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COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH
DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES:
BAYESIAN APPROACH -

Sanku Dey

ABSTRACT: Based on complete as well as type Il censored samples, the Bayes’ estimators for
the parameter and reliability function of Rayleigh distribution are obtained. These estimators are
obtained on the basis of squared error loss function and LINEX loss function. Comparisons in
terms of risks of those under squared error loss and LINEX loss functions with Bayes estimators
relative to squared error loss function have been made. Finally, Monte Carlo simulations are

performed to compare the performances of the Bayes estimates under different situations.

1. INTRODUCTION
Rayleigh distribution, which is a special case of Weibull distribution, has wide applications in
lifetime data analysis especially in reliability theory and survival analysis. Polovko (1968) and
Dyer and Whisenand (1973) demonstrated the importance of this distribution in electro vacuum
devices and communication engineering. The origin and other aspects of this distribution can be
found in Siddiqui (1962), Hirano (1986). Ariyawansa and Templeton (1984) have also discussed
some of its applications. Howlader and Hossian (1995) obtained Bayes estimators and highest
posterior density intervals for the scale parameter and the reliability function in case of type-ll
censored sampling by using Hartigan prior. Singh et al (2005) compared maximum likelihood
estimators, generalized maximum likelihood estimators and Bayes estimators under type-ll
censored sampling of an exponentiated—Weibull distribution. They considered independent non-
informative types of priors to obtain Bayes estimators. The performances of the Bayes
estimators are studied by their simulated risks. Abd Elfattah et al (2006a) studied the efficiency
of maximum likelihood estimates of the parameter of Rayleigh distribution under three cases,
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type-l, type-Il and progressive type-Il censored sampling schemes. Abd Elfattah et al (2006b)
have also obtained Bayes risk under squared error loss function and maximum likelihood risk
functions for complete and type Il censored sampling schemes. Hendi et al (2007) obtained
Bayes’ estimators of the scale parameter, reliability function and failure rate by using non-
informative prior and Hartigan prior based on upper record values.

The probability distribution function (pdf) and the reliability function of the Rayleigh distribution

are respectively given by:

f(xlo)=

x2 exp(— 5o-x’) ;x 20,0 >0
o (1)

t2

andRt)= L) = p(x>t)= exp (- 207 ) 120,050 )

In the estimation of reliability function, use of symmetric loss function may be inappropriate as
recognized by Canfield (1970). Varian (1975) proposed an asymmetric loss function known as
LINEX loss function which has been found to be appropriate in the situation where

overestimation is more serious than underestimation or vice-versa.

The LINEX loss function for a parameter ¢ is given by

L(A) =[e™ -aA -1], a#0 3)

where, A= % -1,and & is an estimate of .

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry
respectively. The positive value of ‘a’ is used when over estimation is more serious
than underestimation while negative value of ‘a’ is used in the reverse situations. If ‘a’
is close to zero, this loss function is approximately squared error loss and therefore
almost symmetric. Several authors including Basu and Ebrahimi(1991), Rojo(1987),
Soliman (2000) and Zellner(1986) have used this loss function in various estimation

and prediction problems.
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If we take A;= & - o, then L(A; ) is equivalent to the loss function used by Varian

(1975) and Zellner (1986).Again if we take A,= (g )2 -1 then L(A; ) is equivalent to
o

the loss function used by Soliman (2000).

Here, we consider the natural conjugate family of priors:

exp(-—L)
20
g(o) > a il ,a,3>0 (4)

If f=0, o =0, we get a non-informative prior. Also, if =0, o =2, we get the
asymptotically invariant prior, proposed by Hartigan (1964).
The plan of the article is as follows: In section 2 of the present paper, we have obtained

the Bayes estimators of ¢ taking g(c ) as a prior distribution using the squared error
o]

loss function and LINEX loss function L(A, ), where A, = (—) 1. The risk of
o

estimators has also been obtained. Comparisons in terms of risk with the estimators of ¢
under squared error loss and LINEX loss functions have been made. In section 3, a
numerical example has been given to compare the results. In section 4, we obtain Bayes
estimator of R(t) when the LINEX loss function L(A; ), where Aj= & - o, is used and
compared with those corresponding to the squared error loss function and a simulation

study is performed to endorse our estimation techniques in section 5.

