Jordan Journal of Mathematics and Statistics (JJMS) 4(1), 2011, pp.33 - 46

DECOMPOSITIONS OF CONTINUITY VIA GRILLS

AHMAD AL-OMARI AND TAKASHI NOIRI

ABSTRACT. In this paper, we introduce the notions of \mathcal{G} - α -open sets, \mathcal{G} -semi-open sets and \mathcal{G} - β -open sets in grill topological spaces and investigate their properties.

Furthermore, by using these sets we obtain new decompositions of continuity.

1. Introduction

The idea of grills on a topological space was first introduced by Choquet [4]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [2], [3], [11] for details). In [10], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [5] have defined new classes of sets in a grill topological space and obtained a new decomposition of continuity in terms of grills. In this paper, we introduce and investigate the notions of \mathcal{G} - α -open sets, \mathcal{G} -semi-open sets and \mathcal{G} - β -open sets in grill topological spaces. We define grill α -continuous functions to obtain decompositions of continuity.

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. grill, decomposition of continuity, \mathcal{G} - α -open, \mathcal{G} -semi-open, \mathcal{G} -preopen, \mathcal{G} -open .

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The power set of X will be denoted by $\mathcal{P}(X)$.

The definition of grill on a topological space, as given by Choquet [4], goes as follows: A non-null collection \mathcal{G} of subsets of a topological spaces X is said to be a grill on X if

- (1) $\phi \notin \mathcal{G}$,
- (2) $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$,
- (3) $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For example let R be the set of all real numbers consider a subset

 $\mathcal{G} = \{A \subseteq R : m(A) \neq 0\}$, where m(A) is the Lebesgue measure of A, then \mathcal{G} is a grill. For any point x of a topological space (X, τ) , $\tau(x)$ denotes the collection of all open neighborhoods of x.

Definition 2.1. [10] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows:

 $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\} \text{ for each } A \in \mathcal{P}(X).$ The mapping Φ is called the operator associated with the grill \mathcal{G} and the topology τ .

Proposition 2.1. [10] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then for all $A, B \subseteq X$:

- (1) $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,
- (2) $\Phi(A \cup B) = \Phi(A) \cup \Phi(B)$,
- (3) $\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A)$.

Let \mathcal{G} be a grill on a space X. Then we define a map $\Psi: \mathcal{P}(X) \to \mathcal{P}(X)$ by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$. The map Ψ is a Kuratowski closure axiom. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology

 $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}}\text{-}Cl(A)$. For any grill \mathcal{G} on a topological space $(X, \tau), \tau \subseteq \tau_{\mathcal{G}}$. If (X, τ) is a topological space with a grill \mathcal{G} on X, then we call it a grill topological space and denote it by (X, τ, \mathcal{G}) .

Example 2.1. [10] Let τ denote the cofinite topology on an uncountable set X and let \mathcal{G} be the grill of all uncountable subset of X. Then it is clearly $\tau \setminus \{\phi\} \subseteq \mathcal{G}$. We show that $\tau_{\mathcal{G}}$ is the cocountable topology which denoted by τ_{co} on X. If $V \in \tau_{\mathcal{G}}$, then V = U - A, where $U \in \tau$ and $A \notin \mathcal{G}$ implies that (X - U) is finite and A is countable. Now $X - V = X \cap (X - V) = X \cap (X - (U \cap (X - A))) = X \cap ((X - U) \cup A) = (X - U) \cup A$ which is countable and hence $V \in \tau_{co}$. On the other hand if $V \in \tau_{co}$ implies that $X - V = A \notin \mathcal{G}$ and hence V = X - A, where $X \in \tau$ and $A \notin \mathcal{G}$ so $V \in \tau_{\mathcal{G}}$. Thus $\tau_{\mathcal{G}} = \tau_{co}$.

Lemma 2.1. [10] For any grill \mathcal{G} on a topological space (X, τ) , $\tau \subseteq \mathcal{B}(\mathcal{G}, \tau) \subseteq \tau_{\mathcal{G}}$, where $\mathcal{B}(\mathcal{G}, \tau) = \{V - A : V \in \tau \text{ and } A \notin \mathcal{G}\}$ is an open base for $\tau_{\mathcal{G}}$.

