(Short Note)

ON THE DIAMETER OF ZERO-DIVISOR GRAPHS OF IDEALIZATIONS WITH RESPECT TO INTEGRAL DOMAIN

MANAL AL-LABADI

ABSTRACT. Let R be a ring with unity and let M be an R - module. Let R(+)M be the idealization of the ring R by the R - module M. In this paper, we give new results on the diameter of $\Gamma(R(+)M)$ when R is an integral domain.

1. Introduction

The zero divisor graph of a ring is the (simple) graph whose vertex set is the set of non-zero zero divisors, and an edge is drawn between two distinct vertices if their product is zero. The zero divisor graph of a commutative ring has been studied extensively by several authors, see [1,2,3 and 4]. Let R be a commutative ring with unity. We use the notation A^* to refer to the nonzero elements of A. For two distinct vertices a and b in a graph $\Gamma(R)$, the distance between a and b, denoted by d(a,b), is the length of the shortest path connecting a and b, if such a path exists, otherwise, $d(a,b) = \infty$. The diameter of a graph $\Gamma(R)$ is $diam(\Gamma) = \sup \{d(a,b) : a \text{ and } b \text{ are distinct vertices of } \Gamma\}$. We will use the notation $diam(\Gamma(R))$ to denote the diameter of the θ nonzero zero divisors of R). Let

²⁰⁰⁰ Mathematics Subject Classification. Primary: 13A99, Secondary: 13A15.

Key words and phrases. : Zero - divisor graphs, Idealization rings.

Copyright (c) Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Nov. 16,2009. Accepted: Feb. 8, 2010.

M be an R - module. Consider $R(+)M = \{(a,m) : a \in R, m \in M\}$ and let (a,m) and (b,n) be two elements of R(+)M. Define (a,m)+(b,n)=(a+b,m+n) and (a,m)(b,n)=(ab,an+bm). Under this definition R(+)M becomes a commutative ring with unity. Call this ring the idealization ring of M in R. For more details, we refer the reader to [5]. The set of all nonzero zero divisors of a ring R is denoted by $Z^*(R)$.

$Diam(\Gamma(R(+)M))$ when R is an Integral Domain

Lemma 1.1. Let R be an integral domain such that \mathbb{Z}_2 is an R-module with $ann(\mathbb{Z}_2) = \{0\}$. Then $R \cong \mathbb{Z}_2$.

Proof. Now $1_R.1 = 1$ since \mathbb{Z}_2 is unitary R-module. So, $(1_R + 1_R).1 = 1_R.1 + 1_R.1 = 1 + 1 = 0$. Hence $2.1_R = 1_R + 1_R \in ann(\mathbb{Z}_2) = \{0\}$. Hence ch(R) = 2. Moreover, r.1 = 1 for all $r \in R^*$ because $ann(\mathbb{Z}_2) = \{0\}$. Assume that $r \in R - \{0_R, 1_R\}$. Then $(r + 1_R).1 = 1 + 1 = 0$, hence $r = -1_R = 1_R$, a contradiction. Then $R \cong \mathbb{Z}_2$.

Lemma 1.2. Let R be an integral domain such that \mathbb{Z}_3 is an R-module with $ann(\mathbb{Z}_3) = \{0\}$. Then $R \cong \mathbb{Z}_3$.

Proof. $0, 1_R \in R$ and $1_R \neq 0_R$. Then $2 1_R \in R$. If $2 1_R = 0_R$, then $3 1_R.1 = 0$ because $3 1_R.1 = (1_R + 1_R + 1_R).1 = 1 + 1 + 1 = 0$. So, $0 = 3 1_R.1 = (2 1_R + 1_R).1 = 2 1_R.1 + 1_R.1 = 0 + 1 = 1$, contradiction. So, $2 1_R \neq 0_R$. If $2 1_R = 1_R$, then $1_R = 0_R$ since (R, +) is abelian group. So, R has at least 3 element $0_R, 1_R$ and $2 1_R$. Assume that there exist, $r \in R - \{0_R, 1_R, 21_R\}$, $r \in R$. If r.1 = 0, then $r \in ann(\mathbb{Z}_3)$. Hence $r = 0_R$, contradiction. If r.1 = 1, then

