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FIXED POINT RESULTS ON A NONSYMMETRIC
G- METRIC SPACES

HAMED OBIEDAT (1) AND ZEAD MUSTAFA (2)

Abstract. We prove some fixed point results for mappings that satisfy certain

contractive conditions on a nonsymmetric complete G-metric space. Moreover, we

prove the uniqueness of these fixed point results.

1. Introduction

The class of G-metric spaces introduced by Z. Mustafa and B. Sims ([2], [3]) was

to provide a new class of generalized metric spaces and to extend the fixed point

theory for a variety of mappings. Moreover, many theorems was proved in this new

setting with most of them recognizable as a counterparts of a well-known metric space

theorems.

Definition 1.1. G-metric space is a pair (X,G), where X is a nonempty set, and

G is a nonnegative real-valued function defined on X × X × X such that for all

x, y, z, a ∈ X we have:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y) ; for all x, y ∈ X, with x ̸= y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z ̸= y;
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(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables);

and

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), (rectangle inequality ).

The function G is called a G-metric on X.

Definition 1.2. ([3]) A sequence (xn) in a G-metric space X is said to converge

if there exists x ∈ X such that limn,m→∞G(x, xn, xm) = 0, and one say that the

sequence (xn) is G-convergent to x .

Proposition 1.3. ([3]) Let X be G-metric space. Then the following statements are

equivalent.

(1) (xn) is G-convergent to x.

(3) G(xn, xn, x) → 0, as n → ∞.

(4) G(xn, x, x) → 0, as n → ∞.

(5) G(xm, xn, x) → 0, as m,n → ∞.

In a G-metric space X, a sequence (xn) is said to be G-Cauchy if given ϵ > 0, there

is N ∈ N such that G(xn, xm, xl) < ϵ, for all n,m, l ≥ N . That is G(xn, xm, xl) −→ 0

as n,m, l −→ ∞.

Proposition 1.4. ([3]) In a G-metric space X, the following statements are equiva-

lent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ϵ > 0, there exists N ∈ N such that G(xn, xm, xm) < ϵ, for all

n,m ≥ N .

Let (X,G) and (X ′, G′) be two G-metric spaces, and let f : (X,G) → (X ′, G′)

be a function, then f is said to be G-continuous at a point a ∈ X if and only if,
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given ϵ > 0, there exists δ > 0 such that x, y ∈ X; and G(a, x, y) < δ implies

G′(f(a), f(x), f(y)) < ϵ. A function f is G-continuous on X if it is G-continuous at

all a ∈ X.

Proposition 1.5. ([3]) Let (X,G), and (X
′
, G

′
) be two G-metric spaces. Then a

function f : X −→ X
′
is G-continuous at a point x ∈ X if and only if it is G-

sequentially continuous at x; that is, whenever (xn) is G-convergent to x we have

(f(xn)) is G
′
-convergent to f(x).

AG-metric space (X,G) is called symmetricG-metric space ifG(x, y, y) = G(y, x, x)

for all x, y ∈ X, and called Nonsymmetric if it is not Symmetric.

Example 1.6. ([2]) Let (R, d) be the usual metric space. Define Gs and Gm by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z), and

Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

for all x, y, z ∈ R. Then (R, Gs) and (R, Gm) are symmetric G-metric spaces.

Example 1.7. ([2]) Let X = {a, b, c} and define G : X ×X ×X −→ R+ by,

G(x, y, z) = 0 if x = y = z

G(a, b, b) = G(b, a, a) = 22

G(a, c, c) = G(c, a, a) = 27

G(b, c, c) = G(c, b, b) = 30,

G(a, b, c) = 35

extended by symmetry in the variables. It is easily verified that G is a symmetric

G-metric, but G ̸= Gs or Gm for any underlying metric.

Corollary 1.8. ([2]) Let (X,G) be a symmetric G-metric space, then G satisfies :
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(1) G(x, y, z) ≤ G(z, y, y) +G(y, x, x).

