+

]}

= sign

{
1

Λ

[
a2

1ω
2
+ + 2ω4

+ − 2a2ω
2
+ − a2

3ω
2
+

]}

= sign

{
ω2

+

Λ

[
2ω2

+ + a2
1 − 2a2 − a2

3

]}

= sign

{
ω2

+

Λ

[√
(a2

3 + 2a2 − a2
1)

2 − 4(a2
2 − a2

4)

]}
> 0.

where, Λ = a2
3ω

4
+ + a2

4ω
2
+.

We summarize the above results in the following theorem.
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Theorem 3.2. If τ+
j satisfy (3.6) and a2

2 < a2
4 then the equilibrium E2 of system (1.3)

is asymptotically stable for τ < τ+
0 and unstable for τ > τ+

0 . The system undergoes a

Hopf bifurcation at τ = τ+
0 and generates a periodic solution.

4. Global Attractiveness

In this section, we consider the global stability of the interior equilibrium E2 in

system (1.5). But before we have the next result, we need the following lemma which

will be used in the proof of the next theorem.

Lemma 4.1. (see ([13])). Given the equation

u′(t) = au(t− τ)− cu2(t)− bu(t),

where a,b,c, and τ > 0 and u(t) > 0 for −τ ≤ t ≤ 0, then

(i) If a > b, then limt→∞ u(t) = a−b
c

. (ii) If a < b, then limt→∞ u(t) = 0.

Theorem 4.1. If bae−(γ+h3)τ (1−h1) > h2 and a2be−(γ+h3)τ < d hold, then the positive

equilibrium E2 in system (1.5) is globally atractive.

Proof: By the first equation of system (1.5) and the boundedness of P (t), for

sufficiently small ε > 0, there is a T1 > 0 such that P (t) < 1−h1 + ε = P1 for t ≥ T1.

Replacing this inequality into the second equation of (1.5), we have

M ′(t) < bae−(γ+h3)τ P 1M(t− τ)− dM2(t)− h2M(t), t ≥ T1 + τ.

Consider the system

v′(t) = bae−(γ+h3)τ P1v(t− τ)− dv2(t)− h2v(t), t ≥ T1 + τ,

v(t) = M(t), t ∈ [T1, T1 + τ ].

Noting that, from (2.2) bae−(γ+h3)τP1 − h2 > bae−(γ+h3)τ (1 − h1) − h2 > 0. Thus by

lemma 1, we have

lim
t→∞

v(t) =
bae−(γ+h3)τP1 − h2

d
> 0.
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By the comparison theorem, we have M(t) ≤ v(t), t ≥ T1 + τ . Then for sufficiently

small ε > 0, there exists T2 > T1 + τ such that

M(t) <
bae−(γ+h3)τP1 − h2

d
+ ε = M1, t ≥ T2.

Replacing the last inequality into the first equation of (1.5), we have

P ′(t) > P (t)(1− P (t))− aP (t)M1 − h1P (t), t ≥ T2.

Using the comparison theorem, for sufficiently small ε > 0, there is a T3 > T2 such

that

P (t) > Ψ− ε = P1, t ≥ T3,

where Ψ = 1− aM1 − h1 is the positive solution of

P (t)(1− P (t))− aP (t)M1 − h1P (t) = 0.

Replacing P1 into the second equation of (1.5), we have

M ′(t) > bae−(γ+h3)τP1M(t− τ)− dM2(t)− h2M(t), t ≥ T3 + τ.

Since bae−(γ+h3)τP1 > h2, for sufficiently small ε, then by lemma 1 and similar argu-

ments to M1, for the above selected ε > 0, there exists T4 > T3 + τ such that

M(t) >
bae−(γ+h3)τP1 − h2

d
− ε = M1 > 0, t ≥ T4.

Therefore, we have that

P1 < P (t) < P1, M1 < M(t) < M1,

hold for system (1.5).

Replacing M1 into the first equation of (1.5), we have

P ′(t) > P (t)(1− P (t))− aP (t)M1 − h1P (t), t ≥ T4.
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By comparison theorem, for sufficiently small ε > 0, there is a T5 > T4 such that

P (t) < Ψ1 + ε = P2 > 0,

where Ψ1 = 1− aM1 − h1.

Replacing P2 into the second equation of (1.5), we have

M ′(t) < bae−(γ+h3)τP2M(t− τ)− dM2(t)− h2M(t), t ≥ T5 + τ.

Since P2 > P1, then bae−(γ+h3)τP2 > h2. Thus using arguments similar to above, for

sufficiently small ε > 0, there is a T6 > T5 + τ such that

M(t) <
bae−(γ+h3)τP2 − h2

d
+ ε = M2, t ≥ T6,

by the definition of M2 and M1 we get M2 < M1.

Replacing M2 into the first equation of (1.5) we have

P ′(t) > P (t)(1− P (t))− aP (t)M2 − h1P (t), t ≥ T6.

Then we have

P (t) > Ψ2 − ε = P2 > 0, t ≥ T7,

with Ψ2 = 1− aM2 − h1. By the definition of P2, we have P2 > P1.

Replacing P2 into the second equation of (1.5), then by arguments similar to those

for M2, we get that there exists a T8 > T7 + τ such that

M(t) >
bae−(γ+h3)τP2 − h2

d
− ε = M2, t ≥ T8,

and we get M2 > M1.

