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APPROXIMATE SOLUTIONS TO NONLINEAR PARTIAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH APPLICATIONS

IN HEAT FLOW

MARWAN T. ALQURAN , KAMEL M. AL-KHALED

Abstract. In this paper, two different methods based on variational iteration

method (VIM) and on differential transform method (DTM) are developed to ap-

proximate solutions of some partial integro-differential equations with applications

in heat flow. Approximate solutions are obtained for some important physical prob-

lems concerned with heat flow in materials with memory. The methods are capable

of greatly reducing the size of computational domain. Some numerical examples

are presented to show the performances and accuracy of the proposed methods.

1. Introduction

Many mathematical formulations of physical phenomena contain partial integro-

differential equations of the form

ut(x, t) =

∫ t

0

a(t− τ)
∂

∂x
σ(ux(x, τ))dτ + f(x, t), 0 < x < 1, 0 < t < T,

(1.1)

subject to the initial condition

u(x, 0) = ϕ(x), x ∈ (0, 1) (1.2)
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where σ(.) is a non-linear function, and f(x, t) is the source term. These equations

arise in problems that are concerned with heat flow in both materials with memory

[14, 15] and linear viscoelasticity problems [6]. For example, in linear viscoelasticity,

when we consider the propagation of some properties such as singularities in the

boundary data into the medium. This equation is regarded as a model problem

called the Rayleigh problem [21]

Problems of this kind, arising in hereditary mechanics, are indicated in the book

[5] and this kind of problems are usually difficult to solve analytically, so that it

requires an efficient approximate solution. Some attention has been paid in the lit-

erature to questions of existence and stability of solutions of equation (1.1) and its

nonlinear counterparts, see [19], but it seems that less work has been devoted so far

to numerical methods. On the other hand there is an extensive literature and var-

ious techniques for solving systems of integral or integro-differential equations, e.g.

Adomian decomposition method [1, 11], Galerkin method [7, 8, 18], He’s homotopy

perturbation method [3]. Our particular concern in this paper will be in obtaining

approximate numerical solutions by two different types of methods for equation (1.1),

based on the DTM and VIM, respectively. The two methods, provide the solution

in a rapidly convergent series with components that are elegantly computed. More-

over, the obtained solutions will be used to provide closed form solutions. The main

advantage of the two methods is that they can be applied directly to all types of

integro-differential equations without any need for restrictive assumptions.

The organization of this paper is as follows: In section 2, we describe the basic idea

of VIM. In Section 3, the differential transform, which is based on one-dimensional

differential transform and Taylors formula, will be introduced. In Section 4, the

mentioned schemes in Sections 2 and 3 will be used to seek an approximate solution
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of equation (1.1) with the given initial conditions (1.2). Also, the accuracy and

efficiency of the schemes was investigated with three numerical illustrations in that

section. Finally, Section 5 consists of some brief conclusions.

2. Basic Idea of VIM

Equation (1.1) can be easily integrated to yield

u(x, t) =

∫ t

0

∫ s

0

a(s− τ)
∂

∂x
σ(ux(x, τ))dτds+

∫ t

0

f(x, s)ds+ ϕ(x)

(2.1)

which can be solved iteratively as

uk+1(x, t) =

∫ t

0

∫ s

0

a(s− τ)
∂

∂x
σ(ukx(x, τ))dτds+

∫ t

0

f(x, s)ds+ ϕ(x)

(2.2)

where the superscript k denoted the kth iteration. In order to solve equation (1.1),

He [9] employed restricted variations and a correction functional as follows. The

following correction functional is introduced

uk+1(x, t) = uk(x, t) +

∫ t

0

λ

{
uks(x, s)−

∫ s

0

a(s− τ)
∂

∂x
σ(ũkx(x, τ))dτ − f(x, s)

}
ds

(2.3)

where λ is a Lagrange multiplier which can be identified optimally via variational the-

ory [10], and ũ denotes a restricted variation, i.e., δũ = 0. By making the correction

functional stationary with respect to uk we obtain

δuk+1(x, t) = δuk(x, t) + δ

[∫ t

0

λ

{
uks(x, s)−

∫ s

0

a(s− τ)
∂

∂x
σ(ũkx(x, τ))dτ − f(x, s)