(2) G(x, y, z) ≤ G(y, x, x) +G(y, z, z).

(3) G(x, x, y) ≤ G(x, x, a) +G(a, a, y) = G(x, a, a) +G(a, y, y).

(4) |G(x, x, a)−G(x, x, y)| ≤ G(y, y, a).

Example 1.9. ([3]) Let X = {a, b}, and let,

G(a, a, a) = G(b, b, b) = 0,

G(a, a, b) = 1, G(a, b, b) = 2

and extend G to X×X×X by symmetry in the variables. Then it is easily verified

that G is a G-metric, but G(a, b, b) ̸= G(a, a, b). Note that the above G-metric does

not arise from any metric.

Proposition 1.10. ([3]) Let X be a G-metric space, then the function G(x, y, z) is

jointly continuous in all three of its variables.

A G-metric space X is said to be complete if every G-Cauchy sequence in X is

G-convergent in X. In ([4]) The following theorem has been proved

Theorem 1.11. ([4]) Let (X,G) be a complete G-metric space, and let T : X −→ X

be a mapping satisfying one of the following conditions

G(T (x), T (y), T (z)) ≤ {aG(x, y, z) + bG(x, T (x), T (x)) + cG(y, T (y), T (y))

+ dG(z, T (z), T (z))}
(1.1)

or

G(T (x), T (y), T (z)) ≤ {aG(x, y, z) + bG(x, x, T (x)) + cG(y, y, T (y))

+ dG(z, z, T (z))}
(1.2)

for all x, y, z ∈ X where 0 ≤ a + b + c + d < 1, then T has a unique fixed point

(say u, i.e., Tu = u), and T is G-continuous at u.
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The authors divide the proof on the above theorem into two parts. In the first

part the theorem proved where the G-metric space assumed to be Symmetric, while

in the second part the theorem proved where the G-metric space assumed to be

nonsymmetric.

2. Main Results

Now we present several fixed point results on a nonsymmetric complete G-metric

space.

Theorem 2.1. Let (X,G) be a nonsymmetric complete G-metric space,

let T : X −→ X, be a mapping which satisfies the following condition for all x, y ∈ X.

(2.1) G(T (x), T (y), T (y)) ≤ k max



[G(x, x, T (x)) + 2G(y, y, T (y))],

[G(x, x, T (y)) +G(y, y, T (y))+

G(y, y, T (x))], [G(Ty, Tx, Tx)+

G(y, Ty, Ty) +G(x, Ty, Ty)]


where k ∈ [0, 1/4), then T has unique fixed point, say u, also T is G-continuous at u.

Proof. Let x0 ∈ X be arbitrary and define the sequence (xn), by xn = T n(x0) and

assume xn ̸= xn+1 for all n. Then by (2.1) we have

(2.2) G(xn+1, xn, xn) ≤ kmax


[G(xn, xn, xn+1) + 2G(xn−1, xn−1, xn)],

[G(xn−1, xn−1, xn) +G(xn−1, xn−1, xn+1)],

[G(xn, xn+1, xn+1) +G(xn−1, xn, xn)]


But since

G(xn−1, xn−1, xn+1) ≤ G(xn−1, xn−1, xn) +G(xn, xn, xn+1),
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it follows that

G(xn−1, xn−1, xn) +G(xn−1, xn−1, xn+1) ≤ G(xn, xn, xn+1) + 2G(xn−1, xn−1, xn).

Then (2.2) reduces to

(2.3) G(xn+1, xn, xn) ≤ kmax


[G(xn, xn, xn+1) + 2G(xn−1, xn−1, xn)],

[G(xn, xn+1, xn+1) +G(xn−1, xn, xn)]

 ,

we see that inequality (2.3) implies two cases,

Case1:

G(xn+1, xn, xn) ≤ k[G(xn, xn, xn+1) + 2G(xn−1, xn−1, xn)].