2. BAYES ESTIMATE OF O

A group of n components have lifetimes which follow a Rayleigh distribution. Due
to the cost and time considerations, the failure times are recorded as they occur until a

fixed number r ( £ n ) of components have failed. It is quite common in life testing
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situations that only the first r lifetimes in a sample of n components can be obtained

(Type II censoring). Let x =(x,,,X,,,. . . ,X,,) are i.i.d. random variables, where
X .., 1is the time of the ith component to fail. Since the remaining (n-r) components

have not yet failed and thus have lifetimes greater than x the likelihood function can

be written as

L = Y exp-—) 1 x ;>0 5
xjo) = (n—r)! P i=1 " 0 ®
Where,
r—1
_ 2 _ 2
T= lej:n+(n r+1)xr:n
J:

= Z; (l’l - ] + 1)(x12‘:n - sz'—lzn)
j=

2
J
20

It is straightforward to show that is distributed exponential with mean 2 which

2
implies that T is gamma with shape parameter r and scale parameter 2 or a Chi-square
distribution with 2r degree of freedom giving the probability density function of T as

1
; t>0 Q)

t r—
h(t) = exp(— 2 )t

(AT 2

2.1. Bayes estimator of o based on squared error loss function
Using Bayes theorem, the posterior pdf of o is
r(o|x= Lo 2@

[L(x|o) g(o) do
0
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2r+a
—_— T+
2(@) 2 exp(— ; 2ﬁ)
2 (el
= ,o0,a,>0 @)
r(2r;0¢) 02r+a+1

Considering the squared error loss (L(&,0) =(6—0)%), the Bayes estimator of

o denoted by &, for the above prior, given by the posterior mean of o is

6y =|o n(o|x)do
0

r(2r+2a—l) e
=— £ + .12

2.2. Bayes estimator of o based on LINEX Loss Function

Under the LINEX loss function (3), the posterior expectation of the loss function

L(A,) with respect to 7z( o | x) in (7) is

E[L(A,)] = I —ad() -U- o xdo 9)
=c¢“E [exp{a(ﬁ)z}]—a E[(ﬁ)z-l] -1 (10
O o

The value of & that minimizes the posterior expectation of the loss function L(A, ),

denoted by &, is obtained by solving the equation:

OE[L(A, )]

25 =Ele eXp(a(—) N-E (—) 0 (11
o U
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that is, &, ,1s the solution of the equation

615 S1B2. a._OLB
E[ 2 eXP(a(T) N =e E(7) (12)

provided that all expectation exists and are finite.

2r+a T +ﬂ
Z(T;ﬂ) 2 exp(— Py )

~ A2

O1p 7 O LB
= ——|exp(a( )) 2r+a+l do
o2 g o’ F(2r;a) °
2r+«a
—_— T +
. 2(@) 2 exp(— 'B)
— qu?GLB x 2 20'2 d
¢ 2 2r+a 2r+a +1 e
00 I ( ) o
2

On simplification, we get the optimal estimate of o relative to L(A, ) is

s T B e 29 /2
61y [ =exp(-————)}]

(13)

2.3. The risk efficiency of &, with respect to &, under LINEX Loss L(A,)
The risk functions of estimators &,,and O, relative to L(A,) are of interest.
These risk functions are denoted by R, ( 6,,) and R,( & ), where subscript L

denotes risk relative to L( A, ) and are given by using /() in (6) as follows:

ToacEren
o
R (G,5)=E (L(A))= .[{e —all——) —HU-Bhp(0)dT
0
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(L) p,

@ a{—2a2 . o ;

“T e o ———— T exp(———)dT
0 (26%YT(r) 20

. %)D] 1
_ g a{ —0-2 — -1} (20_2)r1—~(r)

exp(— 2;)Tr_ dr

—eplr L p L pea
_eXp[2r+a+2 252 al-(r 202) a (14)
where D =[1—-exp(— Z—a)]
2r+a+2
In the same manner, we get
é
v (=351 e o
R (64)=E (L(A))= o{e —al(—=)" ~11= Lk, (t)dT
o0 lAz | r
:e_a I exp[a( 2 5 )] Tr—l eXp(— . )dT
0 o (262) T(r) 20
o %AZ | -
- [la(== 5 T exp(- —dT 1
0 c (20°) I'(r) 20
—d (lﬂ 2 2 —r 2 ﬂ
= e exp(Lo a1 aa? )y el v Ly i a
202 2052 (15)
where,
r(2r+2af—l)
A=
1ﬂ(2r+a)
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The risk efficiency of &,, with respectto &g, under LINEX Loss L(A,) may be

defined as follows:

RL (&SB )

RE, (G,5,64)=
0T 6,0)

(16)

2.4. The risk efficiency of estimators &,, with respect to G, under squared error

loss

The risk functions of the estimators 6, and &, under squared error loss are denoted

by Rg( 6,5) and Ry ( G,) and are given by :

Ry( G.p)= [ (6,5 —0) hp(t)dT
0

OIO(&Z 267 ot 07— expe T ar
= LB LB QAT 207
1 T r—1
| exp(— )T
21T 2oty re) T 20 a
] > ;ex (_L)Tr—l
B 205Dé<T+ﬂ)‘/2 2Ty 20 ar + o’
On simplification, we get,
B
exp( )
_ 2 1/2 2
R (G15) 0 $1B+2rc" ¢ —20(4) rz(f)
¢4 (r-1)p (r=1)(r-2) 2 2
52 T 202372 52+2!(262)5/2 37 Ao

where,
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L et
1= 2, 2rtat2

1 —T{(i’+—) —

&y = THr -5 =

a
1 p
),

20

3 it
¢, =TH{(r-=),—}
’ 2 20'2
Again,
Rs(Gp) = T(&SB _O')Zhr(f)dT
0

) ) | »
(62, -26¢3 0 +0°)————T"
58 58 (262)" T'(r)

o — 8

1 ( T )Tr_ldT
exp(—
A} O'+62] (20_2)7"1—~(r) p 202

o0

= [ T+ﬂ N2 gy 2{(T+ﬂ)1/2
0

On simplification, we get,

2 exp (525
Ry(6g)= o0° + > (2ro?+ f)- 240 r(rO;
61 (r-1p (r=D(r=2) 2
X[zaz T 202)32 2+2!(2 2,572 IS I BT

The efficiency of &, with respect to &, under squared error loss is defined as:

A oA R, (6
RE{(6,,04)= S—( s2) (19)

RS (&LB)
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3. NUMERICAL EXAMPLE

To compare the proposed estimator &, with the estimator &, the risk functions
are computed so as to see whether &,, out performs &g, under LINEX loss

L(A,)and how G, performs as compared to &, when true loss is squared error. A

comparison of this type may be needed to check whether an estimator is inadmissible
under some loss function. If it is so, the estimator would not be used for the losses
specified by that loss function. For this purpose the risk efficiency have been
computed.

A random sample of size n = 20 were generated from (1) with ¢ = 1, and ordered as
follows:

0.2526, 0.4183, 0.4864, 0.5920, 0.6947, 0.7246, 0.7723, 0.8271, 1.0139, 1.1529,
1.1715, 1.2008, 1.2313, 1.5881, 1.9079, 1.9221, 1.9659, 2.0024, 2.0878, 3.3424

Three sets of values: (20, 20), (20, 15), (20,10) were taken for (n, r), to provide
complete sample, 25% and 50% censored observations, respectively. We compute and

report the estimates and their corresponding risk efficiencies for c. Tables 1 — 4 show

Bayes LINEX estimator loss G,,, Bayes squared error estimator loss G, risk
efficiency RE,( G,;,0;) of &,, with respect to &g, under LINEX loss and risk

efficiency RE4( G,,,0 ;) under squared error loss.

From tables 1-4, we note:

i) The risk efficiency RE, ( G,5,05 ;) is greater than one for all values of a, (a =+
0.5, = 1, + 2), this conclusion is valid for both complete and censored samples,
which indicates that the proposed estimator &, , is preferable to &, (see Table-1).

ii) The risk efficiency RE, ( 0,,,0,) is greater than one for a > 0.5 (see table 2).

Thus the proposed estimator &, , performs better than the Bayes estimator &,
with proper choice of a.
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iii) For Hartigan prior, we see that (except for ¢ = 2), under squared error loss, the
proposed estimator ¢, has smaller risk than &, (see Table-2).
iv) The values of the risk efficiencies RE; and REy are very sensitive for variation in ‘a’.

v) In general, the values of the risk efficiencies RE are very sensitive for variation in
aand f.

