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SUBSETTING AND IDENTIFICATION OF OPTIMAL MODELSIN
GENERALIZED BILINEAR TIME SERIESMODELLING =

J. F.OJOAND D. K. SHANGODOYIN

ABSTRACT: Significant efforts have been made to study the theory of bilinear time
series models, especially smple bilinear (BL) models. Much less efforts, however, have
been made to identify optimal models in generalized bilinear models. Focus on optimal
model identification; this study attempts to fill this gap. Full and subset generalized
bilinear (SGBL) models are proposed and shown to be robust in achieving stationarity for
al non-linear series. The parameters of the proposed models are estimated using robust
nonlinear least square method and Newton-Raphson iterative method, and statistical
properties of the derived estimates are investigated. An algorithm is proposed to
eliminate redundant parameters from full order generalized bilinear models..

1. Introduction

Building probability models for time series data is an important activity that
enables a statistician to understand the underlying random mechanisms generating
the series. Better still, it provides invaluable assistance in forecasting the future.
Linear time series, such as the autoregressive (AR) models, have been widely and
successfully used in many fields. This is mainly because these models can be easily
analyzed and provide fairly good approximations of the underlying random
mechanisms of numerous real-life time series.

Nevertheless, in some situations linear time series models may be insufficient
in explaining the underlying random mechanisms. Thisis, for instance, the case with
sunspot data and the Canadian lynx data set. Linear time series models cannot
adequately describe them, and the test proposed by Subba Rao and Gabr (1980) does
confirm that linear Gaussian models fail to describe the above series. Thus a natural
aternative that suggests itself is nonlinear models. Undoubtedly, the nonlinear time
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series models are more complex than linear ones for severa reasons. These are
difficult parameter estimation of these models; intricate studying of statistical
properties of most nonlinear models and sampling distribution of the estimates; and
lastly, difficult evaluation of optimal forecasts for severa steps in the future from
these models. Y et despite these problems it seems reasonable to expect that in many
situations nonlinear time series model should work better than a linear time series
one.

Specia nonlinear models considered by Granger and Andersen (1978) and
Subba Rao (1981) are known as bilinear (BL) time series models. Providing a good
fit, this class of time series has been found useful in many areas of biological
sciences, ecology and engineering (e.g., Bruni et al. 1974). Thus many researchers
have studied various bilinear models (e.g., Pham and Tran 1981, Gabr and Subba
Rao 1981, Rao et a. 1983, Liu 1992, Cathy 1997, Gonclaves et a. 2000,
Shangodoyin and Ojo 2003, Wang and Wei 2004, Boonchai and Eivind 2005, Bibi
2006, Doukhan et a. 2006, Drost et a. 2007, Usoro and Omekara 2008). This wide
use and usefulness notwithstanding, optima models have not yet been identified for
this class of models. Another problem is that various models from this class could
not achieve stationarity for all nonlinear series. Rao et a. (1983) gave a set of
sufficient conditions for the existence of a strictly stationary stochastic process
conforming to the following bilinear mode!:

p P g
X;=2aX +>.>hX &, +8
i=1

==t , denoted as BL(p, O, p, Q)
where p is the order of the autoregressive component, and p, q is the order of
the nonlinear component. ai, ay, ..., 8 are the parameters of the autoregressive

component and by, by, ...., by are the parameters of the nonlinear component

In this paper, we extend the work of Rao et a. (1983) to the proposed
generalized bilinear models which are capable of achieving stationarity for all
nonlinear series; this is an important improvement over other bilinear time series
models. Many models also characterize the proposed models, as we shall see in
section 2.

In addition, bilinear time series are characterized by too many parameters,
some of which are close to zero. In the proposed models, we address this problem by
employing the concept of subsetting. Subsetting helps remove these redundant
parameters, thereby leading to so-called subset bilinear models. Gabr and Subba Rao
(1981) worked on subset bilinear models and tested all the subsets of the best order
of the full bilinear model before selecting the best subset. In this paper, subsetting
concept is introduced to the proposed generalized bilinear model to determine its
usefulness in achieving a better model.
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2. Proposed generalized bilinear time series models
We define generalized bilinear (BL) time series models as follows:
Model 1(M1)
w(B)X, =¢(B)V'X,+> > b, X &, +¢,denoted asBL (p, d, 0, 1, 9)

k=1 I=1

where ¢(B) =1-¢,B - ¢,B......—¢,B" and

X =W X gt W g X o 0 X168+, +b X, e+ (2.1)
..., ae the parameters of the autoregressive component; by, ......... b are the

parameters of the nonlinear component and ¢(B) is the autoregressive operator.

