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QUASI b−OPEN AND STRONGLY b−OPEN FUNCTIONS

JAMAL M. MUSTAFA

Abstract. In this paper we introduce b− open, b− closed, quasi b− open, quasi
b − closed, strongly b − open and strongly b − closed functions and investigate
properties and characterizations of these new types of functions.

1. Introduction

In 1996, Andrijevic [1] introduced the notion of b − open sets. This type of sets
discussed by El-Atik [3] under the name of γ − open sets. We continue to explore
further properties and characterizations of b − open, quasi b − open and strongly
b− open functions. We also introduce and study properties and characterizations of
b− closed, quasi b− closed and strongly b− closed functions.

Let A be a subset of a space (X, τ). The closure ( resp. interior ) of A will be
denoted by Cl(A) ( resp. Int(A) ).

A subset A of a space (X, τ) is called b− open [1] if A ⊆ Cl(Int(A))∪ Int(Cl(A)).
The complement of a b− open set is called a b− closed set. The union of all b− open
sets contained in A is called the b − interior of A, denoted by bInt(A) and the
intersection of all b− closed sets containing A is called the b− closure of A, denoted
by bCl(A). The family of all b− open ( resp. b− closed ) sets in (X, τ) is denoted by
BO(X) (resp. BC(X)).

A subset A of a space (X, τ) is called semi − open [4] if A ⊆ Cl(Int(A)). The
complement of a semi − open set is called semi − closed [2]. The family of all
semi−open ( resp. semi− closed ) sets in (X, τ) is denoted by SO(X) ( respectively
SC(X) ).

2000 Mathematics Subject Classification. Primary: 54C05, Secondary: 54C08 , 54C10 .
Key words and phrases. : b− open sets, b− open functions, b− closed functions, quasi b− open

functions, quasi b− closed functions, strongly b− open functions, strongly b− closed functions.
Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: July 23, 2009 Accepted: April 5, 2010.
21



22 JAMAL M. MUSTAFA

2. b−Open and b−Closed Functions

In this section we define the concept of b − open functions as a generalization of
open functions and investigate some properties of such functions.

Definition 2.1. A function f : (X, τ) → (Y, ρ) is called b− open if f(U) ∈ BO(Y )
for every open set U in X.

The following theorem follows immediately from the above definition.

Theorem 2.2. A function f : (X, τ) → (Y, ρ) is b − open if and only if for each
x ∈ X, and each open set U in X with x ∈ U , there exists a set V ∈ BO(Y )
containing f(x) such that V ⊆ f(U).

Theorem 2.3. Let f : (X, τ) → (Y, ρ) be b − open. If V ⊆ Y and C is a closed
subset of X containing f−1(V ), then there exists a set F ∈ BC(Y ) containing V such
that f−1(F ) ⊆ C.

Proof. Let F = Y − f(X − C). Then F ∈ BC(Y ). Since f−1(V ) ⊆ C, we have

f(X − C) ⊆ (Y − V ) and so V ⊆ F .
Also f−1(F ) = X − f−1[f(X − C)] ⊆ X − (X − C) = C. ¤
Theorem 2.4. A function f : (X, τ) → (Y, ρ) is b− open if and only if
f [Int(A)] ⊆ bInt[f(A)], for every A ⊆ X.

Proof. ⇒). Let A ⊆ X and x ∈ Int(A). Then there exists an open set Ux in X such
that x ∈ Ux ⊆ A. Now f(x) ∈ f(Ux) ⊆ f(A). Since f is b − open, f(Ux) ∈ BO(Y ).
Then f(x) ∈ bInt[f(A)]. Thus f [Int(A)] ⊆ bInt[f(A)].
⇐). Let U be an open set in X. Then by assumption, f [Int(U)] ⊆ bInt[f(U)].