TABLE 1: The estimators G, ,, O, the risk efficiencies RE, ( 6,5,05,;) and

RE( G,,,0) under the prior g(o) for a=p =0

a Complete sample 25% Censoring 50% Censoring
Osp =1.0575 Gsp=1.0947 G55=1.0068

OLs RE} REs OLs RE} RE; OLs RE} RE;

2 0.9889 | 1.4745 | 1.0684 | 1.0018 | 1.6889 | 1.0910 | 0.8830 | 2.2411 | 1.1362

1 1.0006 | 1.2906 | 1.0564 | 1.0173 | 1.4052 | 1.0753 | 0.9029 | 1.6735 | 1.1133

0.5 1.0065 | 1.2203 | 1.0504 | 1.0252 | 1.3117 | 1.0673 | 0.9131 | 1.4911 | 1.1016

-0.5 | 1.0186 | 1.1167 | 1.0382 | 1.0413 | 1.1646 | 1.0513 | 0.9340 | 1.2522 | 1.0780

-1 1.0247 | 1.0826 | 1.0321 | 1.0496 | 1.1097 | 1.0433 | 0.9448 | 1.1709 | 1.0661

-2 1.0371 | 1.0305 | 1.0198 | 1.0644 | 1.0399 | 1.0270 | 0.9671 | 1.0631 | 1.0419

TABLE 2: The estimators G, ;, G, , the risk efficiencies RE, ( 5,,,0,) and

RE ( 6,,,0) under the prior g(o) for a =2, f =0

a Complete sample 25% Censoring 50% Censoring
Gz =1.0311 Gp=1.0583 Gsp =0.9565

OLB RE; RE; OLs RE; REg OLs RE; RE;

2 0.9672 | 1.1242 | 1.0634 | 0.9736 | 1.1761 | 1.0825 | 0.8485 | 1.2940 | 1.1175

1 0.9781 | 1.0369 | 1.0524 | 0.9878 | 1.0561 | 1.0682 | 0.8660 | 1.0917 | 1.0977

0.5 0.9837 | 1.0164 | 1.0468 | 0.9950 | 1.0123 | 1.0610 | 0.8750 | 1.0336 | 1.0876

-0.5 10.9949 | 0.9683 | 1.0355 | 1.0098 | 0.9639 | 1.0465 | 0.8934 | 0.9516 | 1.0672

-1 1.0006 | 0.9643 | 1.0298 | 1.0173 | 0.9496 | 1.0391 | 0.9029 | 0.9345 | 1.0569

-2 1.0122 | 0.9591 | 1.0184 | 1.0326 | 0.9478 | 1.0244 | 0.9223 | 0.9283 | 1.0359




72

Sanku Dey

RE ( 6,,,0) under the prior g(o) fora =1, p =1

TABLE 3: The estimators G, ,, O, the risk efficiencies RE, ( 6,5,5,;) and

a Complete sample 25% Censoring 50% Censoring
Osp =1.0561 Osp=1.0917 Os5=1.0065
Gip RE] RE; Gip RE] REg 77 RE} REg
2 0.9892 1.4541 | 1.0667 1.0017 1.6469 1.0881 0.8880 2.1163 1.1298
1 1.0006 1.2768 | 1.0550 1.0168 1.3854 1.0728 0.9071 1.6182 1.1078
0.5 1.0064 1.2143 | 1.0491 1.0245 1.2877 1.0651 0.9169 1.4563 1.0967
0.5 | 1.0182 | 1.1228 | 1.0373 | 1.0401 | 1.1622 | 1.0496 | 0.9371 | 1.2381 | 1.0742
-1 1.0241 1.0826 | 1.0313 1.0481 1.1070 1.0418 0.9474 1.1643 1.0628
-2 1.0363 1.0299 | 1.0194 1.0643 1.0402 1.0261 0.9687 1.0623 1.0398
TABLE 4: The estimators G, ,, G, , the risk efficiencies RE, ( &,,,0;) and
RE( 6,5,0) under the prior g(o) for a =0, p =2
a Complete sample 25% Censoring 50% Censoring
Oip RE; RE; Gip RE, RE; OLp RE; RE;
2 1.0116 | 1.8783 | 1.0701 | 1.0307 | 2.3040 | 1.0941 | 0.9289 | 3.4698 | 1.1433
1 1.0236 | 1.5829 | 1.0578 | 1.0466 | 1.8293 | 1.0778 | 0.9498 | 2.4314 | 1.1191
0.5 1.0297 | 1.4643 | 1.0516 | 1.0548 | 1.6667 | 1.0696 | 0.9605 | 2.0980 | 1.1068
-0.5 | 1.0420 | 1.2982 | 1.0392 | 1.0714 | 1.4054 | 1.0530 | 0.9826 | 1.6381 | 1.0819
-1 1.0482 | 1.2217 | 1.0329 | 1.0799 | 1.3043 | 1.0446 | 0.9939 | 1.4812 | 1.0693
-2 1.0609 | 1.1110 | 1.0203 | 1.0971 | 1.1538 | 1.0278 | 1.0173 | 1.2433 | 1.0439