Example 2.2. Let (X, τ) be a topological space. If $\mathcal{G} = \mathcal{P}(X) \setminus \{\phi\}$, then $\tau_{\mathcal{G}} = \tau$. Since for any $\tau_{\mathcal{G}}$ -basic open set V = X - A with $U \in \tau$ and $A \notin \mathcal{G}$, we have $A = \phi$, so that $V = U \in \tau$. Hence by Lemma 2.1 we have in this case $\tau = \mathcal{B}(\mathcal{G}, \tau) = \tau_{\mathcal{G}}$

Definition 2.2. A subset A of a topological space X is said to be:

- (1) α -open [9] if $A \subseteq Int(Cl(Int(A)))$,
- (2) semi-open [6] if $A \subseteq Cl(Int(A))$,
- (3) preopen [8] if $A \subseteq Int(Cl(A))$,
- (4) β -open [1] if $A \subseteq Cl(Int(Cl(A)))$.

3. Properties of \mathcal{G} - α -Open Sets and \mathcal{G} -Semi-Open Sets

Definition 3.1. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A in X is said to be

- (1) Φ -open [5] if $A \subseteq Int(\Phi(A))$,
- (2) \mathcal{G} - α -open if $A \subseteq Int(\Psi(Int(A)))$,
- (3) \mathcal{G} -preopen [5] if $A \subseteq Int(\Psi(A))$,
- (4) \mathcal{G} -semi-open if $A \subseteq \Psi(Int(A))$,
- (5) \mathcal{G} - β -open if $A \subseteq Cl(Int(\Psi(A)))$.

The family of all \mathcal{G} - α -open (resp. \mathcal{G} -preopen, \mathcal{G} -semi-open, \mathcal{G} -open) sets in a grill topological space (X, τ, \mathcal{G}) is denoted by $\mathcal{G}\alpha O(X)$ (resp. $\mathcal{G}PO(X)$, $\mathcal{G}SO(X)$, $\mathcal{G}\beta O(X)$).

Remark 1. For several sets defined above, we have the following implications, where converses of implications need not be true as shown by below examples.

It is shown in [5] that openness and Φ -openness are independent of each other.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{c, b, d\}, \{a, c, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, X\}$. Then

- (1) $A = \{b, c, d\}$ is a semi-open set which is not \mathcal{G} -semi-open.
- (2) $A = \{b, c, d\}$ is a \mathcal{G} - β -open set which is not \mathcal{G} -semi-open.

- (3) $B = \{a, b\}$ is a \mathcal{G} -semi-open set which is not preopen and hence it is not \mathcal{G} -preopen.
- (4) $C = \{a, b, c\}$ is a \mathcal{G} - α -open set which is not open.

Example 3.2. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ and the grill $G = \{\{b\}, \{a, b\}, \{a, b, c\}, \{c, b, d\}, \{b, c\}, \{b, d\}, \{a, b, d\}, X\}$. Then $A = \{a, c, d\}$ is an α -open set and a \mathcal{G} - β -open set which is not \mathcal{G} -preopen.

Example 3.3. Let
$$X = \{a, b, c\}$$
, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then

- (1) $A = \{a, c\}$ is a β -open set which is not \mathcal{G} - β -open.
- (2) $B = \{a, b\}$ is a \mathcal{G} -preopen set which is not \mathcal{G} -semi-open.

Proposition 3.1. For a subset of a grill topological space (X, τ, \mathcal{G}) , the following properties are hold:

- (1) Every \mathcal{G} - α -open set is α -open.
- (2) Every \mathcal{G} -semi-open set is semi-open.
- (3) Every \mathcal{G} - β -open set is β -open.

Theorem 3.1. Let A be a subset of a grill topological space (X, τ, \mathcal{G}) . Then the following properties hold:

- (1) A subset A of X is \mathcal{G} - α -open if and only if it is \mathcal{G} -semi-open and \mathcal{G} -pre-open,
- (2) If A is \mathcal{G} -semi-open, then A is \mathcal{G} - β -open.
- (3) If A is \mathcal{G} -preopen, then A is \mathcal{G} - β -open.