Model 2 (M 2)

w(B)X, = ¢(B)V*X, +0(B)e +§2bm X, & ,denotedasBL (p, d, q,T,9)

where ¢(B) =1-¢,B—¢,B%....... ;¢_po, 0(B)=1-6,B-6,B%......... -6,B and
X=X gt ot W g X g 6 =08 — = 0,6 o+, X 16 5+ +b X, &,

(2.2
¢, 4, are the parameters of the autoregressive component; 6,,..6, are the

parameters of the associated error process; b,,......... b, are the parameters of the
non-linear component and &(B) is the moving average operator.

The associated generalized subset bilinear models are denoted as SBL (p, d,
0,r,s)and SBL (p, d, q, r, 5).They are represented by M3 and M4 respectively.

In the models above, p is the order of the autoregressive component; g is the
order of the moving average process; r, sisthe order of the nonlinear component and
w(B) = V'¢(B) is the generalized autoregressive operator; V¢ is the differencing
operator and d is the degree of consecutive differencing required to achieve stationarity.
e are independently and identically distributed as N (0,5) and the models are
assume to beinvertible.

In model 2, elements of 29— 1 subsets when ¢ = 3 were used to characterize the
model asfollows: M2: {F1=BL (p, 1, (1), r,s), F2=BL (p, 1, (1, 2) r, s) and F3= BL
(p, 1, (1, 2, 3) 1, 5).The same thing was done for SBL (p, d, g, r, S). Thisis necessary
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to see whether we shall achieve optimality in the full model other than testing all
elements of the subsets. For M1, M2, M3 and M4 and at different levels of t optimal
models are of great necessity especially in the forecasting of future values.

3. Stationarity and Conver gence of Generalized Bilinear Models

In this section, we give a sufficient condition for the existence of strictly stationary
process and convergence conforming to the bilinear model (2.1). This we do through
the following theorem.

Theorem
Let {g,t € Z}be asequence of independent identically distributed random variables
defined on a probability space (Q,F,P) suchthat Ee=0and Ee’ =0’ <o .Let'P,
B1, Ba,....,Bq be g+1 matrices each of order p x p and
I,=Y®V¥+0c%B,®B),
I =c?B, ®W "B +¥'?B, +...+ ¥YB, )
+(W''B + V!B, +..+ ¥B, ;) ® B,

+(B,®B))], i=23....s

Suppose al the eigenvalues of the matrix

L T, o r, T,
I, 0 ... 0O O

L — p
p?qx p’q 0 Ip2 0 0
0O O I, O

have moduli less than unity, i.e, p(L)=4<1. Let Cl be a given column vector.
pX

Then there exists a vector valued strictly stationary process {Xt te Z} conforming to

the vector form of generalized bilinear model X, = ¥X, JFZBJ.Xt_J.eI_j + Ce, for
j=1
everytinZ.
Proof of theorem is given in the Appendix.
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Description of Algorithm for Fitting Full and Subset Generalized Bilinear M odels
For the sake of simplicity, we will break the algorithm down into the
following steps:

Step 1
Fit various order of autoregressive model of the form
X, =@ X+ +¥ o thpfd +€

Step 2
Choose the model for which Akaike Information Criterion (AIC) is minimum among
various order fitted in step 1.

Step 3
Fit possible subsets of chosen model in step 2 using 29 -1 subsets approach Hagan
and Oyetunji (1980).

Step 4
Choose the model for which AIC is minimum among the fitted models in step 3 to
have the best subset model.

Step 5
Fit various order of the generadlized bilinear model of the
formX, =y, Xy + oo 40 g X g B X8 + e +b X e .+¢

and choose the model for which AIC is minimum
Step 6

Fit possible subsets of chosen model in step 5 using 2%-1 subsets approach
Shangodoyin and Ojo (2003).

Step 7
The model with the minimum AIC is the best subset generalized bilinear model.

