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LONGITUDINAL DATA ANALYSIS USING GENERALIZED
MAXIMUM ENTROPY APPROACH

MOHAMMAD Y. AL-RAWWASH(1) AND AMJAD D. AL-NASSER(2)

Abstract. Marginal generalized linear models are frequently used for the analysis

of repeated measurements and longitudinal data. During the last three decades,

researchers used parametric, nonparametric as well as Bayesian methods as use-

ful approaches to model such kind of data. The correlation among the repeated

measurements is considered a vital factor to increase the estimation efficiency of

the model’s parameters for different correlation structures. This article suggests

using the generalized maximum entropy (GME) as an efficient method for the joint

modelling of mean and correlation parameters that permits the estimation with

minimum distributional assumptions. Moreover, we present a simulation study to

compare the performance of the GME method with a set of well known estimation

methods in the longitudinal data literatures.

1. Introduction

In the literature of longitudinal data there are two broad approaches based on the

idea of generalized estimating equations and mixed models for estimation of regres-

sion and correlation parameters ([9] and [17]). The generalized estimating equations

(GEE) as well as its various modifications are widely used in health, environmental

and social sciences to estimate the regression and correlation parameters (see [7]; [3];
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[4] and [10]). On the other hand, longitudinal data analysis based on mixed mod-

els usually exploits the Gaussian likelihood function as its objective function along

with the often tentative normality assumption to estimate the parameters. In fact,

longitudinal data analysis is a byproduct of generalized linear models and time se-

ries analysis where we address the relationships between a response variable and the

corresponding explanatory variables that are measured repeatedly over time.To elab-

orate on these ideas, we consider longitudinal data that can be described as follows.

Let yi = (yi1, yi2, · · · , yin)′ be a vector of repeated measurements taken on a generic

subject at times t = (t1, t2, · · · , tn) such that t1 < t2 < · · · < tn and the associated co-

variates xj = (xj1, · · · , xjp)
′. In general, no distributional assumption is made about

yi other than those about its first two moments. The analysis is carried out based on

a fixed effect model for longitudinal data, thus the model for subject i is given as

(1.1) yi = Xiβ + εi, i = 1, 2, · · · ,m

where Xi is an (n × p) design matrix, β = (β1, β2, · · · , βp)
′ is a set of unknown

parameters and εi = (ε1, · · · , εn)′ is a set of random errors with mean 0 and an n× n

positive definite covariance matrix Σ. However, in many cases we prefer to concen-

trate on a parsimonious working covariance structure (autoregressive, equicorrelated,

tridiagonal, · · · , etc.) to comprise and model the within-individual error. Some of

these structures depend on a single parameter ρ that represents the correlation be-

tween two adjacent observations collected on a given subject. In this article, we

assume that the vector of within-individual errors follows a first order autoregressive

model such that

(1.2) εij = ρεi(j−1) + aij,
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where aij is error term with mean 0 and variance σ2 and ρ is the correlation

parameter. ([4]) developed the so-called generalized Gaussian likelihood function as:

(1.3) GL(β,Σ∗,Σ;Y) = log |Σ∗|+ Z(β)′Σ−1Z(β),

where Z is the “standardized” counterpart of Y such that Z = V − 1
2 (y − µ) and the

matrix V = diag (v(µ1), · · · , v(µn)) and µ = µ(β) = (µ1, · · · , µn)′. The variance

function v(.) depends sometimes on the mean (Poisson or count data). Let Σ be

a block-diagonal covariance matrix with non-zero blocks Σi = cov(yi) and Σ∗ is an

N × N covariance matrix (possibly depending on Σ and Xi’s), for N = nm and

y = (y1, y2, · · · , ym)

The generalized Gaussian likelihood function subsumes many of the estimating

functions developed in the literature ([7]; [3] and [4]). The estimation strategy in

such situations focuses on minimizing such objective function with respect to the

parameters of interest (see [3]). It is clear that when µi = Xiβ, then the parameter

estimate that minimizes (1.3) is β̂ = (
∑m

i=1 X ′
iΣ

−1
i Xi)