}
ds

]
(2.4)

keeping in mind that δuk(x, 0) = 0, one can easily obtain

δuk+1(x, t) = δuk(x, t) + λδuk(x, t)−
∫ t

0

∂λ

∂s
δukds = 0. (2.5)
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Therefore, from equation (2.5) one obtains the following Euler-Lagrange equation,

∂λ
∂s

= 0 and the natural boundary condition 1 + λ = 0, which imply that λ = −1 and

therefore, the iteration formula in equation (2.4) can be written as

uk+1(x, t) = uk(x, t)−
[∫ t

0

{
uks(x, s)−

∫ s

0

a(s− τ)
∂

∂x
σ(ukx(x, τ))dτ − f(x, s)

}
ds

]
(2.6)

which corresponds to He’s variational iteration method. The successive approxima-

tion

uk(x, t), k ≥ 0, of the solution u(x, t) will follow immediately. Consequently, the ex-

act solution may be obtained by using u(x, t) = limk→∞ uk(x, t). As in [17], and by

means of integration by parts, we next show that the variational iteration method is

the well-known fixed-point theory for first-order (in time) nonlinear partial differential

equations. For, using the identity

u(x, t)− ϕ(x) =

∫ t

0

utdt

Equation (2.1) can be written as

u(x, t) = ut(x, t)−
[∫ t

0

{
us(x, s)−

∫ s

0

a(t− τ)
∂

∂x
σ(ux(x, τ))dτ − f(x, s)

}
ds

]
which can be solved iteratively as

uk+1(x, t) = uk(x, t)−
[∫ t

0

{
uks(x, s)−

∫ s

0

a(t− τ)
∂

∂x
σ(ukx(x, τ))dτ − f(x, s)

}
ds

]
which is exactly the same expression as that of He’s variational technique. This shows

that we do not require at all the use of a correction functional and restricted varia-

tions. Furthermore, since the variational iteration method can be obtained directly

from fixed-point theory, its convergence can be ensured if the resulting mapping is

contractive according to the following Picard’s fixed-point theorem.
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Theorem 2.1. [22] For a Banach space X, suppose the nonlinear mapping T : X →

X satisfies

∥T [u]− T [ū]∥ ≤ γ∥u− ū∥, u, ū ∈ X,

for some constant γ < 1. Then T has a unique fixed point. Furthermore, the sequence

un+1 = A[un] with arbitrary choice of u0 ∈ X, converges to the fixed point of T , and

∥uk − uj∥ ≤ ∥u1 − u0∥
k−2∑

ℓ=j−1

γℓ.

The nonlinear mapping involved in the variational iteration method is

T [u] = u(x, t)−
[∫ t

0

{
us(x, s)−

∫ s

0

a(s− τ)
∂

∂x
σ(ux(x, τ))dτ − f(x, s)

}
ds

]
.

Therefore, according to the above theorem, a sufficient condition for the convergence

of the variational iteration method is that the mapping T is a contraction map.

Furthermore, the sequence (2.2) converges to the fixed point of T , which is also the

solution of the differential equation in Equation (2.1).

3. Differential Transform Method (DTM)

Differential transform technique proposed by Zhou [24] in 1986 is a numerical

method used to solve both ordinary and partial differential equations. It uses poly-

nomial forms as approximation to exact solutions that are sufficiently differentiable.

This technique provides an iterative procedure to obtain higher-order series. There-

fore, it can be applied to equations of higher order. Basic definitions, operations of

differential transformation, description of the procedure of DTM, and application of

the method are introduced in the following subsections.
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3.1. One-Dimensional Differential Transform. The differential transform of the

k−th derivative of a function u(x) is defined to be

U(k) =
1

k!

(
dk

dxk
u(x)

) ∣∣∣
x=x0

(3.1)

and the inverse transform of U(k) is defined as

u(x) =
∞∑
k=0

U(k)(x− x0)
k (3.2)

Equation (3.2) is known as the Taylor series expansion of u(x) around x = x0.