Therefore,

(2.4) G(xn+1, xn, xn) ≤
2k

1− k
G(xn−1, xn−1, xn).

Case2:

(2.5) G(xn+1, xn, xn) ≤ k[G(xn, xn+1, xn+1) +G(xn−1, xn, xn)].

But since

G(xn, xn+1, xn+1) ≤ 2G(xn, xn, xn+1)

and

G(xn−1, xn, xn) ≤ 2G(xn−1, xn−1, xn).

Then the estimate of the inequality (2.5) will be

(2.6) G(xn, xn, xn+1) ≤
2k

1− 2k
G(xn−1, xn−1, xn).

Putting a = 2k
1−k

and q = 2k
1−2k

, then the fact a < q implies that the inequalities (2.4)

and (2.6) reduce to

G(xn+1, xn, xn) ≤ qG(xn−1, xn−1, xn).
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Solving this recursive inequality we have

(2.7) G(xn, xn, xn+1) ≤ qnG(x0, x0, x1).

For all n,m ∈ N; n < m, we use repeated rectangle inequality and (2.7) to obtain

G(xn, xn, xm) ≤
m−1∑
j=n

G(xj, xj, xj+1)

≤
m−1∑
j=n

qjG(x0, x0, x1)

≤ qn

1− q
G(x0, x0, x1)

which implies that (xn) is a G-Cauchy sequence in the complete G-metric space

X. Thus, the sequence (xn) is G-convergent to u in X.

Now let us prove that T (u) = u. To do so, we assume on the contrary that T (u) ̸= u.

Then,

G(T (u), xn, xn) ≤ kmax



[G(u, u, Tu) + 2G(xn−1, xn−1, xn)],

[G(u, u, xn) +G(xn−1, xn−1, xn)+

G(xn−1, xn−1, Tu)], [G(xn, Tu, Tu)

+G(xn−1, xn, xn) +G(u, xn, xn)]


Letting n −→ ∞ and using the fact that the function G is continuous in its variables

we obtain

(2.8) G(u, u, Tu) ≤ kmax{G(u, u, Tu), G(u, Tu, Tu)}.

But since

G(u, Tu, Tu) ≤ 2G(u, u, Tu),
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the inequality (2.8) implies that

G(u, u, Tu) ≤ 2kG(u, u, Tu).

This contradiction implies that Tu = u.

To Prove Uniqueness, suppose that v ̸= u such that Tv = v, then

G(u, v, v) = G(Tu, Tv, Tv) ≤ kmax


[G(u, u, u) + 2G(v, v, v],

[G(u, u, v) +G(v, v, u],

[G(v, u, u) +G(u, v, v)]


then,

G(u, v, v) ≤ k[G(v, u, u) +G(u, v, v)].

Therefore, G(u, v, v) ≤ k
1−k

G(v, u, u).

Similarly we get

G(v, u, u) ≤ k

1− k
G(u, v, v).

Consequently,

G(u, v, v) ≤ (
k

1− k
)2G(u, v, v)

which implies that u = v, since 0 < ( k
1−k

)2 < 1.

To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that

lim(yn) = u, then, from (2.1) we deduce that

(2.9) G(T (yn), T (u), T (u)) ≤ kmax



[G(yn, yn, T (yn)) + 2G(u, u, T (u))],

[G(yn, yn, T (u)) +G(u, u, T (u))+

G(u, u, T (yn))], [G(T (u), T (yn), T (yn))

+G(u, T (u), T (u)) +G(yn, u, u, )]


.

By the rectangle inequality,

G(yn, yn, T (yn)) ≤ G(yn, yn, u) +G(u, u, T (yn)).
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Hence, we deduce that the equation (2.9) becomes

(2.10) G(T (yn), T (u), T (u)) ≤ kmax

 [G(yn, yn, u) +G(u, u, T (yn))],

[G(T (yn), T (yn), u) +G(yn, u, u)]

 .