Estimation of the Parameters of Generalized Bilinear M odels Proposed

The joint density function of (e,,€,,,....,€,) wherem =max (r, s) isgiven by

1 1 &,
(272'0'2)("7””1)/2 exp(_ 20_5 %Q )
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Since the Jacobian of transformation from(e,,,€,,.;,...,€,) t0 (X, X 1wy X,,) IS
unity, the likelihood function of (X, , X, .;,...., X,,) IS the same as the joint density

function of (e,,€,.;,---€,) . Maximising the likelihood function is the same as
minimizing the function Q(G) , where

QG =) ¢ (3.2)
with respect to the parameter G' = (..., ;;60,,6,,..,045Byy .y B)
Then the partial derivatives of Q(G) are given by
dQ(G) L de .
——=2>e— =12,.....R 3.2
G >e i ( ) (32)

d’QG) <& _ dg dg & d’g
dGdG, (Z dG, dG, ;ne‘deG)

where these partial derivatives of e(t) satisfy the recursive equations

g—e‘+iV\4(t)—ileH = | 1, ifi=o0
i j=1 i
Xei ifi=1,2....p (3.3)
de ZW(t) =g, if i=12...q (3.4)
i j=1
ZW (t) L= X, & (k=12,...r;m=12,..9 (3.5
dam*i j=1 da<m|
dZe d?
dy dy. ZW (t)dwqd =0(i,i'=0, 1,2, ..., p) (3.6)
i i j=1 i
s 2
ded +> W, d0d0 =0 (i,i'=0,1,2,...,9 (3.7)
j=1
2 s 2
de[ +ZW(t) e[] det—m':O

+ Xk
dy,dB, j=1 dB,,;d¢, dy,



SUBSETTING AND IDENTIFICATION OF OPTIMAL MODELS

IN GENERALIZED BILINEAR TIME SERIES MODELLING 7
(i=0,1,2,...,p; ki =1,2,...,r; m=1,2,...,9) (3.8)
s 2 d2e[ _
+Y W, + X, —m =0
dz9d|3<ml = d&mde dé,
(i=1,2,...,.9; ki =1,2,...,r; m=1,2,...,9) (3.9)
S Zq .
) 3.10
d d49 JZ; dl//idl9i ( )
s d’e_; . d?%e .
dq w +Xt—kd Cm _ thdetm
dB,,dB,, “= dBkml dB dB, dB,.,
(k, kK'=1,2,....r;mm =12,...,9) (3.11)
Wj (t) = Zl Bij Xt—j
]:

Weassumee =0(t =1, 2, ..., m-1) and also

2 3
de _o 98 _o 98 5 Gj=12..Rt=12 ... ml)
dG, dGdG, ' d’Gd%G,

2 3
Frome =0 ( =1, 2, ..., m1l), d& =0, d’s =0, Zd—e‘Z:O, and
dG, dG,dG, d°G,d°G,

W t =-X k=1,2,...r; m =12...,9), it follows that the
dam,‘ ; ()dam t—kQ—m ( r m )

second order derivatives with respectto v, (i=0, 1,2, ...,p)and & (i=0,1,2, ...,
q) are zero. For a given set of values{ i}, { 6} and {Bjj} one can evauate the first

and second order derivatives using the recursive equations 3.3, 3.4, 3.5and 3.11.
Now let:

dQ(G) dQ(G) dQ(G)

4G, : 4G, presrenes , aG.

V'(G) =

and let H(G) :[sz(G)/dGide] be a matrix of second partial derivatives as in

Krzanowski (1998). Expanding V(G), near G=Gin a Taylor series, we obtain
V(G)s, =0=V(G)+H(G)(G-G) (3.12)

Rewriting this equation we get G—G = —H }(G)V(G), and thus obtain an iterative
equation given by G*? =G® —H G )V(G*)where G¥ s the set of

estimates obtained at the k™ stage of iteration. The estimates obtained by the above
iterative equations usually converge. For starting the iteration, we need to have good
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sets of initial values of the parameters. This is done by fitting the best subset of the
linear part of the bilinear model.

Estimation of the Parameters of Generalized Subset Bilinear M odel Proposed

In the estimation procedure to be discussed in this section we assume that the
sets of integers {k,K,,...k}and {(r,,s),(r,,S,),....,(r,S,)} are fixed and known.
Proceeding as in Subba Rao (1981), we can show that maximizing the likelihood
function of (X, ;, Xy Xy) IS the same as minimizing the function

N
Q(6) = Y &” with respect to the parameters (v, W\, ¥y B v ¢ ) -

t=mil

The partial derivatives of Q(6) are

G - 90 3 de

' de, & tde
2 N N 2
hij :mzzz ﬁ d_et _,_zze[_d_et’
dode, F\do ) do, & dgdo,
where the partial derivatives satisfy the recursive equations
m d N
de[ = xt—k _Zbr-s xt—r Ll(r =l2,3,...,|)
dy, oy
dq i det—sv
=-X -Y'b X, , —*
dbrqsq t—r, eI Sq ; I’JSJ t—l’J dbrqsq
In the calculation of these partial derivatives, weset € =e, =...=¢e,, =0 and
do _de _  _%w _g6-12..R)
do. dé, dé.

