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FIXED POINT RESULTS ON A NONSYMMETRIC
G- METRIC SPACES

HAMED OBIEDAT () AND ZEAD MUSTAFA

ABSTRACT. We prove some fixed point results for mappings that satisfy certain
contractive conditions on a nonsymmetric complete G-metric space. Moreover, we

prove the uniqueness of these fixed point results.

1. Introduction

The class of G-metric spaces introduced by Z. Mustafa and B. Sims ([2], [3]) was
to provide a new class of generalized metric spaces and to extend the fixed point
theory for a variety of mappings. Moreover, many theorems was proved in this new
setting with most of them recognizable as a counterparts of a well-known metric space

theorems.

Definition 1.1. G-metric space is a pair (X,G), where X is a nonempty set, and
G is a nonnegative real-valued function defined on X X X x X such that for all

x,Y,2,a € X we have:
(Gl) G(z,y,2) =0 ifxr =y = z;
(G2) 0 < G(z,x,y); for all z,y € X, with x # y;
(G3) G(x,z,y) < G(z,y,2), foral x,y,z € X, with z # y;
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(G4) G(z,y,2) = G(x,z,y) = Gy, z,x) = ..., (symmetry in all three variables);
and
(Gh) G(x,y,2) < G(x,a,a) + G(a,y, z), (rectangle inequality ).

The function G is called a G-metric on X.

Definition 1.2. ([3]) A sequence (x,) in a G-metric space X is said to converge
if there exists x € X such that im, ;00 G(2, 2y, ) = 0, and one say that the

sequence (x,) is G-convergent to x .

Proposition 1.3. ([3]) Let X be G-metric space. Then the following statements are

equivalent.

1 () is G-convergent to x.

3
4

G(xp, Tp, ) — 0, as n — oo.

(1)
(3)
4) G(zp,z,x) =0, as n — oo.
()

G(xm, Tp, ) — 0, as m,n — 0o.

In a G-metric space X, a sequence (z,,) is said to be G-Cauchy if given ¢ > 0, there
is N € N such that G(z,, T, 7)) < €, for all n,m,l > N. That is G(z,, T, ;) — 0

as n,m,l — oo.

Proposition 1.4. ([3]) In a G-metric space X, the following statements are equiva-
lent.

(1) The sequence (x,,) is G-Cauchy.

(2) For every € > 0, there exists N € N such that G(Ty, T, Tm) < €, for all

n,m > N.

Let (X,G) and (X', G’") be two G-metric spaces, and let f : (X,G) — (X', G)

be a function, then f is said to be G-continuous at a point a € X if and only if,
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given ¢ > 0, there exists § > 0 such that x,y € X; and G(a,z,y) < 0 implies
G'(f(a), f(x), f(y)) < e. A function f is G-continuous on X if it is G-continuous at
all a € X.

Proposition 1.5. ([3]) Let (X,G), and (X',G') be two G-metric spaces. Then a
function f : X — X' is G-continuous at a point x € X if and only if it is G-
sequentially continuous at x; that is, whenever (x,) is G-convergent to x we have

(f(zn)) is G'-convergent to f(x).

A G-metric space (X, G) is called symmetric G-metric space if G(z,y,y) = G(y, x, x)

for all z,y € X, and called Nonsymmetric if it is not Symmetric.

Example 1.6. ([2]) Let (R, d) be the usual metric space. Define Gs and G, by
Gs(,y,2) = d(z,y) + d(y, z) + d(z, 2), and

Gum(z,y, z) = max{d(z,y),d(y, z),d(x, z) }

for all x,y,z € R. Then (R, Gs) and (R, Gy,) are symmetric G-metric spaces.

Example 1.7. ([2]) Let X = {a,b,c} and define G: X x X x X — R™ by,
Gr,y,2)=0ifr=y==z2

G(a,b,b) = G(b,a,a) = 22

G(a,c,c) = G(c,a,a) =27

G(b,c,c) = G(c,b,b) = 30,

G(a,b,c) =35
extended by symmetry in the variables. It is easily verified that G is a symmetric

G-metric, but G # G or G, for any underlying metric.

Corollary 1.8. ([2]) Let (X, G) be a symmetric G-metric space, then G satisfies :
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Example 1.9. ([3]) Let X = {a,b}, and let,

G(a,a,a) = G(b,b,b) =0,
G(a,a,b) =1, G(a,b,b) =2

and extend G to X x X x X by symmetry in the variables. Then it is easily verified
that G is a G-metric, but G(a,b,b) # G(a,a,b). Note that the above G-metric does

not arise from any metric.

Proposition 1.10. ([3]) Let X be a G-metric space, then the function G(z,y, z) is

jointly continuous in all three of its variables.