3.2. Two-Dimensional Differential Transform. We define the differential trans-

form

of the (k, h)th derivative of f(x, t) (see for example, [2]) in (x0, y0) as

F (k, h) =
1

k!h!

[
∂k+h

∂xk∂th
f(x, t)

]
x=x0,t=t0

(3.3)

and its inverse transform is defined as

f(x, t) =
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+h

∂xk∂th
f(x, t)

]
x=x0,t=t0

(x− x0)
k(t− t0)

h (3.4)

which is the Taylor series of f(x, t). In the following theorems, we summarize funda-

mental properties of the differential transform needed in our work, for more details

we refer the reader for example to, [2, 20, 16].

Theorem 3.1. If F (k, h), U(k, h) and V (k, h) are the differential transform of the

functions f(x, t),

u(x, t) and v(x, t) at (0, 0) respectively, then:

(1) If f(x, t) = u(x, t)± v(x, t), then F (k, h) = U(k, h)± V (k, h)

(2) If f(x, t) = au(x, t), then F (k, h) = aU(k, h)
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(3) If f(x, t) = u(x, t)v(x, t), then F (k, h) =
∑h

j=0

∑k
i=0 U(i, j)V (k − i, h− j)

(4) If f(x, t) = xrts, then F (k, h) = δk,rδh,s

(5) If f(x, t) = xr sin(at+ b), then F (k, h) = ah

h!
δk,r sin(

hπ
2
+ b)

(6) If f(x, t) = xr cos(at+ b), then F (k, h) = ah

h!
δk,r cos(

hπ
2
+ b)

(7) If f(x, t) = xreat, then F (k, h) = ah

h!
δk,r

Theorem 3.2. If G(k, h), H(k, h), U(k, h) and V (k, h) are the differential transform

of the functions g(x, t), h(x, t), u(x, t) and v(x, t) at (0, 0) respectively, then

(1) If g(x, t) =
∫ t

0

∫ x

0
u(y, s)v(y, s)dyds, then

G(k, 0) = G(0, h) = 0, k, h = 0, 1, ... (3.5)

G(k, h) =
1

kh

h−1∑
j=0

k−1∑
i=0

U(i, j)V (k − i− 1, h− j − 1), k, h = 1, 2, ... (3.6)

(2) If g(x, t) = h(x, t)
∫ t

0

∫ x

0
u(y, s)dyds, then

G(k, 0) = G(0, h) = 0, k, h = 0, 1, ... (3.7)

G(k, h) =
h−1∑
j=0

k−1∑
i=0

H(i, j)
V (k − i− 1, h− j − 1)

(k − i)(h− j)
, k, h = 1, 2, ... (3.8)

3.3. Procedure of DTM. In this part we consider a special case for the function

a(t − τ) in equation (1.1) to have the property a(t − τ) = a1(t)a2(τ), accordingly

equation (1.1) can be written as

ut(x, t) = a1(t)

∫ t

0

a2(τ)
∂

∂x
σ(ux(x, τ))dτ + f(x, t), x ∈ (0, 1), t ∈ (0, T ) (3.9)

u(x, 0) = ψ(x) (3.10)
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Now applying DTM to the above equations yields

(h+ 1)U(k, h+ 1) =
h∑

s=0

A1(h− s)G(k, s) + F (k, h) (3.11)

where,

G(k, s) =
1

s

s−1∑
j=0

A2(j)B(k, s− j − 1). k, s = 1, 2, ... (3.12)

G(k, 0) = 0. k = 0, 1, ... (3.13)

and,

U(k, h), A1(h), A2(h), B(k, h), F (k, h)

are the differential transform of the functions

u(x, t), a1(t), a2(t),
∂

∂x
σ(ux(x, t)), f(x, t)

The inverse of equation (3.11) is

u(x, t) =
∞∑
h=0

∞∑
k=0

U(k, h)xkth (3.14)

4. Numerical Applications

In this section we will apply both DTM and VIM to solve equation (1.1) for different

forms of the kernel a(.) and the nonlinear function σ(.). We also choose f(x, t) to

be a specific function in order to hold an exact solution which we compare with the

obtained approximate solutions derived by either DTM or VIM. To illustrate the

strength of the methods, and to establish approximations of high accuracy, Figures

and Tables will be given. In what follows, three examples will be investigated to show

the reliability of the proposed schemes. All of these examples are chosen such that
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there exist analytical solutions for them (see,[15]), to give an obvious overview of the

methods. The computer application program Mathematica was used to execute the

algorithms that were used to solve the given examples.