Since bInt[f(U)] ⊆ f(U), f(U) = bInt[f(U)]. Thus f(U) ∈ BO(Y ).
So f is b− open. ¤

The equality in the last theorem need not be true as shown in the following example

Example 2.5. Let X = Y = {a, b}. Let τ be the indiscrete topology on X and ρ be
the discrete topology on Y . Then BO(X) = {φ,X, {a}, {b}} and BO(Y ) = ρ. Let
f : (X, τ) → (Y, ρ) be the identity function and A = {a}. Then f [Int(A)] = φ and
bInt[f(A)] = {a}.
Theorem 2.6. A function f : (X, τ) → (Y, ρ) is b− open if and only if
Int[f−1(B)] ⊆ f−1[bInt(B)], for every B ⊆ Y .

Proof. ⇒). Let B ⊆ Y . Then f [Int(f−1(B))] ⊆ f [f−1(B)] ⊆ B.
But f [Int(f−1(B))] ∈ BO(Y ) since Int[f−1(B)] is open in X and f is b − open.
Hence, f [Int(f−1(B))] ⊆ bInt(B). Therefore Int[f−1(B)] ⊆ f−1[bInt(B)].
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⇐). Let A ⊆ X. Then f(A) ⊆ Y . Hence by assumption, we obtain,
Int(A) ⊆ Int[f−1(f(A)] ⊆ f−1[bInt(f(A))]. Thus f [Int(A)] ⊆ bInt[f(A)], for every
A ⊆ X. Hence, by Theorem 2.4, f is b− open. ¤
Theorem 2.7. A function f : (X, τ) → (Y, ρ) is b− open if and only if
f−1[bCl(B)] ⊆ Cl[f−1(B)], for every B ⊆ Y .

Proof. ⇒). Assume that f is b − open and B ⊆ Y . Let x ∈ f−1[bCl(B)]. Then
f(x) ∈ bCl(B). Let U be an open set in X such that x ∈ U . Since f is b − open,
then f(U) ∈ BO(Y ). Therefore, B ∩ f(U) 6= φ. Then U ∩ f−1(B) 6= φ. Hence
x ∈ Cl[f−1(B)]. We conclude that f−1[bCl(B)] ⊆ Cl[f−1(B)] .
⇐). Let B ⊆ Y . Then (Y −B) ⊆ Y . By assumption,

f−1[bCl(Y −B)] ⊆ Cl[f−1(Y −B)].

This implies,

X − Cl[f−1(Y −B)] ⊆ X − f−1[bCl(Y −B)].

Hence

X − Cl[X − f−1(B)] ⊆ f−1[Y − bCl(Y −B)].

Now

X − Cl[X − f−1(B)] = Int[X − (X − f−1(B))] = Int[f−1(B)]

then we have Y − bCl(Y −B) = bInt[Y − (Y −B)] = bInt(B).
Then, Int[f−1(B)] ⊆ f−1[bInt(B)]. Now from Theorem 2.6, it follows that f is
b− open. ¤

Now we introduce b− closed functions and study certain properties of this type of
functions.

Definition 2.8. A function f : (X, τ) → (Y, ρ) is called b− closed if f(C) ∈ BC(Y )
for every closed set C in X.

Theorem 2.9. A function f : (X, τ) → (Y, ρ) is b− closed if and only if
bCl[f(A)] ⊆ f [Cl(A)] for every A ⊆ X.

Proof. ⇒). Let f be b − closed and let A ⊆ X. Then f [Cl(A)] ∈ BC(Y ). But
f(A) ⊆ f [Cl(A)]. Then bCl[f(A)] ⊆ f [Cl(A)].
⇐). Let A ⊆ X be a closed set. Then by assumption,

bCl[f(A)] ⊆ f [Cl(A)] = f(A). This shows that f(A) ∈ BC(Y ). Hence f is
b− closed. ¤
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Corollary 2.10. Let f : (X, τ) → (Y, ρ) be b − closed and let A ⊆ X. Then
bInt[bCl(f(A))] ⊆ f [Cl(A)].

Theorem 2.11. Let f : (X, τ) → (Y, ρ) be a surjective function. Then f is b−closed
if and only if for each subset B of Y and each open set U in X containing f−1(B),
there exists a set V ∈ BO(Y ) containing B such that f−1(V ) ⊆ U .