−1(
∑m

i=1 X ′
iΣ

−1
i Yi). In other

cases such as binary and count data, a link function may be introduced to present

the relation between µ and β. One major pitfall that many authors had discussed is

the feasibility of the correlation parameter estimates (see [3]; [8] and [4]). In many sit-

uations, the parametric model may get complicated to the extent that an alternative

estimation strategy become imminent. Not only nonparametric and semiparametric

models have been proposed in the literature but also Bayesian and other significant

approaches have been discussed extensively and substantial contributions were intro-

duced in this area. These ideas focused on modeling the mean and association in the

longitudinal data setup to avoid model misspecification [5].

In this paper, we intend to introduce the GME [12], as an alternative methodology

for the classical estimation methods of the regression and correlation parameters in
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the longitudinal data setup. The list of merits that motivates us to use the GME ap-

proach includes but not limited to the following. First, the GME tends to dominate

traditional estimation methods when we have small samples. Also, the data may

be non-experimental noisy data and finally the data might be observed from a weak

designed experiment. Moreover, the maximum likelihood estimator is unattractive

approach when we adopt nonlinear model since it may not be robust to the under-

lying (unknown) distribution. Also, the GME estimator is expected to be highly

efficient under various circumstances including skewed distribution, the existence of

outliers and the existence of many highly correlated covariates, ([12]; [15]; [11] and

[6]). Finally, the GME is considered a promising approach when there are no restric-

tive sampling assumptions or in the case of negative degrees of freedom (ill-posed

problems) or undetermined ones.

The organization of the paper is as follows. Section 2 discusses the idea of general-

ized maximum entropy and presents the notations and model. In section 3, we derive

the parameter estimators of the regression and correlation parameters using the GME

approach. The methodology is illustrated in section 4 using a simulation study and

the results are compared using different estimation methodologies. Finally,

section 5 provides concluding remarks on the needs and merits of the generalized

maximum entropy.

2. Model Formulation and Estimation

In this section, we introduce the setup and model formulation using the generalized

maximum entropy method for the longitudinal data framework when the repeated

measurements are collected for different subjects. The GME methodology has been

repeatedly proposed in various fields of applications covering not only statistical as-

pects but also economical, agricultural as well as engineering. It is anticipated that
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GME will compete with the classical estimation methodologies especially when we

expect to have skewed or heavy tailed distributions([12] and [6]).

2.1. Generalized maximum entropy formulation. The history of entropy goes

back to [18] where he defined the information entropy of the distribution (discrete

events) with corresponding probabilities P = {p1, p2, · · · , pn} as H(p) = −∑n
i=1 piln(pi),

where 0ln0 = 0. Note that the entropy function exposes the uncertainty regarding

the appearance of a set of events. Many extensions and enhancements have appeared

in the literature of entropy that presented various and more complicated information

entropy measures such as Rényi and Tsallis (see [13]).

Maximizing entropy subject to various side conditions is well known in the liter-

ature as a method of deriving the most uniform distribution compatible with the

prior information ([14]; [19]; [1] and [2]). The basic idea underlying the GME ap-

proach is to view each one of the unknown parameters and the error terms as an

expected value of some proper probability distribution defined over a given bounded

support. Accordingly, the GME idea is to rewrite the model in terms of the new

convex reparametrizations. Then, the estimation methodology is to recover simulta-

neously the probability distribution of the parameters using the data as well as some

normalization constraints. It is noteworthy that if the support values of the regres-

sion parameters are not available, the researcher should provide support values that

are symmetric around zero while the support values for the error terms are chosen

with respect to the 3 sigma rule [16]. Hence, maximizing the joint entropies subject

to the data represented by the model and the add up normalization constraints may

provide competitive estimates with minimal distributional assumptions.