 $(r+21_R).1 = r.1 + 21_R.1 = r.1 + 1 + 1 = 1 + 1 + 1 = 0$. So, $r+21_R = 0_R$ since $ann(\mathbb{Z}_3) = \{0\}$. Then $r = -21_R = 1_R$, contradiction. If r.1 = 2, then $(r+1_R).1 = 0$. So, $r+1_R = 0_R$ i.e $r = -1_R = 21_R$, contradiction. Thus $R = \{0_R, 1_R, 21_R\}$ and . 0_R 1_R 21_R

$$31_R = 0_R$$
. Then $(R, +) \cong (\mathbb{Z}_3, +)$. $(R, .) = \begin{pmatrix} 0_R & 0_R & 0_R & 0_R \\ \\ 1_R & 0_R & 1_R & 21_R \end{pmatrix}$. $21_R & 0_R & 21_R & 1_R$

Then $R \cong \mathbb{Z}_3$ (as a ring).

Theorem 1.3. Let R be an integral domain and $M \cong \mathbb{Z}_2$ be an R-module.

- (i): If $ann(\mathbb{Z}_2) = \{0\}$, then $diam(\Gamma(R(+)\mathbb{Z}_2)) = 0$.
- (ii): If $ann(\mathbb{Z}_2) \neq \{0\}$, then $diam(\Gamma(R(+)\mathbb{Z}_2)) = 2$.

Proof. (i) $M \cong \mathbb{Z}_2$, and $ann(\mathbb{Z}_2) = \{0\}$. Then, by Lemma 1.1, $R \cong \mathbb{Z}_2$. Then $Z^*(\mathbb{Z}_2(+)\mathbb{Z}_2) = \{(0,1)\}$, so $diam(\Gamma(R(+)\mathbb{Z}_2)) = 0$.

(ii) $M \cong \mathbb{Z}_2$ and $ann(\mathbb{Z}_2) \neq \{0\}$. Then there exists at least one element in R^* such that r.1 = 0. $Z^*(R(+)\mathbb{Z}_2) = \{(0,1)\} \cup \{(r,0),(r,1),...\}$. Any two elements in $\{(r,0),(r,1),...\}$ are non adjacent, but (r,0).(0,1) = (0,0) and (0,1).(r,1) = (0,0). (r,0)-(0,1)-(r,1) so, $diam(\Gamma(R(+)\mathbb{Z}_2)) = 2$.

Theorem 1.4. Let R be an integral domain and $M \cong Z_3$ be an R-module.

- (i): If $ann(\mathbb{Z}_3) = \{0\}$, then $diam(\Gamma(R(+)\mathbb{Z}_3)) = 1$.
- (ii): If $ann(\mathbb{Z}_3) \neq \{0\}$, then $diam(\Gamma(R(+)\mathbb{Z}_3)) = 2$.

Proof. (i) $M \cong \mathbb{Z}_3$, $ann(\mathbb{Z}_3) = \{0\}$. Then, by Lemma 1.2, $R \cong \mathbb{Z}_3$. So, $Z^*(\mathbb{Z}_3(+)\mathbb{Z}_3) = \{(0,1), (0,2)\}.$

Thus, $diam(\Gamma(R(+)\mathbb{Z}_3) = 1. \ \Gamma(R(+)\mathbb{Z}_3) \text{ is } (0,1)-(0,2).$

(ii) $M \cong \mathbb{Z}_3$ and $ann(\mathbb{Z}_3) \neq \{0\}$. Then there exists at least one element in R^* such that $r.Z_3 = 0$. So, $Z^*(R(+)\mathbb{Z}_3) = \{(0,1),(0,2)\} \cup \{(r,0),(r,1),(r,2),...\}$. Any two elements in $\{(r,0),(r,1),(r,2),...\}$ are non adjacent since $r.s \neq 0$ for any $r,s \in R^*$. But (r,0)—(0,1)—(r,2). Hence, $diam(\Gamma(R(+)\mathbb{Z}_2)) = 2$.

Theorem 1.5. Let R be an itegral domain and $|M| \ge 4$, be an R-module.