The solution process can be illustrated for various physical processes, such as glass-

forming process, a nano-hydrodynamics, and drop wise condensation.

Example 4.1. Consider Equation (1.1) with a(ξ) = e−ξ, σ(ξ) = ξ2 and

f(x, t) = e−(x+t) + 2e−2x(e−t − e−2t). Also in equation (1.2) we take ψ(x) = e−x.

Equations (1.1)-(1.2) with the above conditions has the exact solution u(x, t) =

e−(x+t).

Based on the properties of DTM proposed in section 3 and the above procedure

we have

U(k, h+ 1) =
2

h+ 1

h∑
s=0

(−1)h−s

(h− s)!
G(k, s) +

1

h+ 1
F (k, h) (4.1)

G(k, s) =
1

s

s−1∑
j=0

1

j!
B(k, s− j − 1).k, s = 1, 2, ... (4.2)

G(k, 0) = 0, k = 0, 1, ... (4.3)

and

B(k, ℓ) =
k∑

i=0

ℓ∑
r=0

(i+ 1)(k − i+ 2)(k − i+ 1)U(i+ 1, r)U(k − i+ 2, ℓ− r) (4.4)

Also

U(k, 0) =
(−1)k

k!
(4.5)
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and

F (k, h) = −(−1)k

k!

(−1)h

h!
+ 2

(−2)k

k!

(
(−1)h

h!
− (−2)h

h!

)
(4.6)

By using the above formulas, the following coefficients are obtained

U(0, 0) = 1, U(1, 0) = −1, U(2, 0) = 1
2
, U(3, 0) = −1

6
, U(4, 0) = 1

24

U(0, 1) = −1, U(1, 1) = 1, U(2, 1) = −1
2
, U(3, 1) = 1

6
, U(4, 1) = − 1

24

U(0, 2) = 1
2
, U(1, 2) = −1

2
, U(2, 2) = 1

4
, U(3, 2) = − 1

12
, U(4, 2) = 1

48

U(0, 3) = −1
6
, U(1, 3) = 1

6
, U(2, 3) = − 1

12
, U(3, 3) = 1

36
, U(4, 3) = − 1

144

Consequently substituting all U(k, h) into Eq. (4.1) and after some manipulations,

we obtain the series form solutions of the model in this example as
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u(x, t) =

(
1− t+

t2

2
− t3

6
+
t4

24
− t5

120
+O(t6)

)

+

(
−1 + t− t2

2
+
t3

6
− t4

24
+

t5

120
+O(t6)

)
x

+

(
1

2
− t

2
+
t2

4
− t3

12
+
t4

48
− t5

240
+O(t6)

)
x2

+

(
−1

6
+
t

6
− t2

12
+
t3

36
− t4

144
+

t5

720
+O(t6)

)
x3

+

(
1

24
− t

24
+
t2

48
− t3

144
+

t4

576
− t5

2880
+O(t6)

)
x4

+

(
− 1

120
+

t

120
− t2

240
+

t3

720
− t4

2880
+

t5

14400
+O(t6)

)
x5 +O(x6)

The above results matches the same coefficients in the Taylor expansion of the

exact solution, and evaluating more terms of the above approximate solution will

converges to the exact solution, known as u(x, t) = e−(x+t). For the solution of the

problem in this example using VIM, the variational iteration formula (2.6) reads as

uk+1(x, t) = uk(x, t)−
[∫ t

0

{
uks(x, s)−

∫ s

0

e(s−τ) ∂

∂x
(ukx(x, τ))

2dτ − f(x, s)

}
ds

]
(4.7)

Using this iteration, we find that approximation of the exact solution can be obtained

for sufficiently large values of k. Taking the initial iteration to be u0(x, t) = e−x, the

first two iterations are computed as follows
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u1(x, t) = e−x − e−2(x+t){−1 + et(4− ex + et[−3 + ex + 2t])}

u2(x, t) = e−x +
1

3
e−4(t+x)

[
− 4 + 64et − 6et+x − 3e2(t+x) + 72e2t+x + ...