2.2. Model Formulation and Estimation. The linear model given in (1.1) and

(1.2) can be rewritten as
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yij = β0 +

p∑

k=1

βkxijk + εij,

where εij = ρεi(j−1) + aij.

Following the GME principles ([12]), the unknown parameters β0, βk, ρ as well

as the error term aij for k = 1, 2, · · · , p, j = 1, 2, · · · , n and i = 1, 2, · · · ,m should

be reparametrize to be in the form of an expected value of discrete random vari-

able. Therefore, we may represent β0 as a convex combination using a set of discrete

random variable br, r = 1, 2, · · · , R with R ≥ 2 possible realizations and their corre-

sponding probabilities qr, r = 1, 2, · · · , R which can be formulated as:

β0 =
∑R

r=1 brqr;
∑R

r=1 qr = 1; where qr ∈ (0, 1)

Usually the values of br may be used as supports on β0 and we may choose these

values based on prior information of β0. Similarly, we may reparametrize the rest of

the unknown parameters. The error term is treated as a finite and discrete random

variable that might be pictured as bounds of the error term. Therefore, we may have

the following

(1) βk =
∑T

r=1 zkrfkr;
∑T

r=1 fkr = 1; k = 1, 2, · · · , p

(2) aij =
∑H

r=1 vijrwijr;
∑H

r=1 wijr = 1; j = 1, 2, · · · , n and i = 1, 2, · · · ,m

(3) ρ =
∑L

r=1 ψrξr;
∑L

r=1 ξr = 1,

where zkr is a set of T realizations of a discrete random variable with their corre-

sponding probabilities fkr. Also, vijr and ψr are realizations of random variables with

the corresponding probabilities wijr and ξr, respectively.

The restrictions imposed on the parameter space through the values of b and z

while reparametrizing β0 and βk’s are specified uniformly and symmetrically around

zero with equally spaced distance discrete points. In fact, [12] conducted some monte
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carlo experiments and found that the greatest improvement in precision comes from

using 5 support points. On the other hand, the actual bounds for vijr depend on the

observed values or any empirical information about the error. If such information is

not available, then we may use the three-sigma rule (see [16]) to specify these bounds

over the interval [-3Sy, 3Sy] where Sy is the standard deviation of the observed values

y. Moreover, the empirical GME literature indicates that the value of H is 3. Finally,

the parameter space of ρ will be chosen in the interval [-1,1].

3. GME System and Solution for Longitudinal Data

The GME system is a nonlinear programming problem that is built to have shan-

non’s entropy as our main objective function in addition to some important con-

straints obtained from the data formulation and reparametrization. Consequently,

our system is viewed as the maximization of the following function

H(q, f ,w, ξ) = −q′ln(q)− f ′ln(f)−w′ln(w)− ξ′ln(ξ)

= −
R∑

r=1

qrln(qr)−
p∑

k=1

T∑
r=1

fkrln(fkr)−
m∑

i=1

n∑
j=1

H∑
r=1

wijrln(wijr)

−
L∑

r=1

ξrln(ξr)(3.1)

subject to the following model of interest and the add up normalization constraints

yij =
R∑

r=1

brqr +

p∑

k=1

xijk(
T∑

r=1

zkrfkr) + ρεi(j−1)

H∑
r=1

vijrwijr,

∑R
r=1 qr = 1,

∑L
r=1 ξr = 1, |∑L

r=1 ψrξr| ≤ 1,
∑T

r=1 fkr = 1, k = 1, 2, · · · , p

and
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∑H
r=1 wijr = 1, i = 1, 2, · · · , m, j = 1, 2, · · · , n

It can be noted that the number of unknowns is equal to (R + L + PT + nmH)

while the number of constraints is equal to (2mn+P +3). The number of unknowns

and constraints get larger as both n and m increase which indicates that GME should

perform better for small samples. In order to solve such a nonlinear programming

system analytically, we need to simplify the inequality constraints such that it satisfies

