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SUBSETTING AND IDENTIFICATION OF OPTIMAL MODELS IN 
GENERALIZED BILINEAR TIME SERIES MODELLING * 

 
 

J. F. OJO AND  D. K. SHANGODOYIN 
 

 

ABSTRACT: Significant efforts have been made to study the theory of bilinear time 
series models, especially simple bilinear (BL) models. Much less efforts, however, have 
been made to identify optimal models in generalized bilinear models. Focus on optimal 
model identification; this study attempts to fill this gap. Full and subset generalized 
bilinear (SGBL) models are proposed and shown to be robust in achieving stationarity for 
all non-linear series. The parameters of the proposed models are estimated using robust 
nonlinear least square method and Newton-Raphson iterative method, and statistical 
properties of the derived estimates are investigated. An algorithm is proposed to 
eliminate redundant parameters from full order generalized bilinear models.. 

 
 

1. Introduction 
Building probability models for time series data is an important activity that 

enables a statistician to understand the underlying random mechanisms generating 
the series. Better still, it provides invaluable assistance in forecasting the future. 
Linear time series, such as the autoregressive (AR) models, have been widely and 
successfully used in many fields. This is mainly because these models can be easily 
analyzed and provide fairly good approximations of the underlying random 
mechanisms of numerous real-life time series.   

Nevertheless, in some situations linear time series models may be insufficient 
in explaining the underlying random mechanisms. This is, for instance, the case with 
sunspot data and the Canadian lynx data set. Linear time series models cannot 
adequately describe them, and the test proposed by Subba Rao and Gabr (1980) does 
confirm that linear Gaussian models fail to describe the above series. Thus a natural 
alternative that suggests itself is nonlinear models. Undoubtedly, the nonlinear time 
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series models are more complex than linear ones for several reasons. These are 
difficult parameter estimation of these models; intricate studying of statistical 
properties of most nonlinear models and sampling distribution of the estimates; and 
lastly, difficult evaluation of optimal forecasts for several steps in the future from 
these models. Yet despite these problems it seems reasonable to expect that in many 
situations nonlinear time series model should work better than a linear time series 
one.  

Special nonlinear models considered by Granger and Andersen (1978) and 
Subba Rao (1981) are known as bilinear (BL) time series models. Providing a good 
fit, this class of time series has been found useful in many areas of biological 
sciences, ecology and engineering (e.g., Bruni et al. 1974). Thus many researchers 
have studied various bilinear models (e.g., Pham and Tran 1981, Gabr and Subba 
Rao 1981, Rao et al. 1983, Liu 1992, Cathy 1997, Gonclaves et al. 2000, 
Shangodoyin and Ojo 2003, Wang and Wei 2004, Boonchai and Eivind 2005, Bibi 
2006, Doukhan et al. 2006, Drost et al. 2007, Usoro and Omekara 2008). This wide 
use and usefulness notwithstanding, optimal models have not yet been identified for 
this class of models. Another problem is that various models from this class could 
not achieve stationarity for all nonlinear series. Rao et al. (1983) gave a set of 
sufficient conditions for the existence of a strictly stationary stochastic process 
conforming to the following bilinear model: 

1 1 1

p p q

t j t j ij t i t j t
i i j

X a X b X e e− − −
= = =

= + +∑ ∑∑
, denoted as BL(p, 0, p, q)  

where p is the order of the autoregressive component, and p, q is the order of 
the nonlinear component. a1, a2, …., ap  are the parameters of the autoregressive 
component and b11, b22, …., bpq  are the parameters of the nonlinear component 

In this paper, we extend the work of Rao et al. (1983) to the proposed 
generalized bilinear models which are capable of achieving stationarity for all 
nonlinear series; this is an important improvement over other bilinear time series 
models. Many models also characterize the proposed models, as we shall see in 
section 2. 

In addition, bilinear time series are characterized by too many parameters, 
some of which are close to zero. In the proposed models, we address this problem by 
employing the concept of subsetting. Subsetting helps remove these redundant 
parameters, thereby leading to so-called subset bilinear models. Gabr and Subba Rao 
(1981) worked on subset bilinear models and tested all the subsets of the best order 
of the full bilinear model before selecting the best subset. In this paper, subsetting 
concept is introduced to the proposed generalized bilinear model to determine its 
usefulness in achieving a better model. 
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2. Proposed generalized bilinear time series models 
 

We define generalized bilinear (BL) time series models as follows: 
Model 1(M1) 

tltkt

r

k

s

l
klt

d
t eeXbXBXB ++∇= −−

= =
∑∑

1 1
)()( φψ , denoted as BL (p, d, 0, r, s) 

 where  p
p BBBB φφφφ −−−= .......1)( 2

21  and 

tstrtrsttdptdptt eeXbeXbXXX ++++++= −−−−−−+− .............. 111111 ψψ          (2.1) 
 pφφ ,...,1  are the parameters of the autoregressive component; rsbb ,,.........11  are the 

parameters of the nonlinear component and )(Bφ is the autoregressive operator.  