Proof. ⇒). Let V = Y − f(X − U). Then V ∈ BO(Y ). Since f−1(B) ⊆ U , we have

f(X − U) ⊆ Y −B and so B ⊆ V . Also,

f−1(V ) = X − f−1[f(X − U)] ⊆ X − (X − U) = U .

⇐). Let C be a closed set in X and y ∈ Y − f(C). Then,
f−1(y) ⊆ X − f−1(f(C)) ⊆ X − C and X − C is open in X. Hence by assumption,
there exists a set Vy ∈ BO(Y ) containing y such that f−1(Vy) ⊆ X − C. This
implies that y ∈ Vy ⊆ Y − f(C). Thus Y − f(C) = ∪{Vy : y ∈ Y − f(C)}. Hence
Y − f(C) ∈ BO(Y ). Thus f(C) ∈ BC(Y ). ¤
Definition 2.12. [3]. A function f : (X, τ) → (Y, ρ) is said to be b− continuous if
f−1(V ) ∈ BO(X) for every open set V in Y .

Theorem 2.13. Let f : (X, τ) → (Y, ρ) be a bijection. Then the following are
equivalent:

1) f is b− closed
2) f is b− open
3) f−1 is b− continuous

Proof. (1) → (2). Let U be an open subset of X. Then X − U is closed in X.
By (1), f(X − U) ∈ BC(Y ). But f(X − U) = f(X) − f(U) = Y − f(U). Thus
f(U) ∈ BO(Y ).

(2) → (3). Let U be an open subset of X. Since f is b− open
f(U) = (f−1)−1(U) ∈ BO(Y ). Hence f−1 is b− continuous.

(3) → (1). Let C be an arbitrary closed set in X. Then X−C is open in X. Since
f−1 is b− continuous, (f−1)−1(X − C) ∈ BO(Y ). But,

(f−1)−1(X − C) = f(X − C) = Y − f(C).

Thus, f(C) ∈ BC(Y ). ¤
Definition 2.14. [3]. A space X is called:

a) b− T1 if for each pair of distinct points x and y in X, there exist b− open sets
U and V of X containing x and y, respectively, such that y /∈ U and x /∈ V .

b) b−T2 if for each pair of distinct points x and y in X, there exist disjoint b−open
sets U and V of X such that x ∈ U , y ∈ V and U ∩ V = φ.
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Theorem 2.15. Let f : (X, τ) → (Y, ρ) be a b− open bijection. Then the following
hold

a) If X is T1 then Y is b− T1.
b) If X is T2 then Y is b− T2.

Proof. (a) Let y1 and y2 be any distinct points in Y . Then there exist x1 and x2 in X
such that f(x1) = y1 and f(x2) = y2. Since X is T1 there exist two open sets U and
V in X with x1 ∈ U , x2 /∈ U and x2 ∈ V , x1 /∈ V . Now f(U) and f(V ) are b− open
in Y with y1 ∈ f(U), y2 /∈ f(U) and y2 ∈ f(V ), y1 /∈ f(V ).

(b) Similar to (a). ¤
Definition 2.16. [3]. A space X is said to be b − compact (resp. b − Lindelöf) if
every b− open cover of X has a finite (resp. countable) subcover.

Theorem 2.17. Let f : (X, τ) → (Y, ρ) be a b− open bijection. Then the following
hold

a) If Y is b− compact, then X is compact.
b) If Y is b− Lindelöf , then X is Lindelöf .

Proof. (a) Let U = {Uα : α ∈ ∆} be an open cover of X. Then O = {f(Uα) : α ∈ ∆}
is a cover of Y by b− open sets in Y . Since Y is b− compact, O has a finite subcover
O
′

= {f(Uα1), f(Uα2), ..., f(Uαn)} for Y . Then U
′

= {Uα1 , Uα2 , ..., Uαn} is a finite
subcover of U for X.

(b) Similar to (a). ¤
Definition 2.18. [3]. A space X is said to be b − connected if it cannot be written
as a union of two non-empty disjoint b− open sets.

Theorem 2.19. If f : (X, τ) → (Y, ρ) is a b−open surjection and Y is b−connected
then X is connected.