Let G'(0) =(G,,G,,....Gg) and H(9) = (h)).

In evaluating the second order partia derivatives we approximate

h = 2;[3_2)(3_2)
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as is done in Marquardt algorithm. Expanding G(é) near =6 in a Taylor series,
we obtain 0= G(8) + H (8)(0 - 0).

Rewriting this equation , we get (6 — 6) = —H "(6)G(6) and thus obtain the Newton-
Raphson iterative equation

0(k+1) — e(k) —-H *l(g(k))G(H(k))
0% = 0% 1 H1(9W)G(0Y) (3.13)

where 0% is the set of estimates obtained at the k™ stage of iteration. For
starting the iteration, we need to have good sets of initial values of the parameters.
Thisis done by fitting the best subset of the linear part of the bilinear model.

4. Numerical example: The Wolfer sunspot data

To present the application of the models proposed, we will use a real time
series dataset, the Wolfer sunspot, available in Box et a. (1994). The scientists track
solar cycles by counting sunspots — cool planet-sized areas on the Sun where intense
magnetic loops poke through the star’s visible surface. It was Rudolf Wolf who
devised the basic formula for calculating sunspots in 1848; these sunspot counts are
still continued.

As the Wolfer sunspot data set represent a non-stationary series, the bilinear
models proposed in this paper may be applied. The Wolfer sunspot data set, available
in Box et a. (1994), in this paper is considered at three levels, namely for t = 50, 150
and 250. For the fitted model below we have used the algorithm and the estimation
technique in the previous section.

Fitted Model M1, M2, M3and M4 at t=50
M1
X = 0.314548X; _; — 0.458429X; _, — 0.302114X; _ 4 — 0.220568X; _5- 0.386159X; _ s — 0.002758X; _ 16 _ 1 —
0.020647X,_16;. o~ 0.018189X;_ 163 + 0.015317X;_,6_1 + &
M2; F1
X=0.919317X_; — 0.567504X_, — 0.319398X_ 5 — 0.813860g,_; + 0.009533X;_16_1 — 0.009665X_ 16, +
&

M2:F2

X=0.441064X; _ ; + 0.324866X; _ , — 0.513187X; _ 3 — 0.00648¢, _ ;- 0.954833¢, _ , + 0.002296X; _ 16 _ 1 —
0.005373X;_16 - - 0.011546X;_16 3+ &

M2:F3
X; = 0.872827X;_1 —0.006059X; _, — 0.528694X; _, — 0.126321X; _5- 0.003146X;_g — 0.964519¢, _, — 0.704614¢,
_»+0.884318¢ _5 + 0.006249
Xi-16_1—0.010149X;_1&_>+t &
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M3
X =0.314548X; _ ; — 0.458429X; _, — 0.302114X; _ 4 — 0.220568X; _ 5- 0.386159X; _¢ — 0.020351X; _,6 _, —
0.016095X; _16 _3 + 0.013653X;_,6_1 + &

M4:S1
X=0.919317X;_1 — 0.567504X;_, —0.319398X,_5 —0.813860¢;_; + 0.009533X;_1€; 1 — 0.009665X;_16 -, +
&

M4.S2
X=0.441064X,_1 + 0.324866X;_, — 0.513187X;_3—0.000348¢,_; -0.954833e_,—0.012641X;_.&_3+ &

M4:S3

X; =0.872827X; _ 1 — 0.006059X; _ » — 0.528694X; _ 3 + 0.069292X; _ ,- 0.126321X; _ 5 — 0.003146X; _ g —
0.964519¢, _; — 0.704614¢, _,+ 0.884318
e_3+0.006249X; .16 _1 + 0.010149X;_1&_> + &

Fitted Model M1, M2, M3and M4 at t=150

M1
X = 0.412820X, _, — 0.271125X; _, — 0.270908X; _ 3 — 0.339150X; _5- 0.293320X, _ 7 + 0.000325X;_ 16, _1 —
0.020870X; _ 16, . - 0.002425X; _ 16, _3 + 0.018075X_ 6 _1 + 0.009283X; _,€ _, — 0.008691X; _6 _3 —
0.019234X;_36,_1 —0.007737X_36_, + &
M2:F1
X¢=0.905337X;_1 — 0.509454X; _, — 0.107803X; _3 — 0.007407X; _4 - 0.215636X;_5 - 0.152380X;_7 — 0.588895¢
_1 +0.002609X;_16 _1 - 0.014157X;_1& _, + 0.005213X;_16 _3 - 0.009930X;_,€e _1 + 0.005389X;_,e _,
—0.011513X; _ 6 _3 —0.023710X, _36 _; -0.008035X; _3
&_2t&