Model 2 (M 2) 

ltkt

r

k

s

l
kltt

d
t eXbeBXBXB −−

= =
∑∑++∇=

1 1
)()()( θφψ , denoted as BL (p, d, q, r, s) 

where p
p BBBB φφφφ −−−= .......1)( 2

21 , q
q BBBB θθθθ −−−= .........1)( 2

21  and 

  strtrsttqtqttdptdptt eXbeXbeeeXXX −−−−−−−−+− +++−−−+++= ................... 11111111 θθψψ   

                                                                                                                 (2.2) 
pφφ ,...,1  are the parameters of the autoregressive component; qθθ ,...1  are the 

parameters of the associated error process; rsbb ,,.........11  are the parameters of the 

non-linear component and )(Bθ is the moving average operator.  

 The associated generalized subset bilinear models are denoted as SBL (p, d, 
0, r, s) and SBL (p, d, q, r, s).They are represented by M3 and M4 respectively. 

  In the models above, p is the order of the autoregressive component; q is the 
order of the moving average process; r, s is the order of the nonlinear component and 

)()( BB dφψ ∇=  is the generalized autoregressive operator; d∇ is the differencing 
operator and d is the degree of consecutive differencing required to achieve stationarity. 
et are independently and identically distributed as N (0, 2

eσ ) and the models are 
assume to be invertible. 

In model 2, elements of 2q – 1 subsets when q = 3 were used to characterize the 
model as follows: M2: {F1= BL (p, 1, (1), r, s), F2= BL (p, 1, (1, 2) r, s) and F3= BL 
(p, 1, (1, 2, 3) r, s).The same thing was done for SBL (p, d, q, r, s). This is necessary 
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to see whether we shall achieve optimality in the full model other than testing all 
elements of the subsets. For M1, M2, M3 and M4 and at different levels of t optimal 
models are of great necessity especially in the forecasting of future values. 

 

3. Stationarity and Convergence of Generalized Bilinear Models 
 

In this section, we give a sufficient condition for the existence of strictly stationary 
process and convergence conforming to the bilinear model (2.1). This we do through 
the following theorem. 
 

Theorem 

Let { }Ztet ∈, be a sequence of independent identically distributed random variables 

defined on a probability space ( )PF,,Ω  such that E et = 0 and ∞<= 22 σtEe .LetΨ , 

B1, B2,….,Bq be q+1 matrices each of order p x p and 
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1

1  

)],( jj BB ⊗+     j = 2,3,……s. 

Suppose all the eigenvalues of the matrix 
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have moduli less than unity, i.e, .1)( <= λρ L  Let 
1px

C   be a given column vector. 

Then there exists a vector valued strictly stationary process { }ZtX t ∈, conforming to 

the vector form of generalized bilinear model tjtjt

s

j
jtt ee CXBXX ++Ψ= −−

=
− ∑

1
1 for 

every t in Z. 
Proof of theorem is given in the Appendix. 
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Description of Algorithm for Fitting Full and Subset Generalized Bilinear Models 

For the sake of simplicity, we will break the algorithm down into the 

following steps: 

Step 1 
Fit various order of autoregressive model of the form                                                                                     

tdptdptt eXXX +++= −−+− ψψ ......11  
 
Step 2 
Choose the model for which Akaike Information Criterion (AIC) is minimum among 
various order fitted in step 1. 
 
Step 3 
Fit possible subsets of chosen model in step 2 using 12 −q  subsets approach Hagan 
and Oyetunji (1980).  
 
Step 4 
Choose the model for which AIC is minimum among the fitted models in step 3 to 
have the best subset model. 
 
Step 5 
Fit various order of the generalized bilinear model of the 
form tstrtrsttdptdptt eeXbeXbXXX ++++++= −−−−−−+− .............. 111111 ψψ   

and choose the model for which AIC is minimum 
 
Step 6 
Fit possible subsets of chosen model in step 5 using  12 −q  subsets approach 
Shangodoyin and Ojo (2003). 
 
Step 7 
The model with the minimum AIC is the best subset generalized bilinear model. 
 

Estimation of the Parameters of Generalized Bilinear Models Proposed 

The joint density function of ),....,,( 1 nmm eee +  where m = max (r, s) is given by 

)
2
1exp(

)2(
1 2

22/)1(2 ∑−+−

n

m
t

e
mn

e

e
σπσ
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Since the Jacobian of transformation from ),....,,( 1 nmm eee +  to ),....,,( 1 nmm XXX + is 
unity, the likelihood function of ),....,,( 1 nmm XXX +  is the same as the joint density 
function of ),....,,( 1 nmm eee + . Maximising the likelihood function is the same as 
minimizing the function )(GQ , where         