Proof. Suppose that X is not connected. Then there exist two non-empty disjoint
open sets U and V in X such that X = U ∪ V . Then f(U) and f(V ) are non-empty
disjoint b− open sets in Y with Y = f(U) ∪ f(V ) which contradicts the fact that Y
is b− connected. ¤

3. Quasi b−Open and Quasi b−Closed Functions

Definition 3.1. A function f : (X, τ) → (Y, ρ) is said to be quasi b− open if f(U)
is open in Y for every U ∈ BO(X).

Clearly, every quasi b− open function is b− open.
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Definition 3.2. A subset A is called a b − neighborhood of a point x in X if there
exists a b− open set U such that x ∈ U ⊆ A.

Theorem 3.3. Let f : (X, τ) → (Y, ρ) be a function. then the following are equiva-
lent:

1) f is quasi b− open.
2) For any subset A of X we have f [bInt(A)] ⊆ Int[f(A)].
3) For any x ∈ X and any b− neighborhood U of x, there exists a neighborhood

V of f(x) in Y such that V ⊆ f(U).

Proof. (1) → (2). Let f be quasi b − open and A ⊆ X. Now we have Int(A) ⊆ A
and bInt(A) ∈ BO(X). Hence we obtain that f [bInt(A)] ⊆ f(A). Since f [bInt(A)]
is open, f [bInt(A)] ⊆ Int[f(A)].

(2) → (3). Let x ∈ X and U be a b − neighborhood of x in X. Then there exists
V ∈ BO(X) such that x ∈ V ⊆ U . Then by (2), we have,

f(V ) = f [bInt(V )] ⊆ Int[f(V )]

and hence f(V ) = Int[f(V )]. Therefore f(V ) is open in Y such that
f(x) ∈ f(V ) ⊆ f(U).

(3) → (1). Let U ∈ BO(X). Then for each y ∈ f(U), there exists a neighborhood
Vy of y in Y such that Vy ⊆ f(U). Since Vy is a neighborhood of y, there exists an
open set Wy in Y such that y ∈ Wy ⊆ Vy. Thus, f(U) = ∪{Wy : y ∈ f(U)} which is
an open set in Y . This implies that f is quasi b− open function. ¤
Theorem 3.4. A function f : (X, τ) → (Y, ρ) is quasi b − open if and only if
bInt[f−1(B)] ⊆ f−1[Int(B)] for every subset B of Y .

Proof. ⇒). Let B be any subset of Y . Then, bInt[f−1(B)] ∈ BO(X) and f is quasi

b− open, then f [bInt(f−1(B))] ⊆ Int[f(f−1(B))] ⊆ Int(B). Thus ,
bInt[f−1(B)] ⊆ f−1[Int(B)].
⇐). Let U ∈ BO(X). Then by assumption bInt[f−1(f(U))] ⊆ f−1[Int(f(U))]

then bInt(U) ⊆ f−1[Int(f(U))], but bInt(U) = U so U ⊆ f−1[Int(f(U))] and hence
f(U) ⊆ Int(f(U) so f is quasi b− open. ¤
Theorem 3.5. A function f : (X, τ) → (Y, ρ) is quasi b−open if and only if for any
subset B of Y and for any set C ∈ BC(X) containing f−1(B), there exists a closed
subset F of Y containing B such that f−1(F ) ⊆ C.

Proof. ⇒). Let f be quasi b− open and B ⊆ Y . Let C ∈ BC(X) with f−1(B) ⊆ C.
Now, put F = Y − f(X − C). It is clear that since f−1(B) ⊆ C, B ⊆ F . Since f is
quasi b− open, F is a closed subset of Y . Also, we have f−1(F ) ⊆ C.
⇐). Let U ∈ BO(X) and put B = Y − f(U). Then X − U ∈ BC(X) with

f−1(B) ⊆ X − U . By assumption, there exists a closed set F of Y such that B ⊆ F



QUASI b−OPEN AND STRONGLY b−OPEN FUNCTIONS 27

and f−1(F ) ⊆ X−U . Hence, we obtain f(U) ⊆ Y −F . On the other hand, it follows
that B ⊆ F , Y − F ⊆ Y − B = f(U). Thus, we have f(U) = Y − F which is open
and hence f is a quasi b− open function. ¤
Theorem 3.6. A function f : (X, τ) → (Y, ρ) is quasi b − open if and only if
f−1[Cl(B)] ⊆ bCl[f−1(B)] for any subset B of Y .