4. BAYES ESTIMATOR OF F(¢)

Let y = F'(¢) be the probability that a system will survive a specified mission time t.

By substituting o’ =

2

ogy

in (7), we obtain the posterior p.d.f. of y as:
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T+p
2r+a CXPl =
(u) 2 - ! 2
2 logy t 21
_ —) (lo —
7y (71x) Tt a 10 12 () Ulegy) ,
I'( ) t2 _—
- 2
2logy
1 T+ﬂ Zr;a Zr;—a_l | 2r;—a_
=51y \ z ) Ty (—logy) , 0<y<l  (20)
I'( 5 )

Using the convex loss function L(A,), Aj= 7 — , it is seen that this loss function
is quite asymmetric when a =1 with overestimation being more serious than
underestimation. Also, when a < 0, L(A,) rises almost exponentially and almost
linearly when A; < 0 and almost linearly when A; > 0. For small values of |a| the loss

function L(A),) is approximately squared error loss and therefore almost symmetric.
For more details about L(A,) see Zellner (1986).

The posterior expectation of the LINEX loss function L(A,) is:

[e“(f - 7/)

£ [Lap] - —a((G-7) -1 mdy

[ ——

= E (¢ "V+E (ay)-aj-1
4 4
For a minimum to exist at A, =0

O, [L(A})]

A

_ ay —ay _
=ae " E (e —a=0
oy 7( )

A

:>E7(e_a7/)=e_a7



74 Sanku Dey

The Bayes estimator of y relative to L(A,), denoted by 7,, and is given by (after

simple algebra)

.2 2r+a

eI
T +Tj+—ﬂ) 2] (e2))
j=0 !

Under the squared error loss function (L(7 , ) = (7 — ¥)°), the Bayes’ estimator of

¥, denoted by 7, is given by

1
7SB=(J)7ﬂ1(7|x)d7
1 2r+a 2r+a 2r+a
1 T + -1 -
=j7 Pl zﬂ) 2y 2 (-logy) 2 dy
v TS !

After simple algebra, the Bayes’ estimator of } is obtained as:

2 2rta

) (22)

Von = (14
Vss =( T+p

It can be seen that the risk functions relative to loss function L(A,) do not exist.

Let us consider the set of data generated in example 3, let t = 1, we compute 7,,
and 7, , the results with the corresponding values of ‘a’ are given in table-5.

It can be seen from table-5 that, the Bayes estimates of reliability function relative to
L(A,) for positive value of ‘a’ are lower than the Bayes estimates under squared error

loss function, this conclusion is valid for both complete and censored samples.
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TABLE 5: Bayes estimation of reliability function based on LINEX loss (,,) and squared
error loss (7 ) for the variations in ‘a’, ‘o’ and ‘B’( t=1, the true value ¥ ,=0.607)

a Complete Sample 25% Censoring 50% Censoring

7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: 7;SB: Vsg =
0.632 0.618 0.631 0.645 0.649 0.630 0.648 0.664 0.595 0.565 0.596 0.625

Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi
o=0, =2, o=1, o=0, o=0, =2, o=1, o=0, o=0, =2, o=1, o=0,

p=0 p=0 | B=1 |B=2 |Pp=0 p=0 p=1 | p=2 p=0 | B=0 | B=1 |p=2

2 .628 .613 .627 .641 .644 .625 .642 .659 .586 .556 .587 .616

1 .630 .615 .629 .643 .646 .628 .645 .662 .590 .560 591 .621

0.5 | .631 .616 .630 .644 .647 .629 .646 .663 .593 .563 .593 .623

-5 |.633 .619 .632 .646 .650 .632 .649 .665 .597 .567 .598 .627

-1 .634 .620 .633 .647 .651 .633 .650 .667 .600 .569 .600 .629

-2 .636 .622 .635 .649 .654 .635 .652 .669 .604 574 .604 .633

5. SIMULATION RESULTS

One sample does not tell us much. We generated N = 1000 sample of sizes n =10,
20, 30 from (1) with o =1.
Define the Monte Carlo estimator of a parameter 6 by
N
6 = X 6./ N
i=1 !

and the root- mean-square -error

N
RMSE (o) = Z(&i —0'0)2/N , o, = truevalue of o
i=1

Compute 7, ,and g, att =1 for the variations in ‘a’, ‘o’ and ‘B’. The results are in

Table-6.The entries within parentheses represents the corresponding RMSE. From
Table-6, we see that the Bayes estimators of reliability function based on LINEX loss
have smaller RMSE than that of squared error loss when a < 0.5 irrespective of sample
sizes. Therefore, we conclude that in situations involving reliability estimation,

asymmetric loss function is more appropriate than squared error loss function when

a<(0.5.
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TABLE 6: Simulation estimates of the mean value of Bayes estimators of reliability function
based on LINEX loss (];LB ) and squared error loss ( 7 g5 ) for the variations in ‘a’, ‘@’ and ‘B’
(t=1, the true value ¥ -,=0.607)

a a=0,B=0 a=2,03=0 a =1, =1 a=0, =2
n 7 g5 = 0.5956 7 sp=0.5682 7 s =0.5820 7 sp = 0.6267
(0.1020) (0.1086) (0.1033) (0.0846)
10 - - - -
V1B V1B Vi V1B
2 0.5868 0.5595 0.5732 0.6185
(0.1054) (0.1136) (0.1077) (0.0852)
I 0.5866 0.5585 0.5823 0.6169
(0.1044) (0.1133) (0.0981) (0.0837)
5 0.5834 0.5576 0.5840 0.6153
(0.0990) (0.1089) (0.0955) (0.0808)
-5 0.5868 0.5639 0.5933 0.6229
(0.0967) (0.1075) (0.0900) (0.0835)
] 0.5941 0.5659 0.5983 0.6263
(0.0928) (0.1072) (0.0886) (0.0822)
2 0.5963 0.5677 0.6021 0.6269
(0.0925) (0.1044) (0.0861) (0.0816)
20 |a 7 g5 =0.6070 7 s =0.5868 7 s =0.6051 7 s = 06202
(0.0693) (0.0721) (0.0657) (0.0649)
V1B V1B V1B V1B
2 0.6027 0.5822 0.6007 0.6159
(0.0703) (0.0704) (0.0668) (0.0650)
1 0.6016 0.5813 0.6026 0.6130
(0.0680) (0.0732) (0.0657) (0.0642)
5 0.6010 0.5805 0.6029 0.6117
(0.0676) (0.0694) (0.0643) (0.0632)
-5 0.6053 0.5887 0.6070 0.6149
(0.0652) (0.0686) (0.0634) (0.0639)
] 0.6070 0.5894 0.6073 0.6173
(0.0618) (0.0667) (0.0622) (0.0639)
2 0.6068 0.5900 0.6084 0.6184
(0.0617) (0.0664) (0.0605) (0.0641)
30 a 7 g =0.6150 7 s =0.5997 7 s = 0.6006 75 =0.6158
(0.0538) (0.0552) (0.0547) (0.0519)
Yip Vs V1B Vs
2 0.6121 0.5968 0.5976 0.6129
(0.0539) (0.0562) (0.0556) (0.0520)
1 0.6078 0.5921 0.6028 0.6103
(0.0537) (0.0554) (0.0550) (0.0502)
5 0.6010 0.5917 0.6035 0.6102
(0.0530) (0.0549) (0.0532) (0.0497)
-5 0.6023 0.5939 0.6064 0.6172
(0.0530) (0.0520) (0.0529) (0.0492)
] 0.6096 0.5986 0.6100 0.6180
(0.0517) (0.0512) (0.0526) (0.0482)
2 0.6102 0.6053 0.6111 0.6195
(0.0516) (0.0499) (0.0511) (0.0467)
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