A G-metric space X is said to be complete if every G-Cauchy sequence in X is

G-convergent in X. In ([4]) The following theorem has been proved

Theorem 1.11. ([4]) Let (X, G) be a complete G-metric space, and let T : X — X

be a mapping satisfying one of the following conditions

) G(T(2),T(y), T(2)) < {aG(z,y,2) + bG(z,T(x),T(x)) + Gy, T(y), T(y))
+dG(z,T(2),T(2))}

or

12) G(T(z), T(y), T(2)) <{aG(x,y,2) + bG(z,2,T(x)) + cG(y,y, T (y))
+dG(z,2,T(z))}

for all x,y,z € X where 0 < a+b+c+d <1, then T has a unique fized point

(say u, i.e., Tu=wu), and T is G-continuous at u.
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The authors divide the proof on the above theorem into two parts. In the first
part the theorem proved where the G-metric space assumed to be Symmetric, while
in the second part the theorem proved where the G-metric space assumed to be

nonsymimetric.

2. Main Results

Now we present several fixed point results on a nonsymmetric complete G-metric

space.

Theorem 2.1. Let (X, G) be a nonsymmetric complete G-metric space,

letT : X — X, be a mapping which satisfies the following condition for all x,y € X.

[ [Glr,2,T(2)) + 2G(y,49, T(W))], ]
Gla,2,T(y)) + Cly,y, T(y)+
G(y,y,T(x))},[G(Ty, T, Ta)+
Gy, Ty, Ty) + G(z, Ty, Ty)]

(21)  G(T(x),T(y),T(y)) < k max

where k € [0,1/4), then T has unique fized point, say u, also T is G-continuous at .

Proof. Let xy € X be arbitrary and define the sequence (z,), by x, = T"(xy) and
assume , # x,.1 for all n. Then by (2.1) we have

( )
[G(.Tn, o zn—i—l) + 2 G(:En—b Tn—-1, xn)]a

(22) G<xn+17 Ty xn) < k max [G(xnfla Tpn—-1, xn) + G(‘Tnflv Tp—-1, anrl)];

L [G(Invxn—i-lwrn—i-l) + G('Tn—laxn7xn)] J

But since

G<xn717 Tn-1, anrl) S G(.Tn,l, Tp—1, mn) + G(l’n, T, xn+1)7
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it follows that
G(Tpn-1,Tn1,Tn) + G(Xn_1,Tpn1,Tn11) < G(Tp, Tp, Tpi1) + 2G(Tp_1,Tn_1, Tn)-
Then (2.2) reduces to
(G(zp, Tpy Tps1) + 2G(Tp_1, Tn_1, Tp)],

(2.3) G(Tna1, Tn, Tn) < kmax :
(G (@, Tpg1s Tngr) + G(@n-1, Tn, Tn)]

we see that inequality (2.3) implies two cases,

Casel:
G(xn+17 i xn) S k[G<xn7 Ly xn+1> + 2 G(xnflu Tn-1, xn)]
Therefore,
2k
(24) G(xn+17xn7xn) S ﬁG(xn—la$n—1axn)~
Case2:
(25) G(l’n—i-la Tn, xn) S k[G(xm Tn41, xn—i—l) + G(xn—h Ly J;n)]
But since
G(Ina Tn+1, xn—l—l) S 2G(xn7 H In—l—l)
and

G(:En—lv Ty xn) S 2G(£ﬁ—17 Tp—1, xn)

Then the estimate of the inequality (2.5) will be

2k
1 -2k

(26) G(xnu T, anrl) S G<xn717 Tn—1, xn)

Putting a = % and q = %, then the fact a < ¢ implies that the inequalities (2.4)

and (2.6) reduce to

G(anrla Ly xn) S qG(xnfh Tn-1, *Tn)
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Solving this recursive inequality we have
(2.7) G(Tn, Tn, Tnt1) < q"G(20, T, 1)

For all n,m € N; n < m, we use repeated rectangle inequality and (2.7) to obtain

m—1
G(xnaxnaxm) S ZG(IE],IEJ,Z']+1)
j=n
m—1
< ZQJG(IEO,%,%)
j=n

n

<
=1—4

G(.TO, Xo, ‘/L‘I)

which implies that (z,) is a G-Cauchy sequence in the complete G-metric space
X. Thus, the sequence (z,) is G-convergent to u in X.
Now let us prove that T'(u) = u. To do so, we assume on the contrary that 7'(u) # u.

Then,

( 3\

G(u,u,Tu) + 2G(xp—1, Tp-1,Tn)],

[G(u’ U, $n) + G(xnfla Tn—1, wn)—i_
G(T(u), xp, x,) < kmax
G(Tp-1, Tp1, Tu)], [G(zp, Tu, Tu)

\ + G<xn—17 L,y xn) + G(U, Ty xn)]

/

Letting n — o0 and using the fact that the function G is continuous in its variables

we obtain
(2.8) G(u,u,Tu) < kmax{G(u,u, Tu), G(u, Tu, Tu)}.