Proof. (1) Necessity. This is obvious.

Sufficiency. Let A be \mathcal{G} -semi-open and \mathcal{G} -pre-open. Then we have

 $A \subseteq Int(\Psi(A)) \subseteq Int(\Psi(\Psi(Int(A)))) \subseteq Int(\Psi(Int(A)))$. This shows that A is \mathcal{G} - α -open.

(2) Since A is \mathcal{G} -semi-open and $\tau \subseteq \tau_{\mathcal{G}}$, we have

 $A \subseteq \Psi(Int(A)) \subseteq Cl(Int(A)) \subseteq Cl(Int(\Psi(A)))$. This shows that A is \mathcal{G} - β -open.

(3) The proof is obvious.

Theorem 3.2. A subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G} -semi-open if and only if $\Psi(A) = \Psi(Int(A))$.

Theorem 3.3. A subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G} -semi-open if and only if there exists $U \in \tau$ such that $U \subseteq A \subseteq \Psi(U)$.

Proof. Let A be \mathcal{G} -semi-open, then $A \subseteq \Psi(Int(A))$. Take U = Int(A). Then we have $U \subseteq A \subseteq \Psi(U)$. Conversely, let $U \subseteq A \subseteq \Psi(U)$ for some $U \in \tau$. Since $U \subseteq A$, we have $U \subseteq Int(A)$ and hence $\Psi(U) \subseteq \Psi(Int(A))$. Thus we obtain $A \subseteq \Psi(Int(A))$.

Theorem 3.4. If A is a \mathcal{G} -semi-open set in a grill topological space (X, τ, \mathcal{G}) and $A \subseteq B \subseteq \Psi(A)$, then B is \mathcal{G} -semi-open in (X, τ, \mathcal{G}) .

Proof. Since A be \mathcal{G} -semi-open, there exists an open set U of X such that $U \subseteq A \subseteq \Psi(U)$. Then we have $U \subseteq A \subseteq B \subseteq \Psi(A) \subseteq \Psi(\Psi(U)) = \Psi(U)$ and hence $U \subseteq B \subseteq \Psi(U)$. By Theorem 3.3, we obtain that B is \mathcal{G} -semi-open in (X, τ, \mathcal{G}) .

Lemma 3.1. [10] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. If $U \in \tau$, then $U \cap \Phi(A) = U \cap \Phi(U \cap A)$ for any $A \subseteq X$.

Lemma 3.2. Let A be a subset of a grill topological space (X, τ, \mathcal{G}) . If $U \in \tau$, then $U \cap \Psi(A) \subseteq \Psi(U \cap A)$.

Proof. Since $U \in \tau$, by Lemma 3.1 we obtain

$$U\cap \Psi(A)=U\cap (A\cup \Phi(A))=(U\cap A)\cup (U\cap \Phi(A)\subseteq (U\cap A)\cup \Phi(U\cap A)=\Psi(U\cap A).\quad \Box$$

Proposition 3.2. Let (X, τ, \mathcal{G}) be a grill topological space.

- (1) If $V \in \mathcal{G}SO(X)$ and $A \in \mathcal{G}\alpha O(X)$, then $V \cap A \in \mathcal{G}SO(X)$.
- (2) If $V \in \mathcal{G}PO(X)$ and $A \in \mathcal{G}\alpha O(X)$, then $V \cap A \in \mathcal{G}PO(X)$.

Proof. (1) Let $V \in \mathcal{G}SO(X)$ and $A \in \mathcal{G}\alpha O(X)$. By using Lemma 3.2 we obtain

$$\begin{split} V \cap A &\subseteq \Psi(Int(V)) \cap Int(\Psi(Int(A))) \\ &\subseteq \Psi[Int(V) \cap Int(\Psi(Int(A)))] \\ &\subseteq \Psi[Int(V) \cap \Psi(Int(A))] \\ &\subseteq \Psi[\Psi[Int(V) \cap Int(A)]] \\ &\subseteq \Psi[Int(V \cap A)]. \end{split}$$

This shows that $V \cap A \in \mathcal{G}SO(X)$.