We see that equation (2.10) implies two cases

Case (1) :

(2.11) G(T (yn), T (u), T (u) ≤ k{G(yn, yn, u) +G(u, u, T (yn))},

then equation (2.11) becomes

(2.12) G(T (yn), T (u), T (u)) ≤ k

1− k
G(yn, yn, u),

but since G(yn, yn, u) ≤ 2G(yn, u, u), we will have

(2.13) G(T (yn), T (u), T (u)) ≤ 2k

1− k
G(yn, u, u).

Case (2) :

(2.14) G(T (yn), T (u), T (u) ≤ k{G(T (yn), T (yn), u) +G(yn, u, u)}.

By rectangle inequality,

(2.15) G(T (yn), T (yn), u) ≤ 2G(Tyn, u, u).

Therefore, the inequality (2.14) implies that

G(T (yn), T (u), T (u) ≤ k{2G(Tyn, u, u) +G(yn, u, u)},

which implies that

(2.16) G(T (yn), T (u), T (u) ≤
k

1− 2k
G(yn, u, u),
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In equations, (2.13) and (2.16), taking the limit as n → ∞, we see that

G(u, T (yn), T (yn)) → 0 and so, by Proposition 1.5, we have T (yn) → u = Tu. This

implies that T is G-continuous at u. �

Corollary 2.2. Let X be a complete nonsymmetric G-metric space, let T : X −→ X,

be a mapping which satisfies the following condition, for all x, y, z ∈ X

(2.17)

G(T (x), T (y), T (z)) ≤ k max



[G(x, x, T (x)) +G(y, y, T (y)) +G(z, z, Tz)],

[G(x, x, T (y)) +G(y, y, T (z)) +G(z, z, T (x))],

[G(Tz, Tx, T (x)) +G(z, T (y), T (y))+

G(x, T (z), T (z))]


where k ∈ [0, 1/4), then T has unique fixed point, say u, and T is G-continuous at u.

Proof. Taking z = y in condition (2.17) it reduced to condition (2.1) in Theorem

(2.1), so, the proof follows from Theorem (2.1). �

Theorem 2.3. Let X be a complete nonsymmetric G-metric space, and let

T : X −→ X, be a mapping which satisfies the following condition for all x, y, z ∈ X,

(2.18) G(T (x), T (y), T (z)) ≤ k max


[G(x, x, T (y)) +G(y, y, T (x))],

[G(y, y, T (z)) +G(z, z, T (y))],

[G(x, x, T (z)) +G(z, z, T (x))]


where k ∈ [0, 1/2), then T has unique fixed point (say u), and T is G-continuous at

u.

Proof. For x0 ∈ X, define the sequence (xn) by xn = T n(x0), assume that xn ̸= xn+1

for all n, then by (2.18) we get
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(2.19) G(xn, xn, xn+1) ≤ k max


[G(xn−1, xn−1, xn) + G(xn−1, xn−1, xn)],

[G(xn−1, xn−1, xn+1) + G(xn, xn, xn)],

[G(xn−1, xn−1, xn+1) +G(xn, xn, xn)]


= kmax{G(xn−1, xn−1, xn+1), 2 G(xn−1, xn−1, xn)}

therefore equation (2.19) implies two cases:

Case1:

(2.20) G(xn, xn, xn+1) ≤ kG(xn−1, xn−1, xn+1)

but from rectangle inequality we have the estimate

G(xn−1, xn−1, xn+1) ≤ G(xn−1, xn−1, xn) +G(xn, xn, xn+1),

so equation (2.20) implies that

(2.21) G(xn, xn, xn+1) ≤ k

1− k
G(xn−1, xn−1, xn),

Case 2:

G(xn, xn, xn+1) ≤ 2kG(xn−1, xn−1, xn).

Putting q = max{ k
1−k

, 2k} and using the fact k < 1
2
, we will have q < 1. So,

(2.22) G(xn, xn, xn+1) ≤ qG(xn−1, xn−1, xn).