∑
=

=
n

mi
teGQ 2
,)(                                                  (3.1) 

with respect to the parameter ),....,;,....,,;,....,( 11211
'

rsqp BBG θθθψψ=  
 Then the partial derivatives of Q(G) are given by 
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= 2)(
                    (i = 1, 2,…..,R)         (3.2) 
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where these partial derivatives of e(t) satisfy the recursive equations  
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         (i=0,1,2,…,p ; ki =1,2,…,r; mi=1,2,…,s)             (3.8)  
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 (k=1,2,…,r ; mi =1,2,…,s), it follows that the 

second order derivatives with respect to iψ (i = 0, 1, 2, …, p) and iθ   (i = 0, 1, 2, …, 
q) are zero. For a given set of values {φi}, { iθ } and {Bij } one can evaluate the first 
and second order derivatives using the recursive equations 3.3, 3.4,  3.5 and 3.11.  
Now let: 

kd
dQ

d
dQ

d
dQ

G
G

G
G

G
GGV )(,........,)(,)()(

21

' =  

and let ]/)([)( 2
jiddQd GGGGH =  be a matrix of second partial derivatives as in 

Krzanowski (1998). Expanding V(G), near GG ˆ= in a Taylor series, we obtain 
)ˆ)(()(0)ˆ( ˆ GGGHGVGV GG −+==

=                                  (3.12) 

  Rewriting this equation we get ),()(ˆ 1 GVGHGG −−=−  and thus obtain an iterative 
equation given by )()( )()(1)()1( kkkk GVGHGG −+ −= where )(kG  is the set of 
estimates obtained at the kth stage of iteration. The estimates obtained by the above 
iterative equations usually converge. For starting the iteration, we need to have good 
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sets of initial values of the parameters. This is done by fitting the best subset of the 
linear part of the bilinear model. 

  

Estimation of the Parameters of Generalized Subset Bilinear Model Proposed 

In the estimation procedure to be discussed in this section we assume that the 
sets of integers },...,,{ 21 lkkk and { })(),....,,(),,( 2211 mmsrsrsr are fixed and known. 
Proceeding as in Subba Rao (1981), we can show that maximizing the likelihood 
function of ),...,,( 111 Nmm XXX +  is the same as minimizing the function 
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as is done in Marquardt algorithm. Expanding )ˆ(θG  near θθ =ˆ  in a Taylor series, 
we obtain ).ˆ)(()(0 θθθθ −+= HG  

Rewriting this equation , we get )()()ˆ( 1 θθθθ GH −−=− and thus obtain the Newton-
Raphson iterative equation 

)()( )()(1)()1( kkkk GH θθθθ −+ −=  

)()( )()(1)1()( kkkk GH θθθθ −+ +=    (3.13) 

where )(kθ  is the set of estimates obtained at the kth stage of iteration. For 
starting the iteration, we need to have good sets of initial values of the parameters. 
This is done by fitting the best subset of the linear part of the bilinear model.  

 

4. Numerical example: The Wolfer sunspot data 
To present the application of the models proposed, we will use a real time 

series dataset, the Wolfer sunspot, available in Box et al. (1994). The scientists track 
solar cycles by counting sunspots – cool planet-sized areas on the Sun where intense 
magnetic loops poke through the star’s visible surface. It was Rudolf Wolf who 
devised the basic formula for calculating sunspots in 1848; these sunspot counts are 
still continued. 

As the Wolfer sunspot data set represent a non-stationary series, the bilinear 
models proposed in this paper may be applied. The Wolfer sunspot data set, available 
in Box et al. (1994), in this paper is considered at three levels, namely for t = 50, 150 
and 250. For the fitted model below we have used the algorithm and the estimation 
technique in the previous section. 
 
Fitted Model M1, M2, M3and M4 at t=50 
M1 
Xt = 0.314548Xt – 1 – 0.458429Xt – 2 – 0.302114Xt – 4 – 0.220568Xt – 5- 0.386159Xt – 6 – 0.002758Xt – 1et – 1 – 

0.020647Xt – 1et - 2- 0.018189Xt – 1et – 3 + 0.015317Xt – 2et – 1 + et  
M2; F1 
Xt=0.919317Xt – 1 – 0.567504Xt – 2 – 0.319398Xt –  5 – 0.813860et – 1 + 0.009533Xt – 1et – 1 – 0.009665Xt – 1et - 2 + 

et  

M2:F2 
Xt=0.441064Xt – 1 + 0.324866Xt – 2 – 0.513187Xt – 3 – 0.00648et – 1- 0.954833et – 2 + 0.002296Xt – 1et – 1 – 

0.005373Xt – 1et – 2 - 0.011546Xt – 1et – 3 + et  
 
M2:F3 
Xt = 0.872827Xt – 1 – 0.006059Xt – 2 – 0.528694Xt – 4 – 0.126321Xt – 5- 0.003146Xt – 6 – 0.964519et – 1 – 0.704614et 

– 2 + 0.884318et – 3 + 0.006249 
       Xt – 1et – 1 – 0.010149Xt – 1et – 2 + et  
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M3 
Xt =0.314548Xt – 1 – 0.458429Xt – 2 – 0.302114Xt – 4 – 0.220568Xt – 5- 0.386159Xt – 6 – 0.020351Xt – 1et – 2 – 