Proof. ⇒). Suppose that f is quasi b− open. For any subset B of Y ,

f−1(B) ⊆ bCl[f−1(B)]. Therefore by Theorem 3.5, there exists a closed set F in Y
such that B ⊆ F and f−1(F ) ⊆ bCl[f−1(B)]. Therefore, we obtain ,

f−1[Cl(B)] ⊆ f−1(F ) ⊆ bCl[f−1(B)].

⇐). Let B ⊆ Y and C ∈ BC(X) with f−1(B) ⊆ C. Put F = Cl(B), then we
have B ⊆ F and F is closed and f−1(F ) ⊆ bCl[f−1(B)] ⊆ C. Then by Theorem 3.5,
the function f is quasi b− open. ¤
Definition 3.7. A function f : (X, τ) → (Y, ρ) is said to be quasi b− closed if f(C)
is closed in Y for every C ∈ BC(X) .

Clearly, every quasi b− closed function is b− closed.

Theorem 3.8. If a function f : (X, τ) → (Y, ρ) is quasi b− closed then
f−1[Int(B)] ⊆ bInt[f−1(B)] for every subset B of Y .

Proof. Similar to the proof of Theorem 3.4. ¤
Theorem 3.9. A function f : (X, τ) → (Y, ρ) is quasi b − closed if and only if for
any subset B of Y and for any U ∈ BO(X) containing f−1(B), there exists an open
subset V of Y containing B such that f−1(V ) ⊆ U .

Proof. Similar to the proof of Theorem 3.5. ¤
In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19,

we can prove the following three theorems

Theorem 3.10. Let f : (X, τ) → (Y, ρ) be a quasi b − open bijection. Then the
following hold

a) If X is b− T1 then Y is T1.
b) If X is b− T2 then Y is T2.

Theorem 3.11. Let f : (X, τ) → (Y, ρ) be a quasi b − open bijection. Then the
following hold

a) If Y is compact, then X is b− compact.
b) If Y is Lindelöf , then X is b− Lindelöf .

Theorem 3.12. If f : (X, τ) → (Y, ρ) is a quasi b − open surjection and Y is
connected then X is b− connected.
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4. Strongly b−Open and Strongly b−Closed Functions

Definition 4.1. A function f : (X, τ) → (Y, ρ) is said to be strongly b − open if
f(U) ∈ BO(Y ) for every U ∈ BO(X) .

Clearly, every strongly b− open function is b− open.

Theorem 4.2. Let f : (X, τ) → (Y, ρ) and g : (Y, ρ) → (Z, σ) be two strongly
b− open functions. Then the composition function gof : (X, τ) → (Z, σ) is strongly
b− open.

Proof. Let U ∈ BO(X). Then f(U) ∈ BO(Y ) since f is strongly b− open. But g is

strongly b− open so g(f(U)) ∈ BO(Z). Hence gof is strongly b− open. ¤
Theorem 4.3. A function f : (X, τ) → (Y, ρ) is strongly b− open if and only if for
each x ∈ X and for any U ∈ BO(X) with x ∈ U , there exists V ∈ BO(Y ) such that
f(x) ∈ V and V ⊆ f(U).

Proof. It is obvious. ¤

Theorem 4.4. A function f : (X, τ) → (Y, ρ) is strongly b− open if and only if for
each x ∈ X and for any b−neighborhood U of x in X, there exists a b−neighborhood
V of f(x) in Y such that V ⊆ f(U).