Solving this recursive inequality we have

(2.23) G(xn, xn, xn+1) ≤ qnG(x0, x0, x1).
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For all n,m ∈ N; n < m, we use repeated rectangle inequality and equation (2.23)

to obtain

G(xn, xn, xm) ≤
m−1∑
j=n

G(xj, xj, xj+1)

≤
m−1∑
j=n

qjG(x0, x0, x1)

≤ qn

1− q
G(x0, x0, x1).

Which implies that (xn) is a G-Cauchy sequence in the complete G-metric space X.

Thus, the sequence (xn) is G-convergent to u in X.

Now suppose that T (u) ̸= u, then

G(xn, xn, T (u)) ≤ k max


[G(xn−1, xn−1, xn) + G(xn−1, xn−1, xn)],

[G(xn, xn, T (u)) + G(u, u, xn)],

[G(xn−1, xn−1, T (u)) +G(u, u, xn)]


.

Letting n −→ ∞, and using the fact that the functionG is continuous in its variables,

we get

G(u, u, T (u)) ≤ kG(u, u, T (u)).

This contradiction implies that u = T (u).

To prove uniqueness, suppose that v ̸= u such that T (v) = v, then

(2.24) G(u, v, v) ≤ k max


[G(u, u, v) +G(v, v, u)],

[G(v, v, v) +G(v, v, v)],

[G(u, u, v) + G(v, v, u)]


,

so we deduce that

G(u, v, v) ≤ k [G(u, u, v) +G(v, v, u)].
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Therefore,

G(u, v, v) ≤ k

1− k
G(v, u, u).

Similarly,

G(v, u, u) ≤ k

1− k
G(u, v, v),

thus we have,

G(u, v, v) ≤ (
k

1− k
)2G(u, v, v).

This contradiction implies that u = v .

To show that T is G-continuous at u, consider (yn) ⊆ X any sequence such that

lim(yn) = u in X, then

(2.25) G(T (yn), T (u), T (u)) ≤ k max


[G(yn, yn, T (u)) +G(u, u, T (yn))],

[G(u, u, T (u)) +G(u, u, T (u))]

[G(yn, yn, T (u)) +G(u, u, T (yn))]


.

Thus, equation (2.25) reduces to

(2.26) G(T (yn), u, u) ≤ k[G(yn, yn, u) +G(u, u, T (yn))].

Therefore the inequality (2.26) implies that

(2.27) G(T (yn), u, u) ≤
k

1− k
G(yn, u, u).

Taking the limit of (2.27) as n → ∞ and using Proposition 1.5, we have

T (yn) → u = Tu which implies that T is G-continuous at u. �

Corollary 2.4. Let X be a complete nonsymmetric G-metric space, and let

T : X −→ X be a mapping satisfies the following condition

(2.28) G(T (x), T (y), T (z)) ≤ k{G(x, x, T (x)) +G(y, y, T (y)) +G(z, z, T (z))}
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for all x, y, z ∈ X, where k ∈ [0, 1/3). Then T has a unique fixed point (say u), and

T is G-continuous at u.

Proof. By taking a = 0, b = c = d = k in condition (1.2) of Theorem (1.11), then

condition (2.28), becomes special case of Theorem (1.11), so the proof follows from

Theorem (1.11) �

Corollary 2.5. Let (X,G) be a complete nonsymmetric G-metric space, and let

T : X −→ X, be a mapping satisfying the following condition

(2.29) G(T (x), T (y), T (z)) ≤ αG(x, y, z) + β


G(y, y, T (y)) +G(z, z, T (z))+

G(x, x, T (x))


for all x, y, z ∈ X, where 0 ≤ α + 3β < 1. Then T has unique fixed point (say u),

and T is G-continuous at u.

Proof. By taking α = a, b = c = d = β in condition (1.2) of Theorem (1.11), then

condition (2.29), becomes special case of Theorem (1.11), so the proof follows from

Theorem (1.11) �
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