0.016095Xt – 1et – 3 + 0.013653Xt – 2et – 1 + et   

M4:S1 
Xt=0.919317Xt – 1 – 0.567504Xt – 2 – 0.319398Xt – 5 – 0.813860et – 1 + 0.009533Xt – 1et – 1 – 0.009665Xt – 1et – 2 + 

et   

M4:S2 
Xt=0.441064Xt – 1 + 0.324866Xt – 2 – 0.513187Xt – 3 – 0.000348et – 1 -0.954833et–2– 0.012641Xt – 1et – 3 + et   
 
M4:S3 
Xt =0.872827Xt – 1 – 0.006059Xt – 2 – 0.528694Xt – 3 + 0.069292Xt – 4- 0.126321Xt – 5 – 0.003146Xt – 6 – 

0.964519et – 1 – 0.704614et – 2+ 0.884318 
       et – 3 + 0.006249Xt - 1et – 1 + 0.010149Xt – 1et – 2 + et   
 

Fitted Model M1, M2, M3and M4 at t=150 
M1 
Xt = 0.412820Xt – 1 – 0.271125Xt – 2 – 0.270908Xt – 3 – 0.339150Xt – 5- 0.293320Xt – 7 + 0.000325Xt – 1et – 1 – 

0.020870Xt – 1et - 2- 0.002425Xt – 1et – 3 + 0.018075Xt – 2et – 1 + 0.009283Xt – 2et – 2 – 0.008691Xt – 2et – 3 – 
0.019234Xt – 3et – 1 – 0.007737Xt – 3et – 2 + et  

M2:F1 
Xt =0.905337Xt – 1 – 0.509454Xt – 2 – 0.107803Xt – 3 – 0.007407Xt – 4 - 0.215636Xt – 5 - 0.152380Xt – 7 – 0.588895et 

– 1 + 0.002609Xt – 1et – 1 - 0.014157Xt – 1et – 2 + 0.005213Xt – 1et – 3 - 0.009930Xt – 2et – 1 + 0.005389Xt – 2et – 2 
– 0.011513Xt – 2et – 3 – 0.023710Xt – 3et – 1 -0.008035Xt – 3 

                et – 2 + et  

M2:F2 
Xt =0.667154Xt – 1 – 0.299180Xt – 3 – 0.199718Xt – 5 – 0.330045et – 1- 0.404780et – 2 + 0.001675Xt – 1et - 1 – 

0.016864Xt - 1et – 2 + 0.004643Xt – 1et – 3 + 0.013121Xt – 2et – 1 + 0.006690Xt – 2et – 2 - 0.010201Xt – 2et – 3 - 
0.024090Xt – 3et – 1 – 0.008779Xt – 3et – 2 + et  

M2:F3 
Xt =0.217421Xt – 1 + 0.172224Xt – 3 – 0.518088Xt – 4 – 0.218600Xt – 5- 0.135334Xt – 6 - 0.269434Xt – 7  + 0.630377et 

- 1 – 0.119139et – 2 - 0.763971et – 3 + 0.002651Xt – 1et – 1 - 0.002651Xt – 1et – 1 - 0.015220Xt – 1et – 2 + 
0.001332Xt – 1et – 3 + 0.010671Xt – 2et – 1 + 0.007194Xt – 2et – 2 – 0.008443 

            Xt – 2et – 3 – 0.018346Xt – 3et – 1 -0.007363Xt – 3et – 2 + et  

M3 
Xt =0.412820Xt – 1 – 0.271125Xt – 2 – 0.270908Xt – 3 – 0.339150Xt – 5- 0.293320Xt – 7 – 0.021157Xt – 1et – 2 + 

0.018650Xt – 2et – 1 +  0.009595Xt – 2et – 2  - 0.009477Xt – 2et – 3 – 0.021380Xt – 3et – 1-0.008220Xt – 3et – 2 + et   

M4:S1 
Xt =0.905337Xt – 1 – 0.509454Xt – 2 – 0.107803Xt – 3 – 0.007407Xt – 4- 0.215636Xt – 5 – 0.152380Xt – 7 - 0.588895et 

– 1 + 0.004558Xt – 1et – 1 - 0.005999Xt – 1et – 2 – 0.011735Xt – 2et – 3 - 0.013501Xt – 3et – 1 + et   

M4:S2 
Xt=0.667154Xt – 1 – 0.299180Xt – 3 – 0.199718Xt – 5 – 0.330045et – 1 -0.404780et–2 – 0.018617Xt – 1et – 2 + 

0.015930Xt – 2et – 1 + 0.007861Xt – 2et – 2 – 0.008252Xt – 2et – 3 – 0.022099Xt – 3et – 1- 0.008791Xt – 3et – 2 + et   
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M4:S3 
Xt  =0.217421Xt – 1 + 0.172224Xt – 3 – 0.518088Xt – 4 – 0.218600Xt – 5- 0.135334Xt – 6 – 0.269434Xt – 7 + 

0.630377et – 1 - 0.763971et – 3 – 0.017434 
            Xt – 1et – 2 + 0.014963Xt – 2et – 1 + 009280Xt – 2et – 2 - 0.007589Xt – 2et – 3 – 0.019788Xt – 3et – 1 - 0.008451Xt – 