But since

G(u, Tu, Tu) < 2G(u,u, Tu),
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the inequality (2.8) implies that
G(u,u, Tu) < 2kG(u,u, Tu).

This contradiction implies that Tu = wu.

To Prove Uniqueness, suppose that v # u such that Tv = v, then

( )

(G(u,u,u) + 2G(v,v,v],

G(u,v,v) = G(Tu,Tv,Tv) < kmax ¢ [G(u,u,v) + G(v,v,ul,

\ G(v,u,u) + G(u,v,v)] )

then,
G(u,v,v) < k[G(v,u,u) + G(u,v,v)].

Therefore, G(u,v,v) < ﬁG(v,u, u).
Similarly we get
Gv,u,u) < ——G(u,v,v).

Consequently,

G(u,v,v) < (%)QG(U,U,U)

which implies that u = v, since 0 < (27)? < 1.
To show that T is G-continuous at u, let (y,) € X be a sequence such that

lim(y,) = u, then, from (2.1) we deduce that

[G(Wns Y T(yn)) + 2 G (u, u, T(u))],
(G (s Y T(w)) + Glu, u, T(u)+
G(u,u, T(yn))], [G(T (), T (Yn), T(yn))
+G(u, T(u), T(uw)) + G(yn, u,u, )]

Vs

By the rectangle inequality,

G(yna Yn, T(yn>> < G(yn: Yn, u) + G(“? u, T(?/TL))'
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Hence, we deduce that the equation (2.9) becomes

(2.10) G(T(yn>,T<u>,T<u>><kmax{ (G (s Y ) + G0, T(ya)). }
[G(T(yn), T(Yn), w) + G (Yn, u, u)]

We see that equation (2.10) implies two cases

Case (1) :
(2.11) G(T(yn), T(w), T(u) < E{ G(Yn, yn, u) + Glu,u, T(yn))},

then equation (2.11) becomes

k

(212 G(T (). T(w), T(w)) < 1 Gy ),

but since G(yn, Yn, t) < 2G(yn, u, u), we will have

2.13) G(T (o). T(0), T(w)) < 7o Gl ,10)

Case (2) :

Q14)  GT (), T(), T(w) < FET (), Ton),0) + Gl w,0)}-
By rectangle inequality,

(2.15) G(T(yn), T (yn),u) < 2G(Tyy, u,u).

Therefore, the inequality (2.14) implies that
G(T(yn), T(u), T(u) < k{2G(Tyn,u,u) + G(yn, u,u)},

which implies that

(2.16) G(T(yn), T(u), T(u) <
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In equations, (2.13) and (2.16), taking the limit as n — oo, we see that
G(u, T(yn), T(yn)) — 0 and so, by Proposition 1.5, we have T'(y,) — uw = Tu. This

implies that 7" is G-continuous at u. O

Corollary 2.2. Let X be a complete nonsymmetric G-metric space, letT : X — X,
be a mapping which satisfies the following condition, for all x,y,z € X
(2.17)

( 3\

[G(z,2,T(x) + Gy, y, T(y)) + G(z,2,Tz)],

G(z,2,T(y) + Gy, y,T(2)) + G(z, 2, T(x))],
G(T(x), T(y), T(z)) <k max
G(Tz,Tx,T(z))+ G(2,T(y), T(y))+

| G(2,T(2), T(2))]

Ve

where k € [0,1/4), then T has unique fized point, say u, and T is G-conlinuous at .

Proof. Taking z = y in condition (2.17) it reduced to condition (2.1) in Theorem
(2.1), so, the proof follows from Theorem (2.1). O

Theorem 2.3. Let X be a complete nonsymmetric G-metric space, and let

T: X — X, be a mapping which satisfies the following condition for all x,y,z € X,

)

G (2,2, T(y)) + Gy, y, T(x))];

(2.18) G(T(2), T(y), T(2)) < k max q [G(y,y,T(2)) + G(z,2,T(y))],

G(z,2,T(2)) + G(z,2,T(x))]

\ J

where k € [0,1/2), then T has unique fized point (say u), and T is G-continuous at

u.