Proof. ⇒). Let x ∈ X and let U be a b− neighborhood of x. Then there exists
W ∈ BO(X) such that x ∈ W ⊆ U . Then f(x) ∈ f(W ) ⊆ f(U). But ,
f(W ) ∈ BO(Y ) since f is strongly b− open. Hence V = f(W ) is a b−neighborhood
of f(x) and V ⊆ f(U).
⇐). Let U ∈ BO(X) and x ∈ U . Then U is a b − neighborhood of x. So by

assumption, there exists a b− neighborhood Vf(x) of f(x) such that,
f(x) ∈ Vf(x) ⊆ f(U). It follows that f(U) is a b− neighborhood of each of its points.
Therefore, f(U) ∈ BO(Y ). Hence f is strongly b− open. ¤

Theorem 4.5. A function f : (X, τ) → (Y, ρ) is strongly b − open if and only if
f [bInt(A)] ⊆ bInt[f(A)], for every A ⊆ X.

Proof. ⇒). Let A ⊆ X and x ∈ bInt(A). Then there exists Ux ∈ BO(X) such that
x ∈ Ux ⊆ A. So f(x) ∈ f(Ux) ⊆ f(A) and by assumption, f(Ux) ∈ BO(Y ). Hence,
f(x) ∈ bInt[f(A)]. Thus f [bInt(A)] ⊆ bInt[f(A)].
⇐). Let U ∈ BO(X). Then by assumption, f [bInt(U)] ⊆ bInt[f(U)]. Since

bInt(U) = U and bInt[f(U)] ⊆ f(U). Hence, f(U) = bInt[f(U)]. Thus,
f(U) ∈ BO(Y ). ¤
Theorem 4.6. A function f : (X, τ) → (Y, ρ) is strongly b − open if and only if
bInt[f−1(B)] ⊆ f−1[bInt(B)], for every B ⊆ Y .
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Proof. ⇒). Let B ⊆ Y . Since bInt[f−1(B)] ∈ BO(X) and f is strongly b − open,
f [bInt(f−1(B))] ∈ BO(Y ). Also we have f [bInt(f−1(B))] ⊆ f [f−1(B)] ⊆ B. Hence,
f [bInt(f−1(B))] ⊆ bInt(B). Therefore, bInt[f−1(B)] ⊆ f−1[bInt(B)].
⇐). Let A ⊆ X. Then f(A) ⊆ Y . Hence by assumption, we obtain,

bInt(A) ⊆ bInt[f−1(f(A)] ⊆ f−1[bInt(f(A))].

This implies that,

f [bInt(A)] ⊆ f [f−1(bInt(f(A))] ⊆ bInt[f(A)].

Thus, f [bInt(A)] ⊆ bInt[f(A)], for all A ⊆ X. Hence, by Theorem 4.5, f is strongly
b− open. ¤
Theorem 4.7. A function f : (X, τ) → (Y, ρ) is strongly b − open if and only if
f−1[bCl(B)] ⊆ bCl[f−1(B)], for every B ⊆ Y .

Proof. ⇒). Let B ⊆ Y and x ∈ f−1[bCl(B)]. Then f(x) ∈ bCl(B). Let

U ∈ BO(X) such that x ∈ U . By assumption, f(U) ∈ BO(Y ) and f(x) ∈ f(U).
Thus f(U) ∩ B 6= φ. Hence U ∩ f−1(B) 6= φ. Therefore, x ∈ bCl[f−1(B)]. So we
obtain f−1[bCl(B)] ⊆ bCl[f−1(B)].
⇐). Let B ⊆ Y . Then Y −B ⊆ Y . By assumption,

f−1[bCl(Y −B)] ⊆ bCl[f−1(Y −B)].

This implies that,

X − bCl[f−1(Y −B)] ⊆ X − f−1[bCl(Y −B)].

Hence,

X − bCl[X − f−1(B)] ⊆ f−1[Y − bCl(Y −B)].

Then, bInt[f−1(B)] ⊆ f−1[bInt(B)]. Now by Theorem 4.6, it follows that f is
strongly b− open. ¤
Definition 4.8. [3]. A function f : (X, τ) → (Y, ρ) is said to be b − irresolute if
f−1(V ) ∈ BO(X) for every V ∈ BO(Y ).

Theorem 4.9. Let f : (X, τ) → (Y, ρ) be a function and g : (Y, ρ) → (Z, σ) be a
strongly b − open injection. If gof : (X, τ) → (Z, σ) is b − irresolute, then f is
b− irresolute.