]
In the same manner the rest of components of the iteration formula (4.7) can

be obtained. We should pointout that for the solution using VIM, the selection of

u0(x, t) is arbitrary, but a suitable selection is effective for fast convergence and fit

accuracy. In this paper, we suggest the initial approximations to be selected well-set

with u0(x, t) = ϕ(x).

In order to verify the efficiency of both methods (DTM, and VIM) in comparison

with the exact solution, we report the maximum pointwise error for different values

of x ∈ [0, 1.0] and t = 0.1. Numerical results corresponding to Example 4.1 are given

in Table 1. Figures 1, 2 show that the results of the VIM is in excellent agreement

with the exact solution. Therefore, it is evident that the maximum pointwise error

can be made smaller by computing more terms using both methods.

0

5

10

15

x-axis

0.0

0.2

0.4

time

0.00

0.05

0.10

u-appro.

Figure 1. The approximate solution for Example 4.1 using VIM for 0 ≤

t ≤ 0.5 and 0 ≤ x ≤ 15
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xi VIM Error DTM Error

0.1 2.22518E-08 2.47797E-09

0.2 7.07825E-09 7.93093E-08

0.3 4.44105E-11 8.79324E-07

0.4 7.27520E-09 4.86837E-06

0.5 7.94931E-09 1.83175E-05

0.6 3.07950E-09 5.39617E-04

0.7 2.05634E-09 1.34267E-04

0.8 9.00444E-10 2.95247E-04

0.9 7.18900E-10 5.90778E-04

1.0 2.31384E-10 1.09736E-03

Table 1. Results for Example 4.1, when t = 0.1 and different values

of x by VIM using u3(x, t) and using 5-terms of DTM.

0

5

10

15

x-axis

0.0

0.2

0.4

time

0.00

0.05

0.10

u-Exact

Figure 2. The Exact solution for Example 4.1 for 0 ≤ t ≤ 0.5 and 0 ≤ x ≤ 15
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xi VIM Error DTM Error

0.1 5.79925E-05 4.42648E-08

0.2 2.30424E-05 2.78627E-06

0.3 7.52382E-06 3.11476E-05

0.4 1.39419E-06 1.71788E-04

0.5 5.16161E-07 6.43416E-04

0.6 7.44490E-07 1.88677E-03

0.7 4.52347E-07 4.67349E-03

0.8 1.13642E-07 1.02313E-02

0.9 1.19931E-07 2.03837E-02

1.0 2.32594E-07 3.77016E-02

Table 2. Results for Example 4.2, when t = 0.1 and different values

of x by VIM using u2(x, t) and using 7-terms of DTM.

Example 4.2. In this example, we still choose a(ξ) = e−ξ and σ(ξ) = ξ2, but we

choose f(x, t) as

f(x, t) = −x(1− x)e−(x+t) + (8− 34x+ 40x2 − 16x3 + 2x4)(e−2x−t − e−2x−2t).

and the initial condition to be ψ(x) = x(1−x)e−x, then the exact solution is given by

u(x, t) = x(1− x)e−(x+t).

According to this Example, Equations (4.1)-(4.3) are still hold, but

U(k, 0) =
k∑

i=0

(δ(i− 1)− δ(i− 2))
(−1)k−i

(k − i)!
(4.8)
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and

F (k, h) =
(−1)h

h!

k∑
i=0

(δ(i− 2)− δ(i− 1))
(−1)k−i

(k − i)!
(4.9)

+
(−1)h − (−2)h

h!

k∑
i=0

(2δ(i− 4)− 16δ(i− 3) + 40δ(i− 2)

− 34δ(i− 1) + 8δ(i))
(−2)k−i

(k − i)!