Proof. For zq € X, define the sequence (x,) by x, = T™(z), assume that x, # x,.;

for all n, then by (2.18) we get
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(2.19) G(zp, Tp, Tpi1) < k max

’
[G(xn—la Tn—1, In) + G(In—la Tp—1, xn)]a

[G(xnfla Tn-1, anrl) + G(xna T, xn)];

L [G(xnfla Tn-1, anrl) + G('Iny Ly xn)]

=k HlaX{G(.Tn,h Tp-1, anrl)u 2 G<xn717 Tn-1, xn)}

therefore equation (2.19) implies two cases:

Casel:

(2.20) G(Tp, Tp, Tpi1) < kG(xp_1,Tp_1,Tpi1)

but from rectangle inequality we have the estimate

G(mn—la Tp—1, wn-{—l) S G(xn—lv Tp—1, xn) + G(ZL‘n, o xn—&-l)?

so equation (2.20) implies that
(2.21) G(ZTn, Tny Tnt1)

Case 2:

< 1—k G(Tn-1, Tn-1,n),

G(l‘n, L,y xn—i—l) S 2kc:(xn—h Tp—1, J:n)

Putting ¢ = max{ﬂ, 2k} and using the fact k < %, we will have ¢ < 1. So,

(222) G(xnyxnazn+1) S qG(xn—hxn—laxn)-

Solving this recursive inequality we have

(2.23) G(Tp, Tn, Tni1) < ¢"G(0, x0,21).

)

/

75
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For all n,m € N; n < m, we use repeated rectangle inequality and equation (2.23)

to obtain
m—1
G (T, Ty ) < Gl 15, 2541)
Jj=n
m—1

S quG(x()a Zo, xl)
j=n

<
=1-4

G(I’(), Zo, [El).

Which implies that (x,) is a G-Cauchy sequence in the complete G-metric space X.
Thus, the sequence (x,,) is G-convergent to u in X.

Now suppose that T'(u) # u, then

( 3
[G(mn—la Tp—1, xn) + G(-Tn—la Tp—1, xn)L

G(xp, 2y, T(u)) < k max § [G(xn, 2, T(w)) + G(u,u,x,)],

G(zp_1,2n_1,T(w) + G(u,u,x,)]

\ /

Letting n — o0, and using the fact that the function G is continuous in its variables,

we get
G(u,u,T(u)) < kG(u,u, T (u)).
This contradiction implies that u = T'(u).

To prove uniqueness, suppose that v # u such that T'(v) = v, then

( )

[G(u,u,v) + G(v,v,u)],

(2.24) G(u,v,v) <kmax ¢ [G(v,v,v)+ G(v,v,0)], ¢,

[G(u,u,v) + G(v,v,u)]

\ /

so we deduce that

G(u,v,v) <k|[G(u,u,v)+ G(v,v,u)].
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Therefore,
k
< — .
Similarly,
k
<
G(/U7 u? u) —_ 1 _ kG(u7 U’ U)?
thus we have,
k
G(u,v,v) < (m)%}(u,v,v).

This contradiction implies that u = v .
To show that 7" is G-continuous at u, consider (y,) € X any sequence such that

lim(y,) = v in X, then

)

(G (Yns Yn, T'(w)) + G (u, u, T'(yn))],

(2.25) G(T(yn), T(u),T(u)) <k maxq [G(u,u,T(u)) + G(u,u, T(u))]

[G(Yns Yn T(w)) + G(u,u, T(yn))] )

\

Thus, equation (2.25) reduces to
(2.26) G(T(yn),u,u) < K[G(Yn, Yn,u) + G(u, u, T (yn))]-

Therefore the inequality (2.26) implies that

(2.27) G(T(yn),u,u) < %G(yn,u, w).

Taking the limit of (2.27) as n — oo and using Proposition 1.5, we have

T(y,) — u = Tu which implies that 7" is G-continuous at u. O

Corollary 2.4. Let X be a complete nonsymmetric G-metric space, and let

T: X — X be a mapping satisfies the following condition

(2.28)  G(T(2),T(y), T(2)) < k{G(z,2,T(x)) + Gy, y, T(y)) + G(2,2,T(2))}
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for all x,y,z € X, where k € [0,1/3). Then T has a unique fized point (say u), and

T is G-continuous at u.

Proof. By taking a = 0,b = ¢ = d = k in condition (1.2) of Theorem (1.11), then
condition (2.28), becomes special case of Theorem (1.11), so the proof follows from

Theorem (1.11) O

Corollary 2.5. Let (X,G) be a complete nonsymmetric G-metric space, and let

T: X — X, be a mapping satisfying the following condition

G(y,y, T(y)) + G(z,2,T(2))+
(229) G(T(2),T(y),T(2)) < aG(x,y,2) + B
G(z,z,T(x))

for all z,y,z € X, where 0 < a+ 35 < 1. Then T has unique fized point (say u),

and T is G-continuous at .

Proof. By taking @ = a,b = ¢ = d = ( in condition (1.2) of Theorem (1.11), then
condition (2.29), becomes special case of Theorem (1.11), so the proof follows from

Theorem (1.11) O
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