Proof. Let U ∈ BO(Y ). Then g(U) ∈ BO(Z) since g is strongly b− open. Also gof

is b − irresolute, so we have (gof)−1[g(U)] ∈ BO(X). Since g is an injection, we
have (gof)−1[g(U)] = (f−1og−1)[g(U)] = f−1[g−1(g(U))] = f−1(U). Then,
f−1(U) ∈ BO(X). So f is b− irresolute. ¤
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Theorem 4.10. Let f : (X, τ) → (Y, ρ) be strongly b− open surjection and
g : (Y, ρ) → (Z, σ) be any function. If gof : (X, τ) → (Z, σ) is b− irresolute, then g
is b− irresolute.

Proof. Let V ∈ BO(Z). Then (gof)−1(V ) ∈ BO(X) since gof is b− irresolute. Also

f is strongly b−open, so f [(gof)−1(V )] ∈ BO(Y ). Since f is surjective, we note that
f [(gof)−1(V )] = [fo(gof)−1](V ) = [fo(f−1og−1)](V ) = [(fof−1)og−1](V ) = g−1(V ).
Hence g is b− irresolute. ¤
Definition 4.11. A function f : (X, τ) → (Y, ρ) is said to be strongly b− closed if
f(C) ∈ BC(Y ) for every C ∈ BC(X) .

The straight forward proof of the following theorem is omitted.

Theorem 4.12. If f : (X, τ) → (Y, ρ) and g : (Y, ρ) → (Z, σ) are two strongly
b− closed functions, then gof : (X, τ) → (Z, σ) is a strongly b− closed function.

Theorem 4.13. Let f : (X, τ) → (Y, ρ) and g : (Y, ρ) → (Z, σ) be two functions such
that gof : (X, τ) → (Z, σ) is a strongly b− closed function. Then

1) If f is b− irresolute and surjection then g is strongly b− closed.
2) If g is b− irresolute and injection, then f is strongly b− closed.

Proof. (1). Let F ∈ BC(Y ). Since f is b− irresolute, f−1(F ) ∈ BC(X). Now gof is

strongly b− closed and f is surjection, then (gof)(f−1(F )) = g(F ) ∈ BC(Z). This
implies that g is strongly b− closed.

(2). Let C ∈ BC(X). Since gof is strongly b− closed, (gof)(C) ∈ BC(Z).Now g
is b− irresolute and injection, so g−1[(gof)(C)] = f(C) ∈ BC(Y ). This shows that
f is strongly b− closed. ¤
Theorem 4.14. A function f : (X, τ) → (Y, ρ) is strongly b− closed if and only if
bCl[f(A)] ⊆ f [bCl(A)], for every A ⊆ X.

Proof. ⇒). Let f be strongly b − closed and A ⊆ X. Then f [bCl(A)] ∈ BC(Y ).

Since f(A) ⊆ f [bCl(A)], we obtain bCl[f(A)] ⊆ f [bCl(A)].
⇐). Let C ∈ BC(X). By assumption, we obtain,

f(C) ⊆ bCl[f(C)] ⊆ f [bCl(C)] = f(C).

Hence f(C) = bCl[f(C)]. Thus, f(C) ∈ BC(Y ). It follows that f is strongly
b− closed. ¤
Theorem 4.15. Let f : (X, τ) → (Y, ρ) be a function such that
Int[Cl(f(A))] ⊆ f [bCl(A)] for every A ⊆ X. Then f is strongly b− closed.
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Proof. Let C ∈ BC(X). Then by assumption we have,

Int[Cl(f(C)] ⊆ f [bCl(C)] = f(C).

Put F = Cl[f(C)]. Then F is closed in Y . Also it implies that Int(F ) ⊆ f(C) ⊆ F .
Hence, f(C) is semi closed in Y . Since SO(Y ) ⊆ BO(Y ), f(C) ∈ BC(Y ). This
implies that f is strongly b− closed. ¤
Theorem 4.16. Let f : (X, τ) → (Y, ρ) be a strongly b−closed function and B ⊆ Y .
If U ∈ BO(X) with f−1(B) ⊆ U , then there exists V ∈ BO(Y ) with B ⊆ V such
that f−1(B) ⊆ f−1(V ) ⊆ U .