3et – 2 + et   
 
Fitted Model M1, M2, M3and M4 at t=250 
M1 
Xt =- 0.239576Xt – 2 - 0.361665Xt – 3 – 0.238746Xt – 4 – 0.325416Xt – 5- 0.328627Xt – 6 - 0.209789Xt – 7  - 

0.365561Xt - 8 + 0.000633Xt - 1et – 1 - 0.010392Xt - 1et – 2 + 0.007590Xt – 1et – 3 + 0.005443Xt – 2et – 1 + 
0.000716Xt – 2et – 2 - 0.005326Xt – 2et – 3 - 0.013130Xt – 3et – 1 + et  

M2:F1 
Xt    = - 0.239520Xt – 2 - 0.361508Xt – 3 – 0.238305Xt – 4 – 0.325330Xt – 5- 0.328543Xt – 6 - 0.210276Xt – 7  - 

0.364294Xt - 8 + 0.053173et – 1 + 0.000401Xt - 1et – 1 - 0.010942Xt – 1et – 2 + 0.007079Xt – 1et – 3 + 
0.005241Xt – 2et – 1 + 0.001086Xt – 2et – 2 - 0.005791Xt – 2et – 3 – 0.013665 

                Xt – 3et - 1 + et  

M2:F2 
Xt  =- 0.049537Xt – 1 - 0.032572Xt – 2 – 0.413331Xt – 3 – 0.226474Xt – 4- 0.285681Xt – 5 - 0.319814Xt – 6  - 

0.183383Xt - 7 - 0.307067Xt – 8 + 0.0944981et – 1 - 0.237065et – 2 + 0.000278Xt – 1et – 1 - 0.010284Xt – 2et – 2 + 
0.007103Xt – 1et – 3 + 0.005506Xt – 2et – 1 + 0.001455Xt – 2et - 2 – 0.005354Xt – 2et – 3 – 0.014110Xt – 3et – 1 + et  

M2:F3 
Xt   = - 0.712478Xt – 1 - 0.153047Xt – 2 + 0.032479Xt – 3 – 0.606080Xt – 4- 0.351330Xt – 5 - 0.422284Xt – 6  - 

0.407042Xt - 7 - 0.311950Xt – 8 + 0.809607et – 1 - 0.048903et – 2 - 0.673588et – 3 + 0.000174Xt – 1et – 1 - 
0.012392Xt – 1et – 2 - 0.000523 + 0.008372Xt – 2et – 1 + 0.002290Xt – 2et - 2 – 0.004130Xt – 2et – 3 – 
0.010699Xt – 3et – 1 + et  

M3 
Xt    = -0.239576Xt – 2 + 0.361665Xt – 3 – 0.238746Xt – 4 – 0.325416Xt – 5- 0.328627Xt – 6 – 0.209789Xt – 7 - 

0.365561Xt – 8 - 0.009014Xt - 1et – 2 + 0.006529Xt – 1et – 3 + 0.004016Xt – 2et – 1 – 0.005079Xt – 2et – 3 -
0.012555Xt – 3et – 1 + et   

 
M4:S1 
Xt =- 0.239520Xt – 2 - 0.361508Xt – 3 – 0.238305Xt – 4 – 0.325330Xt – 5- 0.328543Xt – 6 – 0.210276Xt – 7 - 

0.364294Xt – 8 + 0.053173et – 1 - 0.006248 
        Xt – 1et – 2 + 0.005958Xt – 1et – 3 – 0.004798Xt – 2et – 3 - 0.011294Xt – 3et – 1 + et   

M4:S2 
Xt    = - 0.049537Xt – 1 - 0.032572Xt – 2 – 0.413331Xt – 3 – 0.226474Xt – 4- 0.285681Xt – 5 – 0.319814Xt – 6 - 

0.183383Xt – 7 + 0.307067Xt – 8 + 0.094498et – 1 - 0.237065et – 2 – 0.005259Xt – 1et – 2 + 0.006275Xt – 3et – 3 
– 0.004352Xt – 2et – 3 – 0.011644Xt – 3et – 1 + et   

M4:S3 
Xt    = - 0.712478Xt – 1 - 0.153047Xt – 2 + 0.032479Xt – 3 – 0.606080Xt – 4- 0.351330Xt – 5 – 0.422284Xt – 6 - 

0.407042Xt – 7 - 0.311950Xt – 8 + 0.809607et – 1 - 0.048903et – 2 – 0.673588et – 3 - 0.005131Xt – 1et – 2 -
0.003221Xt – 2et – 3 – 0.007347Xt – 3et – 1 + et   
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The derived statistics from the above fitted models are given in table1, table 2 and 

table 3 below. 