(2) Let $V \in \mathcal{G}PO(X)$ and $A \in \mathcal{G}\alpha O(X)$. By using Lemma 3.2 we obtain

$$\begin{split} V \cap A &\subseteq Int(\Psi(V)) \cap Int(\Psi(Int(A))) \\ &= Int[Int(\Psi(V)) \cap \Psi(Int(A))] \\ &\subseteq Int[\Psi[Int(\Psi(V)) \cap Int(A)]] \\ &\subseteq Int[\Psi[\Psi(V) \cap Int(A)]] \\ &\subseteq Int[\Psi[\Psi[V \cap Int(A)]]] \\ &\subseteq Int[\Psi[V \cap A]]. \end{split}$$

This shows that $V \cap A \in \mathcal{G}PO(X)$.

Corollary 3.1. Let (X, τ, \mathcal{G}) be a grill topological space.

- (1) If $V \in \mathcal{G}SO(X)$ and $A \in \tau$, then $V \cap A \in \mathcal{G}SO(X)$.
- (2) If $V \in \mathcal{G}PO(X)$ and $A \in \tau$, then $V \cap A \in \mathcal{G}PO(X)$.

Proposition 3.3. Let (X, τ, \mathcal{G}) be a grill topological space.

- (1) If $A, B \in \mathcal{G}\alpha O(X)$, then $A \cap B \in \mathcal{G}\alpha O(X)$.
- (2) If $A_i \in \mathcal{G}\alpha O(X)$ for each $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{G}\alpha O(X)$.

Proof. (1) Let $A, B \in \mathcal{G}\alpha O(X)$. By Theorem 3.1 A is \mathcal{G} -semi-open and \mathcal{G} -pre-open and by Proposition 3.2 $A \cap B$ is \mathcal{G} -semi-open and \mathcal{G} -preopen. Therefore, $A \cap B \in \mathcal{G}\alpha O(X)$.

(2) Let $A_i \in G\alpha O(X)$ for each $i \in I$. Then, we have

$$A_i \subseteq Int(\Psi(Int(A_i))) \subseteq Int(\Psi(Int(\cup_{i \in I} A_i)))$$
 and hence $\cup_{i \in I} A_i \subseteq Int(\Psi(Int(\cup_{i \in I} A_i))).$

This shows that $\bigcup_{i\in I} A_i \in \mathcal{G}\alpha O(X)$.

Corollary 3.2. Let (X, τ, \mathcal{G}) be a grill topological space. Then the family $\mathcal{G}\alpha O(X)$ is a topology for X such that $\tau \subseteq \mathcal{G}\alpha O(X) \subseteq \tau^{\alpha}$, where τ^{α} denotes the family of α -open sets of X.

Proof. Since $\phi, X \in \mathcal{G}\alpha O(X)$, this is an immediate consequence of Propositions 3.1 and 3.3.

Example 3.4. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and the grill $\mathcal{G} = \{\{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $\tau^{\alpha} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{a, c, d\}\} \text{ and } \mathcal{G}\alpha O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}\} \text{ and hence } \tau \subsetneq \mathcal{G}\alpha O(X) \subsetneq \tau^{\alpha}.$

Remark 2. (1) The minimal grill is $\mathcal{G} = \{X\}$ in any a topological space (X, τ) .

(2) The maximal grill is $\mathcal{G} = \mathcal{P}(X) \setminus \{\phi\}$ in any a topological space (X, τ) .

The proofs of the following three corollary is straightforward, hence it is omitted.

Corollary 3.3. Let (X, τ, \mathcal{G}) be a grill topological space and A a subset of X. If $\mathcal{G} = \mathcal{P}(X) \setminus \{\phi\}$. Then the following hold:

- (1) A is \mathcal{G} - α -open if and only if A is α -open.
- (2) A is \mathcal{G} -preopen if and only if A is preopen.
- (3) A is \mathcal{G} -semi-open if and only if A is semi-open.
- (4) A is \mathcal{G} - β -open if and only if A is β -open.