Therefore, we have

0 < P1 < P2 < P (t) < P2 < P1,

0 < M1 < M2 < M(t) < M2 < M1, t ≥ T8.
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By repeating the above arguments, we get four sequences
{
Pn

}n=∞
n=1

,
{
Pn

}n=∞
n=1

,
{
Mn

}n=∞
n=1

,
{
Mn

}n=∞
n=1

with

0 < P1 < · · · < Pn < P (t) < Pn < · · · < P1,

0 < M1 < · · · < Mn < M(t) < Mn < · · · < M1, t ≥ T4n. (4.1)

From (4.1) follows that the limit of each sequence in
{
Pn

}n=∞
n=1

,
{
Pn

}n=∞
n=1

,
{
Mn

}n=∞
n=1

,
{
Mn

}n=∞
n=1

exists. Denote

P = lim
n→∞

Pn, M = lim
n→∞

Mn, P = lim
n→∞

Pn, M = lim
n→∞

Mn;

thus we get P ≥ P , M ≥ M . To complete the proof, it suffices to prove P = P ,

M = M .

By the definition of Mn, Mn we have

Mn =
bae−(γ+h3)τPn − h2

d
+ ε, Mn =

bae−(γ+h3)τPn − h2

d
− ε,

then we have

Mn −Mn =
bae−(γ+h3)τ

d

(
Pn − Pn

)
+ 2ε. (4.2)

By the definition of Pn, Pn and using (4.2), we have

Pn − Pn = (1− aMn−1 − h1)− (1− aMn − h1) + 2ε

= a(Mn −Mn−1) + 2ε

=
a2be−(γ+h3)τ

d
(Pn − Pn−1) + 2ε(a + 1).

Let n →∞, then we have

P − P ≤ a2be−(γ+h3)τ

d
(P − P ) + 2ε(a + 1),

thus {
1− a2be−(γ+h3)τ

d

}
(P − P ) ≤ 2ε(a + 1).
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By 0 < a2be−(γ+h3)τ

d
< 1, we have 1 − a2be−(γ+h3)τ

d
> 0, and noting that ε can be

arbitrarily small, then we have P = P . By (4.2) and let n → ∞, we get M = M .

This proves the theorem.

5. Interpretation of the Theoretical Results

In this section, we present a numerical analysis on model (1.5) to illustrate the

applicability of our main results. We shall first confirme numerically the result in

section 3, Theorem 3.1 for certain values of the parameters, that when a2
2 > a2

4 then

E2 is always stable regardles of the value of the delay, see Figure 1.

Then in Figure 2 we carried out several simulation, for another combination of pa-

rameter values. For the parameter values used (see caption) the interior equilibrium

loses stability and then regains stability at a larger τ , befor the equilibrium itself

finally disappears at τ ∗ ≈ 5.

Figure 3, shows numerical simulation in the unlikely case that juveniles do not suffer

any mortality (γ = 0). Unlike the result in [7] , where their simulation indicates that,

the stability of the interior equilibrium is permanently lost and oscillatory dynamics

will persist and gain complexity when τ is increased, our results, in this case, shows

that for lower τ the equilibrium E2 is stable, then loses stability and then regains it

as τ is increased.

6. Discussion

In this paper, we study the stage-structured predator-prey model with linear func-

tional response, and continuous harvesting on prey and predator populations.

We give the conditions which are sufficient for the coexistence and extinction of sys-

tem (1.3). Our results suggest that the predator coexists with prey permanently if

and only if (2.2) holds true, i.e., predator’s recruitment rate (bae−(γ+h3)τ ) at the peak

of prey abundance is larger than its harvesting rate (h2), and that if it takes too
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Figure 1. A solution of model (1.5) illustrating a situation in which

both the prey and predator converges to the equilibrium values for

all values of τ ∈ [0, 6.4], where a = 2.0, b = 2.0, γ = 0.1, d = 3,

h1 = h3 = 0.1, h2 = 1. Note that, for all values of τ , a2
2 > a2

4.
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Figure 2. A solution of model (1.5), where a = 2.0, b = 10, γ = 0.5,

d = 0.5, h1 = 0.3, h3 = 0.2, h2 = 0.4 and τ ∈ [0, 5]. Note that, at

τ = 1.2 system (1.5) generates a periodic solution since a2 < a4

much for the immature predator to mature, or the through-stage death rate of the

immature predator is high (that is, the recruitment rate is small compared to h2),
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Figure 3. A solution of model (1.5), where a = 1.0, b = 10, γ = 0

(i.e. no juvenile mortality), d = 0.5, h1 = 0.3, h3 = 0.2, h2 = 0.4 and

τ ∈ [0, 14.3].

then the total number of production during the adult stage will not be enough to

compensate the total loss of immature predators and the predator classes will tend

to extinction. Also, if the harvesting rate of the immature population is increased, it

may be responsible for the extinction of predators.

We also find the stability switches of the interior equilibrium E2 due to the increase

of time delay τ : as τ increases, we see that oscillatory dynamics may appear and

further increas of τ will return the oscillatory dynamics to the steady state form.

Finally, we proved that the three equilibria are globally asymptotically stable. The

results show that the behavior of harvesting on prey and predator populations affect

the dynamical behavior of system (1.3). That is, it can prevent the predator from

dying out.
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