 
Table1. Goodness of fit of four generalized bilinear models at t = 50. Four models 
are compared, namely M1: BL(P, 1, 0, r, s), M2:{F1= BL(P, 1, [1], r, s), F2= BL(P, 
1, [1,2], r, s), and F3= BL(P, 1, [1,2,3], r, s)} M3: SBL(P, 1, 0, r, s), M4:{S1= 
SBL(P, 1, [1], r, s), S2= SBL(P, 1, [1,2], r, s), and S3= SBL(P, 1, [1,2,3], r, s)}. All 
models are significant at P<0.001. 
 

Full Bilinear Subset bilinear 
M2 M4 

 
   M1 

 F1 F2 F3 
   M3 

 S1 S2 S3 
Residual 
Variance 
 
AIC(Akaike 
Inf. Criterion) 
  
BIC 
(Bayesian Inf. 
Criterion) 
  
R2 
 
Adjusted  
R2 
 
F(Statistic) 

 
250.20 
 
8.52 
 
 
8.68 
 
 
0.58 
 
 
0.55 
 
20.93 

 
243.0 
 
8.39 
 
 
8.47 
 
 
0.60 
 
 
0.59 
 
71.24 

 
216.93 
 
8.32 
 
 
8.43 
 
 
0.64 
 
 
0.63 
 
42.02 

 
180.78 
 
8.10 
 
 
8.18 
 
 
0.69 
 
 
0.68 
 
180.78 

 
253.32 
 
8.49 
 
 
8.59 
 
 
0.57 
 
 
0.56 
 
31.79 

 
242.99 
 
8.39 
 
 
8.47 
 
 
0.60 
 
 
0.59 
 
71.24 

 
224.03 
 
8.27 
 
 
8.31 
 
 
0.63 
 
 
0.62 
 
82.35 

 
179.08 
 
8.07 
 
 
8.17 
 
 
0.70 
 
 
0.69 
 
111.49 

 

From table 1, M1, M2, M3 and M4 were compared at t = 50. The residual 
variance of M2 at F3 (180.78) is greater than the residual variance of M4 at S3 
(179.08). Therefore, the impact of the elements of 23-1 is negligible and testing all 
possible subsets to have the best subsets is the best approach here. The optimal 
model here is M4 at S3.Comparing M1, M2, M3 and M4, M4 at S3 (179.08) emerge 
as the optimal model. 
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Table2. Goodness of fit of four generalized bilinear models at t = 150. Four models 
are compared, namely M1: BL(P, 1, 0, r, s), M2:{F1= BL(P, 1, [1], r, s), F2= BL(P, 
1, [1,2], r, s), and F3= BL(P, 1, [1,2,3], r, s)} M3: SBL(P, 1, 0, r, s), M4:{S1= 
SBL(P, 1, [1], r, s), S2= SBL(P, 1, [1,2], r, s), and S3= SBL(P, 1, [1,2,3], r, s)}. All 
models are significant at P<0.001. 
 

 Full Bilinear Subset bilinear 
M2 M4 

 
   M1 

 F1 F2 F3 
   M3 

 S1 S2 S3 
Residual 
Variance 
 
AIC(Akaike 
Inf. Criterion) 
 
BIC 
(Bayesian Inf. 
Criterion) 
 
 R2 
 
Adjusted 
R2 
 
F(Statistic) 

 
193.20 
 
8.21 
 
 
8.36 
 
 
0.61 
 
 
0.59 
 
31.18 

 
185.20 
 
8.16 
 
 
8.32 
 
 
0.62 
 
 
0.60 
 
33.51 

 
184.70 
 
8.13 
 
 
8.21 
 
 
0.63 
 
 
0.61 
 
30.72 

 
193.40 
 
8.20 
 
 
8.36 
 
 
0.61 
 
 
0.59 
 
31.22 

 
193.30 
 
8.18 
 
 
8.30 
 
 
0.61 
 
 
0.59 
 
44.12 

 
192.10 
 
8.14 
 
 
8.25 
 
 
0.61 
 
 
0.60 
 
75.81 

 
186.0 
 
8.14 
 
 
8.22 
 
 
0.62 
 
 
0.60 
 
47.34 

 
194.20 
 
8.18 
 
 
8.30 
 
 
0.60 
 
 
0.59 
 
43.97 

 
From table 2, M1, M2, M3 and M4 were compared at t = 150. In this table the 

residual variances of M2 at F1 (185.20), F2 (184.70) and F3 (193.40) are less than 
the residual variance of M4 at S1 (192.10), S2 (186.0) and S3 (194.20) respectively. 
With this, impact of the elements of 23-1 is pronounced and testing all possible 
subsets to have the best subsets is not necessary. The optimal model is M2 at F2 
(184.70). Comparing M1, M2, M3 and M4, the optimal model is M2 at F2. 
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Table3. Goodness of fit of four generalized bilinear models at t = 250. Four models 
are compared, namely M1: BL(P, 1, 0, r, s), M2:{F1= BL(P, 1, [1], r, s), F2= BL(P, 
1, [1,2], r, s), and F3= BL(P, 1, [1,2,3], r, s)} M3: SBL(P, 1, 0, r, s), M4:{S1= 
SBL(P, 1, [1], r, s), S2= SBL(P, 1, [1,2], r, s), and S3= SBL(P, 1, [1,2,3], r, s)}. All 
models are significant at P<0.001. 
 