Let (X, τ, \mathcal{G}) be a grill topological space. If $\mathcal{G} = \{X\}$, then $\Phi(A) = \phi$ for any subset A of X and $\Psi(A) = \tau_{\mathcal{G}} - Cl(A) = A$ and hence $\tau_{\mathcal{G}} = \tau_{dis}$, where τ_{dis} is the discrete topology on X.

Corollary 3.4. Let (X, τ, \mathcal{G}) be a grill topological space and A a subset of X. If $\mathcal{G} = \{X\}$. Then the following hold:

- (1) A is \mathcal{G} - α -open if and only if A is open.
- (2) A is G-preopen if and only if A is open.
- (3) A is \mathcal{G} -semi-open if and only if A is open.
- (4) A is \mathcal{G} - β -open if and only if A is semi-open.

Corollary 3.5. Let (X, τ, \mathcal{G}) be a grill topological space and A a subset of X. If $\Phi(A) = Cl(Int(Cl(A)))$ for any subset A of X. Then the following hold:

- (1) A is \mathcal{G} - α -open if and only if A is α -open.
- (2) A is \mathcal{G} - β -open if and only if A is β -open.

Recall that (X,τ) is called submaximal if every dense subset of X is open.

Lemma 3.3. [7] If (X, τ) is submaximal, then $PO(X, \tau) = \tau$.

Corollary 3.6. If (X, τ) is submaximal, then for any gril \mathcal{G} on X, $\tau = \alpha O(X) = PO(X, \tau) = \mathcal{G}PO(X) = \mathcal{G}\alpha O(X)$.

Theorem 3.5. Let (X, τ, \mathcal{G}) be a grill topological space and A, B subsets of X. If $U_{\alpha} \in \mathcal{G}SO(X, \tau)$ for each $\alpha \in \Delta$, then $\cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{G}SO(X, \tau)$.

Proof. Since $U_{\alpha} \in \mathcal{G}SO(X, \tau)$, we have $U_{\alpha} \subseteq \Psi(Int(U_{\alpha}))$ for each $\alpha \in \Delta$. Thus we obtain $U_{\alpha} \subseteq \Psi(Int(U_{\alpha})) \subseteq \Psi(Int(\cup_{\alpha \in \Delta} U_{\alpha}))$ and hence $\cup_{\alpha \in \Delta} U_{\alpha} \subseteq \Psi(Int(\cup_{\alpha \in \Delta} (U_{\alpha})))$. This shows that $\cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{G}SO(X, \tau)$.

Definition 3.2. A subset F of a grill topological space (X, τ, \mathcal{G}) is said to be \mathcal{G} -semi-closed (resp. \mathcal{G} -preclosed) if its complement is \mathcal{G} -semi-open (resp. \mathcal{G} -preopen).

Theorem 3.6. If a subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G} -semi-closed, then $Int(\Psi(A)) \subseteq A$.

Theorem 3.7. If a subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G} -preclosed, then $\Psi(Int(A)) \subseteq A$.

Definition 3.3. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A in X is called

- (1) a g_1 -set if $Int(\Psi(Int(A))) = Int(A)$,
- (2) a g_2 -set if $\Psi(Int(A)) = Int(A)$.

Definition 3.4. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A in X is called

- (1) a G_1 -set if $A = U \cap V$, where $U \in \tau$ and V is a g_1 -set,
- (2) a G_2 -set if $A = U \cap V$, where $U \in \tau$ and V is a g_2 -set.

Theorem 3.8. Let (X, τ, \mathcal{G}) be a grill topological space. For a subset A of X, the following conditions are equivalent:

- (1) A is open;
- (2) A is \mathcal{G} - α -open and a G_1 -set;
- (3) A is \mathcal{G} -semi-open and a G_2 -set.

Proof. (1) \Rightarrow (2) Let A be any open set. Then we have $A = Int(A) \subseteq Int(\Psi(Int(A)))$. Therefore A is \mathcal{G} - α -open and because X is a g_1 -set, hence A is a G_1 -set.