By using the above formulas, the following coefficients are obtained

U(0, 0) = 0, U(1, 0) = 1, U(2, 0) = −2, U(3, 0) = 3
2
, U(4, 0) = −2

3

U(0, 1) = 0, U(1, 1) = −1, U(2, 1) = 2, U(3, 1) = −3
2
, U(4, 1) = 2

3

U(0, 2) = 0, U(1, 2) = 1
2
, U(2, 2) = −1, U(3, 2) = 3

4
, U(4, 2) = −1

3

U(0, 3) = 0, U(1, 3) = −1
6
, U(2, 3) = 1

3
, U(3, 3) = −1

4
, U(4, 3) = 1

9
.

The above results matches the same coefficients in the Taylor expansion of the exact

solution, and our approximate solution is given by

u(x, t) = (x− 2x2 +
3

2
x3 − 2

3
x4 + ...)(1− t+

1

2
t2 − 1

6
t3 + ...)

For the solution using VIM, we first use u0(x, t) to be the given initial condition

ϕ(x) = x(1 − x)e−x, and then use the iterative scheme (2.6) to find u1(x, t) and

u2(x, t). The numerical experiment is carried out for t = 0.1 and x = 0.1, 0.2, ..., 1.0.
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Table 2 exhibits numerical results when t = 0.1 and different values of x by VIM

using u2(x, t) and using 7-terms of DTM. Figures 3, 4 show some results using VIM.
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Figure 3. The approximate solution for Example 4.2 using VIM for 0 ≤

t ≤ 0.5 and 0 ≤ x ≤ 15
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Figure 4. The Exact solution for Example 4.2 for 0 ≤ t ≤ 0.5 and 0 ≤ x ≤ 15

Example 4.3. In this example, we choose a(ξ) = e−2ξ , σ(ξ) = ξ2, ψ(x) = sinx, and

f(x, t) = cos(x+ t) +
1

4

[
sin 2(x+ t)− cos 2(x+ t)− e−2t (sin 2x− cos 2x)

]
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The exact solution is sin(x+ t).

Using DTM, equations (4.1)-(4.2) will be

U(k, h+ 1) =
2

h+ 1

h∑
s=0

(−2)h−s

(h− s)!
G(k, s) +

1

h+ 1
F (k, h) (4.10)

G(k, s) =
1

s

s−1∑
j=0

2j

j!
B(k, s− j − 1). k, s = 1, 2, ... (4.11)

and equations (4.3)-(4.4) are still hold. Also

U(k, 0) =
sin(kπ

2
)

k!
(4.12)

and

F (k, h) =
cos(kπ

2
)

k!

cos(hπ
2
)

h!
−

sin(kπ
2
)

k!

sin(hπ
2
)

h!

+
1

4
2h2k

sin(kπ
2
)

k!h!

(
cos(

hπ

2
) + sin(

hπ

2
)

)
+

1

4
2h2k

cos(kπ
2
)

k!h!

(
sin(

hπ

2
)− cos(

hπ

2
)

)
− 1

4

(−2)h2k

k!h!

(
sin(

kπ

2
)− cos(

kπ

2
)

)
(4.13)

By using the above formulas the following coefficients are obtained

U(0, 0) = 0, U(1, 0) = 1, U(2, 0) = 0, U(3, 0) = −1
6
, U(4, 0) = 0

U(0, 1) = 1, U(1, 1) = 0, U(2, 1) = −1
2
, U(3, 1) = 0, U(4, 1) = 1

24

U(0, 2) = 0, U(1, 2) = −1
2
, U(2, 2) = 0, U(3, 2) = 1

12
, U(4, 2) = 0
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U(0, 3) = −1
6
, U(1, 3) = 0, U(2, 3) = 1

12
, U(3, 3) = 0, U(4, 3) = − 1

144

The above results matches the same coefficients in the Taylor expansion of the exact

solution known as

u(x, t) = sin(x+ t)

= (x+ t)− 1

3!
(x+ t)3 +

1

5!
(x+ t)5 − ...

= x+ t− 1

6
(x3 + 3x2t+ 3xt3 + t3) (4.14)

+
1

120
(x5 + 5x4t+ 10x3t2 + 10x2t3 + 5xt4 + t5)− ...

Table 3, exhibits numerical results using both methods. While Figure 5, 6 shows the

approximate solution obtained by VIM and the exact solution of the problem.