Full Bilinear Subset bilinear 
M2 M4 

 
   M1 

 F1 F2 F3 
   M3 

 S1 S2   S3 
Residual 
Variance 
 
AIC(Akaike 
Inf. Criterion) 
  
BIC 
(Bayesian Inf. 
Criterion) 
 
R2 
 
Adjusted 
R2 
 
F(Statistic) 

 
285.50 
 
8.55 
 
 
8.65 
 
 
0.55 
 
 
0.54 
 
49.29 

 
279.0 
 
8.53 
 
 
8.62 
 
 
0.56 
 
 
0.55 
 
51.35 

 
277.40 
 
8.49 
 
 
8.60 
 
 
0.57 
 
 
0.56 
 
42.0 

 
293.70 
 
8.57 
 
 
8.62 
 
 
0.54 
 
 
0.53 
 
47.0 

 
285.80 
 
8.54 
 
 
8.61 
 
 
0.55 
 
 
0.54 
 
74.0 

 
281.40 
 
8.51 
 
 
8.56 
 
 
0.55 
 
 
0.54 
 
101.96 

 
279.50 
 
8.50 
 
 
8.55 
 
 
0.56 
 
 
0.55 
 
103.30 

 
300.10 
 
8.57 
 
 
8.61 
 
 
0.53 
 
 
0.52 
 
136.91 

 
  
From table 3, M1, M2, M3 and M4 were compared at t = 250. In this table the 

residual variances of M2 at F1 (279.0), F2 (277.40) and F3 (293.7) are less than the 
residual variance of M4 at S1 (281.4), S2 (279.5) and S3 (300.1) respectively. With 
this, impact of the elements of 23-1 is pronounced and testing all possible subsets to 
have the best subsets is not necessary. The optimal model is M2 at F2 (277.4). 
Comparing M1, M2, M3 and M4, the optimal model is M2 at F2. 

 
In the three tables, the optimal models identified gave us the highest R-squared 

as well as the adjusted R-squared. In addition, the optimal models identified have the 
minimum Akaike information criterion and Bayesian information criterion. Figures 1 
and 2 in the appendix gave us a clear picture of the optimal models as we could see 
that the minimum point of the graph depict the lowest residual variance bringing our 
conclusion to the same as what was obtainable in tables 1, 2 and 3. 
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5. Conclusion 

This study focused on generalized bilinear models that could handle all non-
linear series. Bilinear models at different levels of sample sizes were considered 
using the non-linear real series. At each level, optimal models were identified. The 
optimal models identified attained stationarity. Furthermore, the subsetting concept 
introduced to the generalized bilinear model helped at arriving at optimal model for 
different sample sizes. 

Moreover, estimation of parameters has witnessed a unique, consistent and 
convergent estimator that has prevented the models from exploding, thereby making 
stationarity possible. The introduction of the d factor in our models has made us to 
capture trend and seasonality in the data, which in turn helps arrive at stationarity 
easily for any time series data set. 

 

Appendix 
The proof of the theorem from section 3 for the sake of simplicity is carried out in 
the following steps: 
 
Step 1 
Let the process { }Ztntn ∈,,,S  be defined as follows:    

,...)( ,22,221,11, ststsnsttnttntttn eBeBeBCeS −−−−−−−−− ++++Ψ+= SSS  if n>0 for every t in Z. 
We show that tnn ,lim S∞→  exists almost surely for every t in Z. If tX  is the almost 
sure limit of { }1,, ≥ntnS  for every t in Z, then it is obvious that the process 

},{ Ztt ∈X  conforms to the bilinear model (2.1). It is also easy to check that for 
every fixed n in Z, { }Zttn ∈,,S  is a strictly stationary process. 
 
Step 2 
Let  .,,1,, Zttntntn ∈−= −SSs  We show that 2/

, )( n
itn KE λ≤s for every 0≥n  and i = 1, 

2, ….,p, where K is a positive constant. Since ,1<λ  this then implies that { }1,, ≥ntnS  
converges almost surely for every t in Z. (If }1{ , ≥nan is a sequence of real numbers 
satisfying n

nn Kaa λ≤− −1 for every 2≥n for some positive constant K and ,1<λ  
then it is easy to show that }1{ , ≥nan is a Cauchy sequence of real numbers.) 
 



16            J. F. OJO AND D. K. SHANGODOYIN 
  
 

  

Step 3 
First, we settle the question of integrability of the stn

,
,s . Note that 

tntntn ,1,, −−= SSs  
 = ststsnsttntnt eBeBeB −−−−−−−−− ++++Ψ ,22,221,111 ......)( sss  
 = ntntttn eeeQ −−−− ,021 ),.....,,( s  = ,),.....,,( 21 ntntttn CeeeeQ −−−−  
where ),.....,,( 21 ntttn eeeQ −−−  is a matrix  of order p x p and each entry of this matrix 
is a polynomial  in nttt eee −−− ,.....,, 21  in which  the power index of each jte − is either 0 
or 1. Consequently, every entry in ),.....,,( 21 ntttn eeeQ −−− and hence in tn,s is 
integrable. It is clear that distribution of tn,s does not depend on t. 
 