(2) \Rightarrow (1) Let A be \mathcal{G} - α -open and a G_1 -set. Let $A = U \cap C$, where U is open and $Int(\Psi(Int(C))) = Int(C)$. Since A is a \mathcal{G} - α -open set, we have

$$U \cap C \subseteq Int(\Psi(Int(U \cap C)))$$

$$= Int(\Psi(Int(U) \cap Int(C)))$$

$$= Int(\Psi(U \cap Int(C)))$$

$$\subseteq Int(\Psi(U) \cap \Psi(Int(C)))$$

$$= Int(\Psi(U)) \cap Int(\Psi(Int(C)))$$

$$= Int(\Psi(U)) \cap Int(C).$$

Since $U \subseteq Int(\Psi(U))$, we have

 $U \cap C = (U \cap C) \cap U \subseteq Int(\Psi(U)) \cap Int(C) \cap U = U \cap Int(C) = Int(U \cap C)$. Therefore, $A = U \cap C$ is an open set.

- $(1) \Rightarrow (3)$ This is obvious, because X is a g_2 -set, then A is a G_2 -set.
- (3) \Rightarrow (1) Suppose that A is \mathcal{G} -semi-open and a G_2 -set. Let $A = U \cap C$, where U is open and $\Psi(Int(C)) = Int(C)$. Since A is a \mathcal{G} -semi-open set, we have

$$U \cap C \subseteq \Psi(Int(U \cap C))$$

$$= \Psi(Int(U) \cap Int(C))$$

$$= \Psi(U \cap Int(C))$$

$$\subseteq \Psi(U) \cap \Psi(Int(C))$$

$$= \Psi(U) \cap Int(C).$$

Since $U \subseteq \Psi(U)$, we have

$$U \cap C = (U \cap C) \cap U \subseteq \Psi(U) \cap Int(C) \cap U = U \cap Int(C) = Int(U \cap C).$$

Therefore, $A = U \cap C$ is an open set.

The notion of \mathcal{G} - α -openness (resp. \mathcal{G} -semi-openness) is different from that of G_1 -sets (resp. G_2 -sets).

- Remark 3. (1) In Example 3.1, $A = \{a, b\}$ is a g_1 -set and hence a G_1 -set but it is not \mathcal{G} - α -open. And $B = \{a, b, c\}$ is \mathcal{G} - α -open but it is not a G_1 -set.
 - (2) In Example 3.2, $A = \{a, c, d\}$ is a g_2 -set and hence a G_2 -set but it is not \mathcal{G} -semi-open.
 - (3) In Example 3.1, $B = \{a, b, c\}$ is \mathcal{G} -semi-open but it is not a G_2 -set.

4. Decompositions of Continuity

Definition 4.1. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is said to be grill α -continuous (resp. grill semi-continuous, grill pre-continuous [5]) if the inverse image of each open set of Y is \mathcal{G} - α -open (resp. \mathcal{G} -semi-open, \mathcal{G} -preopen).

Theorem 4.1. For a function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is grill α -continuous;
- (2) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $W \in \mathcal{G}\alpha O(X)$ containing x such that $f(W) \subseteq V$;

- (3) The inverse image of each closed set in Y is \mathcal{G} - α -closed;
- (4) $Cl(Int_{\mathcal{G}}(Cl(f^{-1}(B)))) \subseteq f^{-1}(Cl(B))$ for each $B \subseteq Y$;
- (5) $f(Cl(Int_{\mathcal{G}}(Cl(A)))) \subseteq Cl(f(A))$ for each $A \subseteq X$.

Proof. The implications follow easily from the definitions.

Corollary 4.1. Let $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ be grill α -continuous, then

- (1) $f(\Psi(U)) \subseteq Cl(f(U))$ for each $U \in \mathcal{G}PO(X)$.
- (2) $\Psi(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$ for each $V \in \mathcal{G}PO(Y)$.

Theorem 4.2. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is grill α -continuous if and only if the graph function $g:X\to X\times Y$, defined by g(x)=(x,f(x)) for each $x\in X$, is grill α -continuous.