M2:F2

X¢ =0.667154X; _ 1 — 0.299180X; _ 3 — 0.199718X; _ 5 — 0.330045¢, _ ;- 0.404780¢; _ , + 0.001675X;_16 .1 —
0.016864X; . 16—, + 0.004643X; _ 16 _ 3 + 0.013121X; _,& _; + 0.006690X; _,€ _, - 0.010201X; _,€ _3 -
0.024090X; _ 361 — 0.008779X;_36_2 + &

M2:F3

X =0.217421X,_; + 0.172224X;_3 — 0.518088X; _ 4 — 0.218600X; _5- 0.135334X;_¢ - 0.269434X;_; + 0.630377¢,
.1 — 0.119139¢, _, - 0.763971e, _ 3 + 0.002651X; _ ;& _ 1 - 0.002651X; _ ;& _; - 0.015220X;_1& _, +
0.001332X;_16 -3 + 0.010671X;_,e 1 + 0.007194X; _ € _, — 0.008443
Xi_26-3—0.018346X;_36 _1 -0.007363X;_36_2 + &

M3

X =0.412820X; _ ; — 0.271125X; _, — 0.270908X; _ 3 — 0.339150X; _ 5~ 0.293320X; _ 7 — 0.021157X; _ 16 _, +
0.018650X;_,6 1 + 0.009595X;_,6 _, - 0.009477X; _ 26 _3—0.021380X; 36 _1-0.008220X; 36, + &

M4:S1

X =0.905337X;_; — 0.509454X; _, — 0.107803X,_3 — 0.007407X; _ 4- 0.215636X;_5 — 0.152380X; _7 - 0.588895¢,
_1+0.004558X;_;6_1- 0.005999X;_;6 _, —0.011735X;_,6 _3- 0.013501X;_36_; + &

M4:S2
X=0.667154X;_; — 0.299180X;_3—0.199718X; _5 —0.330045¢, ., -0.404780e._, — 0.018617X; _ & _ , +
0.015930X; _ 261 + 0.007861X; _ 6 _, — 0.008252X; _ &, _3 — 0.022099X; _36 _1- 0.008791X;_z6_, + &
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M4:S3

Xi =0.217421X; _ 1 + 0.172224X; _ 3 — 0.518088X; _ 4 — 0.218600X; _ 5~ 0.135334X, _ ¢ — 0.269434X; _; +
0.630377¢,_, - 0.763971e,_3;—0.017434
Xi_16_2 + 0.014963X;_»e _1 + 009280X; _,e _5 - 0.007589X; _,e _3 — 0.019788X;_3e_1 - 0.008451X; _
-2+ &

Fitted Model M1, M2, M3and M4 at t=250

M1

X, =~ 0.239576X; _ , - 0.361665X, _ 3 — 0.238746X, _ 4 — 0.325416X, _ 5 0.328627X; _ ¢ - 0.209789X; _ -
0.365561X; . g + 0.000633X; . 16 _ 1 - 0.010392X; . 16 _ , + 0.007590X; _ 16 _ 3 + 0.005443X; _ -6 _1
0.000716X;_ 6 _» - 0.005326X;_ 6 _3 - 0.013130X;_36,_1 + &

+

M2:F

Xy = - 0.239520X;_, - 0.361508X; _ 3 — 0.238305X; _ 4, — 0.325330X, _5- 0.328543X,_¢ - 0.210276X;_; -
0.364294X; . g + 0.053173¢, _ ; + 0.000401X; . ;& _; - 0.010942X; _ & _, + 0.007079X; _ & _3 +
0.005241X;_ .6 _1 + 0.001086X;_,€ _, - 0.005791X;_,e _3 —0.013665
Xi-3&-1+ &

M2:F2

X =- 0.049537X; _; - 0.032572X; _ , — 0.413331X; _ 3 — 0.226474X; _ 4~ 0.285681X; _5 - 0.319814X; _¢ -
0.183383X;.7 - 0.307067X;_g + 0.0944981e, _, - 0.237065€; _, + 0.000278X;_,6 _; - 0.010284X;_,6 _, +
0.007103X;_,& _3 + 0.005506X; _ 2€; — 1 + 0.001455X; _,€; ., — 0.005354X; 56,3 —0.014110X;_z6_; + &