Kuhn-Tucker conditions. Hence, there will be a need to introduce some slack variables

in order to form the following lagrangian function:

L = H(q, f, w, ξ)−
m∑

i=1

n∑
j=1

λij[yij −
R∑

r=1

brqr −
p∑

k=1

xijk(
T∑

r=1

zkrfkr)−
H∑

r=1

vijrwijr]

− µ1[
R∑

r=1

qr − 1]−
p∑

k=1

ηk[
T∑

r=1

fkr − 1]−
m∑

i=1

n∑
j=1

θij[
H∑

r=1

wijr − 1]

− µ2[
L∑

r=1

ξr − 1]− µ3[
L∑

r=1

ψrξr + S2
1 ]− µ4[−

L∑
r=1

ψrξr + S2
2 ],

where λij, θij, ηk and µd are the lagrangian multipliers for i = 1, 2, · · · ,m; j = 1, 2, · · · , n;

k = 1, 2, · · · , p and d = 1, 2, 3, 4. Also, we introduce S2
1 and S2

2 as slack variables.

Accordingly, we use lagrange’s method of undetermined multipliers to derive the fol-

lowing solutions:

q̂r =
exp{−br[1− ρ̂]

∑m
i=1

∑n
j=1 λ̂ij}∑R

r=1 exp{−br[1− ρ̂]
∑m

i=1

∑n
j=1 λ̂ij}

f̂kr =
exp{−zkr

∑m
i=1

∑n
j=1 x∗ijkλ̂ij}∑T

r=1 exp{−zkr

∑m
i=1

∑n
j=1 x∗ijkλ̂ij}

ŵijr =
exp{−λ̂ijvijr}∑H
r=1 exp{−λ̂ijvijr}
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and

ξ̂r =
exp{−β̂0ψr

∑m
i=1

∑n
j=1 λ̂ij}∑L

r=1 exp{−β̂0ψr

∑m
i=1

∑n
j=1 λ̂ij}

.

Then, the estimated parameters can be obtained via:

β̂0 =
∑R

r=1 brq̂r, β̂k =
∑T

r=1 zkrf̂kr, âij =
∑H

r=1 vijrŵijr, and ρ̂ =
∑L

r=1 ψrξ̂r.

4. Simulation Study

In this section, we intend to use simulated longitudinal data to compare the perfor-

mance of GME with some existing techniques used in the literature including GEE

and GE obtained from (1.3). We assume that the true and working correlation struc-

ture in this simulation is set to be an autoregressive of order one (AR(1)). The

simulation study is conducted to illustrate the performance of the GME method in

estimating the correlation as well as the regression parameters in the longitudinal

data analysis. [9] provided a simulation study to investigate the efficiency of the

ordinary least squares using the AR(1) correlation structure assumption. We use the

same simulation setup and consider m simulated subjects y1, y2, · · · , ym each has five

repeated measurements at five different occasions t = (−2,−1, 0, 1, 2). The simula-

tion is performed by generating 1000 data sets from a contaminated multivariate t

distribution under the following conditions

yij = β0 + β1tj + εij,

for j = 1, 2, · · · , n and i = 1, 2, · · · , m, the number of repeated measurements n is

set to be 5, and m = 10, 15, 25, 30. The model parameters β0 and β1 are initialized

by 2 while we allow ρ to take the values -0.8(0.2)0.8. For GME estimates, we set
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3 support points of the parameters space β0 and β1 to be symmetric around zero

in the interval [-100, 0, 100], however we set 5 data points for the ρ in the interval

[-1,1]. Finally the support points for the residual obtained by setting 3 data points

symmetrically around zero based on the 3 σ-rule, [-3S, 0, 3S] where S is the standard

deviation of the dependent variable. Then the simulated mean square error(MSE) is

calculated using the following formula:

MSE =
1

1000

1000∑
i=1

(β̂i − β)2

The detailed results of our simulation comparing the methods GE, GEE and GME

considered in this study are given in Table 1 and Table 2 according to the initial

values of ρ. The results illustrated in the tables show the estimate values of ρ as well

as the relative efficiency of GME compared with GEE and GE for different values of

ρ. The relative efficiency is obtained as follows

eff(βGME) =
MSE(β∗)

MSE(βGME)

where β∗ is the estimate of β using the GEE approach or the GE method. All

results show that the GME method is better than its counterpart estimates in view

of the relative efficiency values when we have small number of subjects. Moreover,

the GME starts to be less efficient compared to the other methods when we increase

the sample size. The estimate values of the ρ are obtained using the GME approach

and it seems to be acceptable.
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Table 1: The estimate value of ρ as well as the relative efficiency of GME compared

with GEE for different values of ρ

m = 10 m = 15 m = 25 m = 30

ρ ρ̂ β0 β1 β0 β1 β0 β1 β0 β1

-0.8 -0.86 1.24 2.80 0.74 1.99 0.40 1.36 0.39 0.69

-0.6 -0.54 1.58 2.25 0.87 1.85 0.42 1.27 0.57 0.81

-0.4 -0.32 1.41 2.54 0.81 1.56 0.51 1.22 0.48 0.62

-0.2 -0.23 2.71 2.35 1.09 2.40 1.73 0.96 0.72 0.49

0.0 -0.09 1.11 1.21 1.05 1.12 1.04 0.98 0.97 0.73

0.2 0.15 2.15 2.08 1.33 2.03 1.12 0.91 0.92 0.83

0.4 0.34 2.74 2.35 1.47 2.15 1.34 1.05 1.02 0.78

0.6 0.65 2.98 2.11 1.52 2.12 1.41 1.00 0.95 0.76

0.8 0.71 2.65 2.91 1.89 1.74 1.26 1.11 0.91 0.98

Table 2: The estimate value of ρ as well as the relative efficiency of GME compared

with GE for different values of ρ

m = 10 m = 15 m = 25 m = 30

ρ ρ̂ β0 β1 β0 β1 β0 β1 β0 β1

-0.8 -0.86 1.79 3.77 1.09 2.67 0.64 1.66 0.52 0.84

-0.6 -0.54 1.88 2.85 1.17 2.85 1.21 1.25 0.61 0.76

-0.4 -0.32 2.41 2.54 1.12 2.56 1.42 1.28 0.49 0.64

-0.2 -0.23 2.97 2.45 1.23 2.70 3.44 1.17 0.70 0.60

0.0 -0.09 1.12 1.24 1.11 1.22 1.01 1.05 0.95 0.76

0.2 0.15 1.85 2.41 1.53 2.01 1.14 0.97 0.98 0.93

0.4 0.34 2.74 2.68 1.74 2.14 1.53 1.06 1.03 0.87

0.6 0.65 2.99 2.81 1.82 2.71 1.74 1.01 0.97 0.95

0.8 0.71 2.69 2.93 1.91 1.69 1.60 0.97 0.92 0.94
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5. Conclusions and Remarks

This paper discusses the use of the GME estimation method in studying the longi-

tudinal data models assuming an autoregressive type correlation among the repeated

measurements. The main advantage of GME approach is the waiver of any possi-

ble distributional assumptions which allows the researcher to maneuver and extract

the most available information to obtain the parameter estimators. However, one

disadvantage of the GME is the difficulty of dealing with large sample size and the

methodology will slow down when we increase the number of parameters. Under sim-

ulation assumptions, the comparisons results shown in Tables 1 and 2 indicate that

the GME estimates are more accurate and more efficient for small samples compared

to the traditional estimation methods. Based on such results, one may consider the

GME as a competitive estimation method that provide feasible and efficient estimates

compared to the existence estimation techniques.
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