- (i): If $r.m \neq 0$, for any $r \in R^*$ and $m \in M^*$, then $diam(\Gamma(R(+)M)) = 1$.
- (ii): If there exists at least one element $m \in M^*$ such that r.m = 0, for any $r \in R$, then $diam(\Gamma(R(+)M)) = 2$.
- (iii): If there exists at least two elements in R^* such that $r_1.m = 0$, $r_2.n = 0$, $r_1.n \neq 0$, $r_2.m \neq 0$, $m \neq n$, for $m, n \in M^*$, then $diam(\Gamma(R(+)M)) = 3$.
- *Proof.* (i) If there is no element $r \in R^*$ such that r.m = 0, for any $m \in M^*$, then $Z^*(R(+)M) = \{(0,m) : m \in M^*\}$. Then any two elements in $\{(0,m) : m \in M^*\}$ are at distance 1.
- (ii) If there exists at least one element $m \in M^*$ such that r.m = 0, for any $r \in R$, then $Z^*(R(+)M) = \{(0,m) : m \in M^*\} \cup \{(r,m), ... : m \in M\}$. Then any two elements in $\{(r,m), ... : m \in M\}$ are non adjacent. But (r,n).(0,m) = (0,0), and (0,m).(0,n) = (0,0). Then (r,n)-(0,m)-(0,n), $m \neq n$, and m, $n \in M^*$. Then $diam(\Gamma(R(+)M)) = 2$.
- (iii) If there exists two elements $r_1, r_2 \in R^*$ such that $r_1.m = 0, r_2.n = 0, m \neq n$, and $m, n \in M^*$, then $Z^*(R(+)M) = \{(0, m) : m \in M^*\} \cup \{(r_1, m), (r_2, n), ...: m \neq n, m, n \in M^*\}$. Any two elements in $\{(r_1, n), (r_2, m), ...: m \neq n, m, n \in M^*\}$ are non adjacent. But $(r_1, 0)$ —(0, m)—(0, n)— $(r_2, 0)$. Then $diam(\Gamma(R(+)M)) = 3$.

Example 1.6. Consider the ring $\mathbb{Z}_5(+)\mathbb{Z}_5$. Then $diam(\Gamma(R(+)M)) = 1$. Since \mathbb{Z}_5 is an integral domain and \mathbb{Z}_5 is an \mathbb{Z}_5 -module, and there is no element in \mathbb{Z}_5^* such that r.m = 0, for any $m \in \mathbb{Z}_5^*$.

Example 1.7. Consider the ring $\mathbb{Z}(+)\mathbb{Z}_{18}$. Then $diam(\Gamma(R(+)M)) = 3$. Since \mathbb{Z} is an integral domain and \mathbb{Z}_{18} is an \mathbb{Z} -module, and there exists two elements $(r_1 = 2, r_2 = 9)$ in \mathbb{Z}^* such that 2.9 = 0, 9.2 = 0, $2.2 \neq 0$, $9.9 \neq 0$, $9, 2\epsilon Z_{18}^*$, then (2,0)-(0,9)-(0,2)-(9,0).

Example 1.8. Consider the ring $\mathbb{Z}(+)\mathbb{Z}_5$. Then $diam(\Gamma(R(+)M)) = 2$. Since \mathbb{Z} is an integral domain and \mathbb{Z}_5 is an \mathbb{Z} -module, and there exists $5 \in \mathbb{Z}$ and 5.3 = 0, $3 \in \mathbb{Z}_5$. And for all $r \in \mathbb{Z}$, r.3 = 0.

References

- [1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra, 217 (1999), 434 447.
- [2] M. Axtell and J. Stickles, Zero-divisor graphs of idealizations, Journal of Pure and Applied Algebra, 204 (2006), 235 - 243.
- [3] I. Beck, Coloring of a commutative ring, J. Algebra, 116 (1988), 208 226.
- [4] S. Ebrahimi Atani and Z. Ebrahimi Sarvandi, Zero-divisor graphs of idealizations with respect to prime modules, Int. J. Contemp. Math. Sciences, 2 (26) (2007), 1279 1283.
- [5] J. Huckaba (1988), Commutative rings with zero divisors, in Monographs Pure Applied Mathematics, Marcel Dekker, Basel, New York.

Department of Mathematics, Philadelphia University, Amman, Jordan $E\text{-}mail\ address:}$ mlabadi@philadelphia.edu.jo