M2:F3

X¢ = - 0.712478X, -1 - 0.153047X;_, + 0.032479X; _ 3 — 0.606080X; _ 4~ 0.351330X; _5 - 0.422284X; _¢ -
0.407042X; . 7 - 0.311950X; _g + 0.809607¢; _; - 0.048903¢, _, - 0.673588¢; _3 + 0.000174X;_16 _1 -
0.012392X; _ 16 _ , - 0.000523 + 0.008372X; _ .6 _; + 0.002290X; _ & . , — 0.004130X; _ & _3 —
0.010699X;_36 -1 + &

M3

X¢ = -0.239576X;_, + 0.361665X; _ 3 — 0.238746X; _ 4 — 0.325416X; _s- 0.328627X;_s — 0.209789X; _7 -
0.365561X; _g - 0.009014X;. 16 _, + 0.006529X; _ 16 _3 + 0.004016X; _ 6 _; — 0.005079X;_ € _3 -
0.012555X;_36 -1 + &

M4:S1

Xi =- 0.239520X; _ , - 0.361508X; _ 3 — 0.238305X; _ 4 — 0.325330X; _ 5~ 0.328543X; _ ¢ — 0.210276X; _ 7 -
0.364294X,_g + 0.053173¢, _; - 0.006248
Xi—168_2 + 0.005958X;_,6 _3—0.004798X;_,€ _3 - 0.011294X; _s6_; + &

M4:S2

Xi = - 0.049537X;_; - 0.032572X; _, — 0.413331X; _ 3 — 0.226474X, _ .~ 0.285681X;_5 — 0.319814X; _¢ -
0.183383X;_7 + 0.307067X;_g + 0.094498e, _, - 0.237065¢; _, — 0.005259X; _ 16 _, + 0.006275X;_36 _3
—0.004352X;_,6,_3—0.011644X;_36_1+ &

M4:S3

Xi = - 0.712478X;_; - 0.153047X;_, + 0.032479X; _ 3 — 0.606080X; _ 4- 0.351330X;_5 — 0.422284X; _¢ -

0.407042X; _7 - 0.311950X; _g + 0.809607¢; _, - 0.048903¢, _, — 0.673588¢; _ 3 - 0.005131X;_16 _> -
0.003221X;_,6_3—0.007347X;_se_1+ &
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The derived statistics from the above fitted models are given in tablel, table 2 and
table 3 below.

Tablel. Goodness of fit of four generalized bilinear models at t = 50. Four models
are compared, namely M1: BL(P, 1, 0, r, s), M2:{F1=BL(P, 1, [1], r, S), F2= BL(P,
1, [12],r, 9, and F3= BL(P, 1, [1,23], 1, 9} M3: SBL(P, 1, O, r, 5), M4:{S1=
SBL(P, 1, [1], 1, 5), S2= SBL(P, 1, [1,2], 1, s), and S3= SBL(P, 1, [1,2,3], 1, 9)}. All
models are significant at P<0.001.

Full Bilinear Subset bilinear
M1 M2 M3 M4
F1 F2 F3 S1 2 S3

Residual
Variance 25020 243.0 21693 180.78 253.32 24299 224.03 179.08

AlCakake  8.52 8.39 8.32 8.10 8.49 8.39 8.27 8.07

Inf. Criterion)

BIC 868 847 843 818 859 847 831 817
(Bayesian Inf.
Criterion)
R2 058 060 064 069 057 060 063 070
Adjusted
R? 055 059 063 068 056 059 062 069

F(Statistic) 2093 7124 4202 180.78 31.79 7124 8235 11149

From table 1, M1, M2, M3 and M4 were compared at t = 50. The residual
variance of M2 at F3 (180.78) is greater than the residual variance of M4 at S3
(179.08). Therefore, the impact of the elements of 2°-1 is negligible and testing all
possible subsets to have the best subsets is the best approach here. The optimal
model here is M4 at S3.Comparing M1, M2, M3 and M4, M4 a S3 (179.08) emerge
as the optimal model.
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Table2. Goodness of fit of four generalized bilinear models at t = 150. Four models
are compared, namely M1: BL(P, 1, O, r, s), M2:{F1= BL(P, 1, [1], r, 5), F2= BL(P,
1, [12],r, 9, and F3= BL(P, 1, [1,23], 1, 9} M3: SBL(P, 1, O, r, 5), M4:{S1=
SBL(P, 1, [1], 1, 5), S2= SBL(P, 1, [1,2], 1, S), and S3= SBL(P, 1, [1,2,3], 1, 9)}. All
models are significant at P<0.001.