Definition 4.2. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma,\mathcal{H})$ is said to be grill irresolute if $f^{-1}(V)$ is \mathcal{G} -semi-open in (X,τ,\mathcal{G}) for each \mathcal{G} -semi-open V of (Y,σ,\mathcal{H}) .

Remark 4. It is obvious that continuity implies grill semi-continuity and grill semi-continuity implies semi-continuity.

Theorem 4.3. For a function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$, the following are equivalent:

- (1) f is grill semi-continuous.
- (2) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \mathcal{G}SO(X)$ containing x such that $f(U) \subseteq V$.
- (3) The inverse image of each closed set in Y is \mathcal{G} -semi-closed.

Theorem 4.4. Let $f:(X,\tau,\mathcal{G})\to (Y,\sigma,\mathcal{H})$ be grill semi-continuous and $f^{-1}(\Psi(V))\subseteq \Psi(f^{-1}(V))$ for each $V\in\sigma$. Then f is grill irresolute.

Proof. Let B be any \mathcal{G} -semi-open set of (Y, σ, \mathcal{H}) . By Theorem 3.3, there exists $V \in \sigma$ such that $V \subseteq B \subseteq \Psi(V)$. Therefore, we have $f^{-1}(V) \subseteq f^{-1}(B) \subseteq f^{-1}(\Psi(V)) \subseteq \Psi(f^{-1}(V))$. Since f is grill semi-continuous and $V \in \sigma$, $f^{-1}(V) \in \mathcal{G}SO(X)$ and hence by Theorem 3.4, $f^{-1}(B)$ is a \mathcal{G} -semi-open set of (X, τ, \mathcal{G}) . This shows that f is grill irresolute. \square

Theorem 4.5. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is grill semi-continuous if and only if the graph function $g:X\to X\times Y$ is grill semi-continuous.

Theorem 4.6. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is grill α -continuous if and only if it is grill semi-continuous and grill pre-continuous.

Proof. This is an immediate consequence of Theorem 3.1.

Theorem 4.7. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is grill α -continuous if and only if $f:(X,\mathcal{G}\alpha O(X))\to (Y,\sigma)$ is continuous.

Proof. This is an immediate consequence of Corollary 3.2.

Definition 4.3. A function $f:(X,\tau,\mathcal{G})\to (Y,\sigma)$ is said to be G_1 -continuous (resp. G_2 -continuous) if the inverse image of each open set of Y is G_1 -open (resp. G_2 -open) in (X,τ,\mathcal{G}) .

Theorem 4.8. Let (X, τ, \mathcal{G}) be a grill topological space. For a function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following conditions are equivalent:

- (1) f is continuous;
- (2) f is grill α -continuous and G_1 -continuous;
- (3) f is grill semi-continuous and G_2 -continuous.

Proof. This is an immediate consequence of Theorem 3.8.

Acknowledgement

The authors wishes to thank the referees for useful comments and suggestions.

References

- [1] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986), 24-32.
- [2] K. C. Chattopadhyay, O. Njåstad and W. J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 35 (4) (1983), 613-629.
- [3] K. C. Chattopadhyay and W. J. Thron, Extensions of closure spaces, Can. J. Math., 29 (6) (1977), 1277-1286.
- [4] G. Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171-173.
- [5] E. Hatir and S. Jafari, On some new calsses of sets and a new decomposition of continuity via grills, J. Adv. Math. Studies., 3 (1) (2010), 33-40.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70 (1963), 36-41.
- [7] R. A. Mahmound and D. A. Rose, A note on spaces via dense sets, Tamkang J. Math., 24 (3) (1993), 333-339.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [9] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [10] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33 (4) (2007), 771-786.
- [11] W. J. Thron, Proximity structure and grills, Math. Ann., 206 (1973), 35-62.
 - $^{(1)}$ AL AL-BAYT UNIVERSITY, DEPARTMENT OF MATHEMATICS, JORDAN $E\text{-}mail\ address:}$ omarimutah1@yahoo.com
 - (2) 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan *E-mail address*: t.noiri@nifty.com