Step 4 
It is convenient to deal with the following processes. Define 
 =*

,tns  ,),.....,,( 21 CeeeQ ntttn −−−   if n > 0 for every t in Z. Equivalently, ,*
,, nttntn e −= ss   

n, Zt∈ . 
From the remark made regarding the sQn

'(.)  in step 3, it is obvious that every entry 

in *
,tns  is square integrable. Further, it is easy to check that stn

'*
,s satisfy the following 

equation. 
ststsnsttntnttn eBeBeB −−−−−−−−− ++++Ψ= *

,2
*

2,22
*

1,111
*

, ....)( ssss                               (A1) 
for every n, t in Z. Also, the distribution of *

,tns  does not depend on t, since the 

set
' are independently identically distributed. Since nttntn e −= *

,, ss for all n and t in Z. 

ntitnitn eEE −= )()( *
,, ss 2

122
12*

, )()))((( ntitn EeE −≤ s  2
12*

, )))((( itnE sσ≤  

for every i = 1, 2, ……,p. It suffices to obtain an upper bound for 2*
, ))(( itnE s for 

every i = 1,2,…,p and n, t in Z. For this we evaluate ,)( *
,

*
, ntntn ME =⊗ ss  say 

 
Step 5 
Let *

1,1111 )( −−−+Ψ= tnteBD s  and  ittnii eBD −−−= *
1,1s  for i =  2, 3, …, s. 

}{}{)()( 12222111
11

*
,

*
, DDDDDDDDDD

s

i
i

s

i
itntn ⊗+⊗+⊗+⊗=⊗=⊗ ∑∑

==

ss  

     ......}{ 1323333231 +⊗+⊗+⊗+⊗+⊗+ DDDDDDDDDD  

        .
1

1

1

1 ⎭
⎬
⎫

⎩
⎨
⎧

⊗+⊗+⊗+ ∑∑
−

=

−

=

s

i
isss

s

i
si DDDDDD           (A2) 

We evaluate the expectation of each expression within each set of brackets {}in (A2) 
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Step 6 
We write ).))(()(( *

1,1
*

1,1111111 −−−−−− ⊗+Ψ⊗+Ψ=⊗ tntntt eBeBDD ss  
Since *

1,1 −− tns  is a function of *
1,132 ,,...,, −−−−− tnnttt eee s  and 1−te  are independently 

distributed. So, 
.))((()( 1111

2
11 −Γ=⊗+Ψ⊗Ψ=⊗ nMBBDDE σ  

 
Step 7 
Expanding ,*

1,1 −− tns  we obtain 
))())((( *

2,2
*

2,222211121 −−−−−−− ⊗⊗+Ψ+Ψ=⊗ tntnttt eBeBeBDD ss  
 ++⊗⊗+Ψ+ −−−−−−− ...))()(( *

2,23
*

3,322211 tnttntt eBeBeB ss  
 ).)()(( *

2,21
*

1,12211 −−−−−−−−−− ⊗⊗+Ψ tnststsnstt eBeBeB ss  
Therefore, 221

2
21 ))(()( −⊗Ψ=⊗ nMBBDDE σ  

 
In a similar fashion, we can show that 212

2
12 ))(()( −Ψ⊗=⊗ nMBBDDE σ  

and 222
2

22 )()( −⊗=⊗ nMBBDDE σ .Consequently, the expected value of the entire 
expression in the second set of such brackets 
is .))()(( 222222112

2
−− Γ=⊗+⊗Ψ+Ψ⊗ nn MMBBBBBBσ  

 
Step 8: Pursuing ideas similar to those used in step 7, we can show that the expected 
value of the entire expression in the third set of such brackets in (A2) is 

.))()(( 3333321
2

21
2

3
2

−Γ=⊗+⊗Ψ+Ψ+Ψ+Ψ⊗ nMBBBBBBBBσ  
 
Step 9: The expectations of other expressions can be evaluated analogously. Finally, 

we obtain
  

in

s

i
itntnn MEM −

=
∑Γ=⊗=

1

*
,

*
, )( ss

 
for all n. 

Step 10 
Since )( *

,
*

, tntnn EM ss ⊗= , we have 
  n

itn KE λ'2*
, ))(( ≤s   

where 1)( <= λρ L  and 'K  is a positive constant.  
),( 11

2
1 BB ⊗+Ψ⊗Ψ=Γ σ  

 
___________________________________________________________________ 

For any two matrices )( ijdD =  and  )( ijpP =  of orders nm×  and sr ×  respectively, we denote the 

Kronecker product of D and P by PD⊗  Neudecker (1969).   
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Figure 1: Residual Variance at t = 50, 150 and 250 for Generalized Bilinear Models 
 

 
Figure 2: Residual Variance at t = 50, 150 and 250 for Generalized Subset Bilinear 

Models 
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