Full Bilinear Subset bilinear
M1 M2 M3 M4
F1 F2 F3 S1 S2 S3

Residual
Variance 19320 18520 184.70 19340 19330 192.10 186.0 194.20

AlCpkake 8.21 8.16 8.13 8.20 8.18 8.14 8.14 8.18

Inf. Criterion)

BIC 836 832 821 836 830 825 822 830
(Bayesian Inf.
Criterion)
R 061 062 063 061 061 061 062 060
Adjusted
R 059 060 061 059 059 060 060 059

F(Statistic) 31.18 3351 30.72 3122 4412 7581 4734 4397

Fromtable 2, M1, M2, M3 and M4 were compared at t = 150. In this table the
residual variances of M2 at F1 (185.20), F2 (184.70) and F3 (193.40) are less than
the residua variance of M4 at S1 (192.10), S2 (186.0) and S3 (194.20) respectively.
With this, impact of the elements of 2°-1 is pronounced and testing all possible
subsets to have the best subsets is not necessary. The optima model is M2 at F2
(184.70). Comparing M1, M2, M3 and M4, the optimal model isM2 at F2.
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Table3. Goodness of fit of four generalized bilinear models at t = 250. Four models
are compared, namely M1: BL(P, 1, 0, r, s), M2:{F1=BL(P, 1, [1], r, S), F2= BL(P,
1, [12],r, 9, and F3= BL(P, 1, [1,23], 1, 9} M3: SBL(P, 1, O, r, 5), M4:{S1=
SBL(P, 1, [1], 1, 9), S2= SBL(P, 1, [1,2], 1, s), and S3= SBL(P, 1, [1,2,3], 1, S)}. All
models are significant at P<0.001.

Full Bilinear Subset bilinear
M1 M2 M3 M4
F1 F2 F3 S1 oY S3

Residual
Variance 28550 279.0 27740 293.70 28580 28140 279.50 300.10

AlCakake  8.55 8.53 8.49 8.57 8.54 8.51 8.50 8.57

Inf. Criterion)

BIC 865 862 860 862 861 856 855 861
(Bayesian Inf.
Criterion)
R? 055 056 057 054 055 055 056 053
Adjusted
R? 0.54 0.55 0.56 0.53 0.54 0.54 0.55 0.52

F(Statistic) 49.29 51.35 420 47.0 74.0 101.96 103.30 136.91

From table 3, M1, M2, M3 and M4 were compared at t = 250. In this table the
residual variances of M2 at F1 (279.0), F2 (277.40) and F3 (293.7) are less than the
residual variance of M4 at S1 (281.4), S2 (279.5) and S3 (300.1) respectively. With
this, impact of the elements of 2°-1 is pronounced and testing all possible subsets to
have the best subsets is not necessary. The optimal model is M2 at F2 (277.4).
Comparing M1, M2, M3 and M4, the optimal model isM2 at F2.

In the three tables, the optimal models identified gave us the highest R-squared
as well as the adjusted R-squared. In addition, the optimal models identified have the
minimum Akaike information criterion and Bayesian information criterion. Figures 1
and 2 in the appendix gave us a clear picture of the optima models as we could see
that the minimum point of the graph depict the lowest residual variance bringing our
conclusion to the same as what was obtainable in tables 1, 2 and 3.
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5. Conclusion

This study focused on generalized bilinear models that could handle all non-
linear series. Bilinear models at different levels of sample sizes were considered
using the non-linear real series. At each level, optimal models were identified. The
optimal models identified attained stationarity. Furthermore, the subsetting concept
introduced to the generalized bilinear model helped at arriving at optimal model for
different sample sizes.

Moreover, estimation of parameters has witnessed a unique, consistent and
convergent estimator that has prevented the models from exploding, thereby making
stationarity possible. The introduction of the d factor in our models has made us to
capture trend and seasonality in the data, which in turn helps arrive at stationarity
easily for any time series data set.

Appendix

The proof of the theorem from section 3 for the sake of simplicity is carried out in
the following steps:

Step 1
Let the  process  {S,. nteZ} be  defined as  follows

S.=Ce+(¥Y+Be,)S, 1+B,S, ;. .,6,+..+BS, & if >0forevery tinZ.
We show thatlim, S, exists dmost surely for every tin Z. If X, is the amost
sure limit of {S, n>1} for every t in Z, then it is obvious that the process

{X,,teZ} conforms to the bilinear model (2.1). It is also easy to check that for
every fixedninz, {S,, te Z} isastrictly stationary process.

