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QUASI 5—OPEN AND STRONGLY 0—OPEN FUNCTIONS

JAMAL M. MUSTAFA

ABSTRACT. In this paper we introduce b — open, b — closed, quasi b — open, quasi
b — closed, strongly b — open and strongly b — closed functions and investigate
properties and characterizations of these new types of functions.

1. Introduction

In 1996, Andrijevic [1] introduced the notion of b — open sets. This type of sets
discussed by El-Atik [3] under the name of v — open sets. We continue to explore
further properties and characterizations of b — open, quasi b — open and strongly
b — open functions. We also introduce and study properties and characterizations of
b — closed, quasi b — closed and strongly b — closed functions.

Let A be a subset of a space (X, 7). The closure ( resp. interior ) of A will be
denoted by CI(A) ( resp. Int(A) ).

A subset A of a space (X, 7) is called b — open [1] if A C Cl(Int(A))UInt(CI(A)).
The complement of a b — open set is called a b — closed set. The union of all b — open
sets contained in A is called the b — interior of A, denoted by bInt(A) and the
intersection of all b — closed sets containing A is called the b — closure of A, denoted
by bCI1(A). The family of all b — open ( resp. b — closed ) sets in (X, 7) is denoted by
BO(X) (resp. BC(X)).

A subset A of a space (X, 1) is called semi — open [4] if A C Cl(Int(A)). The
complement of a semi — open set is called semi — closed [2]. The family of all
semi — open ( resp. semi — closed ) sets in (X, 7) is denoted by SO(X) ( respectively
SC(X)).
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2. b—Open and b—Closed Functions

In this section we define the concept of b — open functions as a generalization of
open functions and investigate some properties of such functions.

Definition 2.1. A function f: (X,7) — (Y, p) is called b — open if f(U) € BO(Y)
for every open set U in X.

The following theorem follows immediately from the above definition.

Theorem 2.2. A function f : (X,7) — (Y,p) is b — open if and only if for each
x € X, and each open set U in X with x € U, there exists a set V. € BO(Y)
containing f(x) such that V C f(U).

Theorem 2.3. Let f : (X,7) — (Y,p) be b—open. If V CY and C is a closed
subset of X containing f~1(V), then there exists a set F' € BC(Y') containing V such
that f~Y(F) C C.

Proof. Let F =Y — f(X —C). Then F € BC(Y). Since f~1(V) C C, we have

f(X-C)C(Y—-V)andsoV C F.
Also ffH{F ) =X - f(X-O)CX - (X-C)=C. O

Theorem 2.4. A function f: (X,7) — (Y, p) is b — open if and only if
flInt(A)] C bInt[f(A)], for every A C X.

Proof. =). Let A C X and x € Int(A). Then there exists an open set U, in X such
that x € U, C A. Now f(z) € f(U,) C f(A). Since f is b — open, f(U,) € BO(Y).
Then f(z) € bInt[f(A)]. Thus f[Int(A)] C bInt[f(A)].

<). Let U be an open set in X. Then by assumption, f[Int(U)] C bInt[f(U)].
Since bInt[f(U)] C f(U), f(U) =bInt[f(U)]. Thus f(U) € BO(Y).
So f is b — open. U

The equality in the last theorem need not be true as shown in the following example

Example 2.5. Let X =Y = {a,b}. Let 7 be the indiscrete topology on X and p be
the discrete topology on Y. Then BO(X) = {¢, X, {a},{b}} and BO(Y) = p. Let
f:(X,7) = (Y,p) be the identity function and A = {a}. Then f[Int(A)] = ¢ and
bint[f(A)] = {a}.

Theorem 2.6. A function f: (X,7) — (Y, p) is b — open if and only if
Int[f~Y(B)] C f~t[bInt(B)], for every BCY.

Proof. =). Let B CY. Then f[Int(f~'(B))] C f[f~'(B)] C B.
But f[Int(f~'(B))] € BO(Y) since Int[f~'(B)] is open in X and f is b — open.
Hence, f[Int(f~'(B))] C bint(B). Therefore Int[f~*(B)] C f~[bInt(B)).
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<). Let A C X. Then f(A) C Y. Hence by assumption, we obtain,
Int(A) C Int[f~1(f(A)] C f1[bInt(f(A))]. Thus f[Int(A)] C bInt[f(A)], for every
A C X. Hence, by Theorem 2.4, f is b — open. O
Theorem 2.7. A function f: (X,7) — (Y, p) is b — open if and only if
fHpCU(B)] € Clf~1(B)], for every BC Y.