Proof. Let V = Y −f(X−U). Then Y −V = f(X−U). Since f is strongly b−closed,

V ∈ BO(Y ). Since f−1(B) ⊆ U , we have Y−V = f(X−U) ⊆ f [f−1(Y−B)] ⊆ Y−B.
Hence, B ⊆ V . Also X − U ⊆ f−1[f(X − U)] = f−1(Y − V ) = X − f−1(V ). So
f−1(V ) ⊆ U . ¤
Theorem 4.17. Let f : (X, τ) → (Y, ρ) be a surjective strongly b− closed function
and B, C ⊆ Y . If f−1(B) and f−1(C) have disjoint b− neighborhoods, then so have
B and C.

Proof. Let E and F be the disjoint b− neighborhood of f−1(B) and f−1(C) respec-

tively. Then by the last theorem There exist two sets U, V ∈ BO(Y ) with B ⊆ U and
C ⊆ V such that f−1(B) ⊆ f−1(U) ⊆ bInt(E) and f−1(C) ⊆ f−1(V ) ⊆ bInt(F ).
Since E and F are disjoint, so are bInt(E) and bInt(F ), and hence so f−1(U) and
f−1(V ) are disjoint as well. It follows that U and V are disjoint too since f is a
surjective function. ¤
Theorem 4.18. A surjective function f : (X, τ) → (Y, ρ) is strongly b − closed
if and only if for each subset B of Y and each set U ∈ BO(X) containing f−1(B),
there exists a set V ∈ BO(Y ) containing B, such that f−1(V ) ⊆ U .

Proof. ⇒). This follows from Theorem 4.16.

⇐). Let C ∈ BC(X) and y ∈ Y − f(C). Then f−1(y) ⊆ X − f−1(f(C)) ⊆ X −C
and X−C ∈ BO(X). Hence by assumption, there exists a set Vy ∈ BO(Y ) containing
y such that f−1(Vy) ⊆ X − C. This implies that y ∈ Vy ⊆ Y − f(C). Thus,
Y − f(C) = ∪{Vy : y ∈ Y − f(C)}. Hence, Y − f(C) ∈ BO(Y ). Therefore,
f(C) ∈ BC(Y ). ¤
Theorem 4.19. Let f : (X, τ) → (Y, ρ) be a bijection. Then the following are
equivalent:

1) f is strongly b− closed.
2) f is strongly b− open.
3) f−1 is b− irresolute.
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Proof. (1) → (2). Let U ∈ BO(X). Then X − U ∈ BC(X). By (1),
f(X−U) ∈ BC(Y ). But f(X−U) = f(X)−f(U) = Y −f(U). Thus f(U) ∈ BO(Y ).

(2) → (3). Let A ⊆ X. Since f is strongly b − open, so by Theorem 4.7,
f−1[bCl(f(A))] ⊆ bCl[f−1(f(A))]. It implies that bCl[f(A)] ⊆ f [bCl(A)]. Thus
bCl[(f−1)−1(A)] ⊆ (f−1)−1[bCl(A)], for all A ⊆ X. Then, it follows that f−1 is
b− irresolute.

(3) → (1). Let C ∈ BC(X). Then X − C ∈ BO(X). Since f−1 is b− irresolute,
(f−1)−1(X − C) ∈ BO(Y ). But (f−1)−1(X − C) = f(X − C) = Y − f(C). Thus
f(C) ∈ BC(Y ). ¤

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19
we can prove the following three theorems

Theorem 4.20. Let f : (X, τ) → (Y, ρ) be a strongly b − open bijection. Then the
following hold

a) If X is b− T1 then Y is b− T1.
b) If X is b− T2 then Y is b− T2.

Theorem 4.21. Let f : (X, τ) → (Y, ρ) be a strongly b − open bijection. Then the
following hold

a) If Y is b− compact, then X is b− compact.
b) If Y is b− Lindelöf , then X is b− Lindelöf .

Theorem 4.22. If f : (X, τ) → (Y, ρ) is a strongly b − open surjection and Y is
b− connected then X is b− connected.
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