Step 2

Le(teps,Lt =S, - S, teZ. Weshow thatE[(s,,,); | < K2"'*for every n>0 and i = 1,
2, ....,.p, where K is a positive constant. Since 4 <1, this then impliesthat {S,, n>1]
converges amost surely for every tin Z. (If {a, n>1} is a sequence of rea numbers
satisfying |a, — a, ,| < KA"for every n>2for some positive constant K and 4 <1,
thenitis easy to show that {a, n>1} is a Cauchy sequence of real numbers.)
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Step 3
Fi re;t) we settle the question of integrability of the s ,'s. Note that
Snt =Snt —Shuy

=(Y + Bi& 1)Sy1p1 + BySpop 28 5 F e + BiSnoi-s8s

=Q, (61,8 51 € 1)S0n =Qn(E1,8 5 1€ ,)CEL
where Q, (e ;.6 ,,.....€_,) iSamatrix of order p x p and each entry of this matrix
isapolynomia in € ,,€ ,,.....,&_, inwhich the power index of each g_;iseither 0
or 1. Consequently, every entry in Q.(e.,,€ ,,....6_,) and hence in s, is
integrable. It is clear that distribution of s, does not depend on't.

Step 4
It is convenient to deal with the following processes. Define
s, = Q.(64,8,,.....6_,)C, if n>0 for every tin Z. Equivaently, s , =s,.e_,,

nteZ.
From the remark made regarding the Q. (.) s in step 3, it is obvious that every entry

in s, issquare integrable. Further, it is easy to check that s*m's&atisfy the following

equation.
Sn,'( = (\P + Blet—l)sn—l,t—l + BZSn—Z,t—Zet—Z t.o..+ Bssn—s,t—set—s (Al)

for every n, t in Z. Also, the distribution of s, does not depend on t, since the
e, sareindependently identically distributed. Since s,,, =s, e,_,foral nandtin Z.

El(s,).| = Els,) o] < (E(S,0)7) 2 (Be2,) 2 <o(E(s,).))
forevery i =1, 2, ...... ,p. It suffices to obtain an upper bound for E((s,,);)*for
everyi=12,...pandn,tinZ. Forthisweevauate E(s,, ®s,,)=M,, say

Step 5
Let D,=(¥+Be,)s,,,., ad D,=Bs, e, for i = 2 3 .. s

S ®5,,=(>.D,)®().D,)={D, ® D} +{D,®D, +D, ®D, + D, ®D}}
i=1 i=1

+{D,®D,+D,®D,+D,®D,; +D,®D, + D, ®D,} +......

s-1 s-1

+{2Di®DS+DS®DS+ZDS®Di}. (A2)
i=1 i=1

We evaluate the expectation of each expression within each set of brackets{}in (A2)
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Step 6
WewriteD, ® D, = ((¥ + B,&, ;) ® (¥ + B,& ;))(Sp 101 ®Sp144)-
Since s, ,,, is a function of e_,,e_;,...e_,,S,.,, and & are independently
distributed. So,

E(D,®D,) = (¥ ® ¥ +0%(B,®B)) =T }M, ,.

Step 7
Expanding s ,, ,, weobtain
D, ®D, = ((¥ + B )(¥ +Bi& ) ® B8 ,)(Sy 202 @S, 212)
+ (¥ + B161) ® B,€,)(BySy 51483 @ Spp ) ot
(¥ + B8 1) ® By 5)(B.Sy 1 iasErs ®Snaps)-
Therefore, E(D,® D,) = 6*((¥YB,) ® B,)M .,

In asimilar fashion, we can show that E(D, ® D,) = c*(B, ® (¥YB,))M, ,
and E(D, ® D,)=c?(B, ® B,)M,_,.Consequently, the expected value of the entire

expression in the second set of such brackets
isc?(B, ® (¥B,) +(¥B,)®B, +B,® B,)M, , =I,M_,.

Step 8: Pursuing ideas similar to those used in step 7, we can show that the expected
value of the entire expression in the third set of such bracketsin (A2) is

c%(B, ® (¥°B, + ¥B,) + (¥°B, + ¥B,) ® B, + B, ® B,) =T ,M ;.

Step 9: The expectations of other expressions can be evaluated analogously. Finaly,

weobtain M, =E(s,, ®s,,)= il‘i M, foraln.
Step 10 h
SinceM, =E(s,, ®s,,), wehave
E((sh)i)* <K A"
where p(L)=A<1and K isapositive constant.
I=Y®V¥+0c°(B,®B)),

For any two matrices D = (dij) and P = (pij) of orders IMX N and I X S respectively, we denote the

Kronecker product of D and P by D ® P Neudecker (1969).
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Figure 1: Residual Variance at t =50, 150 and 250 for Generalized Bilinear Models
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Figure 2: Residual Varianceat t = 50, 150 and 250 for Generalized Subset Bilinear
Models
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