0

5

10

x-axis

0.00

0.02

0.04

time

-1.0

-0.5

0.0

0.5

1.0

u-appro.

Figure 5. The approximate solution for Example 4.3 using VIM for 0 ≤

t ≤ 0.05 and 0 ≤ x ≤ 15

The series solution using regular VIM or DTM, has slow convergence rate over

the wider regions. Furthermore VIM (or, DTM) needs to be modified in order to

work for integral equations where their solutions consists of a rapidly and slowly
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xi VIM Error DTM Error

0.1 2.22518E-08 2.47797E-09

0.2 7.07825E-09 7.93093E-08

0.3 4.44105E-11 8.79324E-07

0.4 7.27520E-09 4.86837E-06

0.5 7.94931E-09 1.83175E-05

0.6 3.07950E-09 5.39617E-04

0.7 2.05634E-09 1.34267E-04

0.8 9.00444E-10 2.95247E-04

0.9 7.18900E-10 5.90778E-04

1.0 2.31384E-10 1.09736E-03

Table 3. Results for Example 4.3, when t = 0.1 and different values

of x by VIM using u3(x, t) and using 5-terms of DTM.
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Figure 6. The Exact solution for Example 4.3 for 0 ≤ t ≤ 0.05 and

0 ≤ x ≤ 15
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oscillating function (as in this example). In [13] the authors presented an alternative

technique, which modified VIM series solution and makes it periodic for nonlinear

oscillatory systems. Both Laplace transform and Pade approximant are used to deal

with the truncated series. Pade approximant approximates a function by the ratio of

two polynomials [4]. The coefficients of the powers occurring in the polynomials are

determined by the coefficients in the VIM series solution of the function. Generally,

the Pade approximant can enlarge the convergence domain of the series. In this

case part of the VIM truncated series is the partial sum of the Taylor series of the

true solution, and the lower-order Pade approximant is used to get the true solution.

Therefore, we follow the same technique proposed by [12] which modifies the series

solution obtained by regular VIM.

To solve the equation in this Example using the modified version of VIM approach,

the first-order approximate solution can be expressed as

u1(x, t) =
(
0.125̀− 0.125̀e−2t

)
cos(2x)− 0.25̀ cos(t+ 2x) sin(t)− 0.25̀e−2t cos(x) sin(x)

− t cos(x) sin(x) + 0.25̀ cos(x) sin(x) + sin(t+ x) + 0.25̀ sin(t) sin(t+ 2x)

Applying a Laplace transformation to u1(x, t), we get the following result:

Lu1(x, t) =
0.125̀ cos(2x)

s
− 0.125̀ cos(2x)

s+ 2
+

0.25̀ cos(x) sin(x)

s

− 0.25̀ cos(x) sin(x)

s+ 2
− cos(x) sin(x)

s2
− 0.25̀(s cos(2x)− 4 cos(x) sin(x))

s (s2 + 4)

+
0.25̀(2 cos(2x) + s sin(2x))

s (s2 + 4)
+

sin
(
x+ tan−1

(
1
s

))
√
s2 + 1

For the sake of simplicity, let s = 1/t, to obtain the [L/M ] Pade approximant with

L ≥ 4,M ≥ 4, and upon using the inverse Laplace transform to [L/M ] Pade, the
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exact solution is obtained as sin(x+ t). For the solution using the modified version of

DTM approach, Figure 7 shows the error between the exact solution and the solution

obtained using Laplace-Pade method.
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Figure 7. The error using Laplace-Pade in Example 4.3 for DTM with

only three terms

Common to the above three examples is a justification for using DTM and VIM to

solve the nonlinear problem (1.1). Indeed, the examples show that the error between

the exact solutions and the approximate solutions obtained by the two methods with

only 3 iterations is very small.

5. Conclusions

In this paper, the variational iteration method and differential transform method

have been applied to solve partial integro-differential equations. Numerical results

have been presented to show the efficiencies of both methods. We can conclude

from the numerical results that the methods provide high accuracy for the partial

integro-differential equation.
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The comparison revealed that, although both methods can be seen as efficient

methods for solving partial integro-differential equations, VIM is much easier, more

convenient and more efficient
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