Proof. =). Assume that f is b —open and B C Y. Let z € f~1[bCI(B)]. Then
f(x) € bCI(B). Let U be an open set in X such that x € U. Since f is b — open,
then f(U) € BO(Y). Therefore, BN f(U) # ¢. Then U N f~Y(B) # ¢. Hence
x € CI[f~Y(B)]. We conclude that f~'[bCI(B)] C Ci[f~*(B)] .

<). Let BCY. Then (Y — B) CY. By assumption,

f~HpCl(Y — B)) C Cllf~'(Y — B)].
This implies,

X —-CIllf Y(Y =B)] C X — f~1pCl(Y — B)].
Hence
X —-ClX - f7YB)] C Y —bCIl(Y — B)].
Now
X —ClUX = f7H(B)] = Int[X — (X — f71(B))] = Int[f~(B)]

then we have Y — bCl(Y — B) = bint[Y — (Y — B)| = bInt(B).
Then, Int[f~'(B)] C f~'[bInt(B)]. Now from Theorem 2.6, it follows that f is
b — open. O

Now we introduce b — closed functions and study certain properties of this type of
functions.

Definition 2.8. A function f: (X,7) — (Y, p) is called b— closed if f(C) € BC(Y)
for every closed set C in X.

Theorem 2.9. A function f: (X, 7) — (Y, p) is b — closed if and only if
bCl[f(A)] C fICI(A)] for every A C X.

Proof. =). Let f be b — closed and let A C X. Then f[CI(A)] € BC(Y). But
F(4) C FICU(A)). Then bCI[f(A)] C FICI(A)].
<). Let A C X be a closed set. Then by assumption,
bCl[f(A)] C fICI(A)] = f(A). This shows that f(A) € BC(Y). Hence f is
b — closed. O
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Corollary 2.10. Let f : (X,7) — (Y,p) be b — closed and let A C X. Then
bInt[bCI(f(A))] € fICI(A)].

Theorem 2.11. Let f : (X, 7) — (Y, p) be a surjective function. Then f is b— closed
if and only if for each subset B of Y and each open set U in X containing f~'(B),
there exists a set V€ BO(Y') containing B such that f~(V) C U.

Proof. =). Let V=Y — f(X —U). Then V € BO(Y). Since f~}(B) C U, we have
f(X—-U)CY —Bandso BCV. Also,

V) =X-ffX-U)]CcX-(X-U)=U.
<). Let C be a closed set in X and y € Y — f(C). Then,
Y y) € X — f7Y(f(C)) C X —C and X — C is open in X. Hence by assumption,
there exists a set V, € BO(Y) containing y such that f~'(V,) € X — C. This
implies that y € V,, C Y — f(C). Thus Y — f(C) = U{V, : y € Y — f(C)}. Hence
Y — f(C) € BO(Y). Thus f(C) € BC(Y). O
Definition 2.12. [3|. A function [ : (X,7) — (Y, p) is said to be b — continuous if
Y V) € BO(X) for every open set' V in'Y.

Theorem 2.13. Let [ : (X,7) — (Y,p) be a bijection. Then the following are
equivalent:

1) f is b — closed

2) f is b — open
3) =1 is b — continuous

Proof (1) (2) Let U be an open subset of X. Then X — U is closed in X.
U) € BO(Y). But f(X —U) = f(X) - f(U) =Y — f(U). Thus

(3). Let U be an open subset of X. Since f is b — open

(fH)~1(U) € BO(Y). Hence f~! is b — continuous.

— (1). Let C be an arbitrary closed set in X. Then X — C'is open in X. Since
b — continuous, (f~1)"H(X — C) € BO(Y). But,

(X -O)=f(X=-C)=Y = f(O).
Thus, f(C) € BC(Y). O
Definition 2.14. [3]. A space X is called:

a) b — T if for each pair of distinct points z and y in X, there exist b — open sets
U and V of X containing x and y, respectively, such that y ¢ U and x ¢ V.

b) b— T, if for each pair of distinct points x and y in X, there exist disjoint b—open
sets U and V of X such that r e U,y € Vand UNV = ¢.
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Theorem 2.15. Let f: (X, 7) — (Y,p) be a b — open bijection. Then the following
hold

a) If X is Ty then Y is b—T;.

b) If X is Ty then Y is b—Ts.
Proof. (a) Let y; and y2 be any distinct points in Y. Then there exist 1 and x5 in X
such that f(z1) = y; and f(x2) = yo. Since X is T} there exist two open sets U and
Vin X withazy €U, 29 ¢ U and 2 € V, 21 ¢ V. Now f(U) and f(V') are b — open
inY with y1 € f(U), v ¢ f(U) and y2 € f(V), y1 & f(V).

(b) Similar to (a). O
Definition 2.16. [3]. A space X is said to be b — compact (resp. b — Lindelof) if

every b — open cover of X has a finite (resp. countable) subcover.

Theorem 2.17. Let f: (X, 7) — (Y,p) be a b — open bijection. Then the following
hold

a) If Y is b — compact, then X is compact.
b) If Y is b— Lindelof, then X is Lindelof.

Proof. (a) Let U = {U, : @ € A} be an open cover of X. Then O = {f(U,) : « € A}
is a cover of Y by b— open sets in Y. Since Y is b — compact, O has a finite subcover
O = {f(Us), f(Usy), e f(Us,)} for Y. Then U = {U,,,Us,,...,Usn} is a finite
subcover of U for X.

(b) Similar to (a). O

Definition 2.18. [3]. A space X is said to be b — connected if it cannot be written
as a union of two non-empty disjoint b — open sets.

Theorem 2.19. If f : (X, 7) — (Y, p) is a b—open surjection and 'Y is b— connected
then X 1is connected.

Proof. Suppose that X is not connected. Then there exist two non-empty disjoint
open sets U and V' in X such that X = U UV. Then f(U) and f(V) are non-empty
disjoint b — open sets in Y with Y = f(U) U f(V') which contradicts the fact that ¥
is b — connected. U

3. Quasi b—Open and Quasi b—Closed Functions

Definition 3.1. A function f: (X, 7) — (Y, p) is said to be quasi b — open if f(U)
is open in'Y for every U € BO(X).

Clearly, every quasi b — open function is b — open.
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Definition 3.2. A subset A is called a b — neighborhood of a point x in X if there
exists a b — open set U such that x € U C A.

Theorem 3.3. Let f: (X,7) — (Y, p) be a function. then the following are equiva-
lent:

1) f is quasi b — open.

2) For any subset A of X we have f[bInt(A)] C Int[f(A)].

3) For any x € X and any b — neighborhood U of x, there exists a neighborhood
Voof f(z) inY such that V C f(U).

Proof. (1) — (2). Let f be quasi b — open and A C X. Now we have Int(A) C A
and bInt(A) € BO(X). Hence we obtain that f[bInt(A)] C f(A). Since f[bInt(A)]
is open, f[bInt(A)] C Int[f(A)].

(2) — (3). Let z € X and U be a b — neighborhood of x in X. Then there exists
V € BO(X) such that z € V. C U. Then by (2), we have,

fFV) = flbInt(V)] € Int[f(V)]

and hence f(V) = Int[f(V)]. Therefore f(V') is open in Y such that
Fx) € F(V) C F(U).

(3) — (1). Let U € BO(X). Then for each y € f(U), there exists a neighborhood
V, of y in Y such that V,, C f(U). Since Vj, is a neighborhood of y, there exists an
open set W, in Y such that y € W, CV,. Thus, f(U) = U{W, :y € f(U)} which is
an open set in Y. This implies that f is quasi b — open function. O

Theorem 3.4. A function f : (X,7) — (Y,p) is quasi b — open if and only if
bInt[f~Y(B)] C f~Int(B)] for every subset B of Y.

Proof. =). Let B be any subset of Y. Then, bInt[f~(B)] € BO(X) and f is quasi

b — open, then f[bInt(f~Y(B))] C Int[f(f~Y(B))] C Int(B). Thus,
bInt(f~(B)] € f'[Int(B)].

«). Let U € BO(X). Then by assumption bInt[f~*(f(U))] € f~'[Int(f(U))]
then bInt(U) C f~![Int(f(U))], but bInt(U) = U so U C f~Int(f(U))] and hence
f(U) C Int(f(U) so f is quasi b — open. O

Theorem 3.5. A function f: (X,7) — (Y, p) is quasi b—open if and only if for any
subset B of Y and for any set C' € BC(X) containing f~'(B), there exists a closed
subset F' of Y containing B such that f~'(F) C C.

Proof. =). Let f be quasi b—open and B CY. Let C € BC(X) with f~1(B) C C.
Now, put F =Y — f(X — C). It is clear that since f~'(B) C C, B C F. Since f is
quasi b — open, F is a closed subset of Y. Also, we have f~}(F) C C.

<). Let U € BO(X) and put B =Y — f(U). Then X — U € BC(X) with
f~YB) € X — U. By assumption, there exists a closed set F' of Y such that B C F'
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and f~!1(F) C X —U. Hence, we obtain f(U) C Y —F. On the other hand, it follows
that BC F,Y —F CY — B = f(U). Thus, we have f(U) =Y — F which is open
and hence f is a quasi b — open function. O
Theorem 3.6. A function f : (X,7) — (Y,p) is quasi b — open if and only if
f7HCUB)] C bCIlf~Y(B)] for any subset B of Y.

Proof. =). Suppose that f is quasi b — open. For any subset B of Y,

f7YB) C bCl[f~'(B)]. Therefore by Theorem 3.5, there exists a closed set F' in Y
such that B C F and f~!(F) C bCI[f~(B)]. Therefore, we obtain ,
fHCUB) € f7H(EF) S bCIUf~H(B)].

<). Let BCY and C € BO(X) with f~1(B) C C. Put F = CIl(B), then we
have B C F and F is closed and f~!'(F) C bCIl[f~'(B)] C C. Then by Theorem 3.5,
the function f is quasi b — open. O

Definition 3.7. A function f: (X,7) — (Y, p) is said to be quasi b— closed if f(C)
is closed in'Y for every C' € BC(X) .

Clearly, every quasi b — closed function is b — closed.
Theorem 3.8. If a function f: (X, 7) — (Y, p) is quasi b — closed then
f~HInt(B)] C bInt[f~'(B)] for every subset B of Y.
Proof. Similar to the proof of Theorem 3.4. O

Theorem 3.9. A function f: (X,7) — (Y, p) is quasi b — closed if and only if for
any subset B of Y and for any U € BO(X) containing f~*(B), there exists an open
subset V of Y containing B such that f~(V) C U.

Proof. Similar to the proof of Theorem 3.5. U

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19,
we can prove the following three theorems

Theorem 3.10. Let f : (X,7) — (Y,p) be a quasi b — open bijection. Then the
following hold

a) If X is b—T, then'Y is Tj.

b) If X is b—T, then Y is Ts.
Theorem 3.11. Let f : (X,7) — (Y,p) be a quasi b — open bijection. Then the
following hold

a) If Y is compact, then X is b — compact.
b) If Y is Lindelof, then X is b — Lindeldf.

Theorem 3.12. If f : (X,7) — (Y,p) is a quasi b — open surjection and Y is
connected then X is b — connected.
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4. Strongly b—Open and Strongly b—Closed Functions

Definition 4.1. A function f : (X,7) — (Y, p) is said to be strongly b — open if
f(U) € BO(Y) for every U € BO(X) .

Clearly, every strongly b — open function is b — open.

Theorem 4.2. Let f : (X,7) — (Y,p) and g : (Y,p) — (Z,0) be two strongly
b — open functions. Then the composition function gof : (X, 7) — (Z,0) is strongly
b — open.

Proof. Let U € BO(X). Then f(U) € BO(Y) since f is strongly b — open. But g is
strongly b — open so g(f(U)) € BO(Z). Hence gof is strongly b — open. O

Theorem 4.3. A function f: (X, 7) — (Y, p) is strongly b — open if and only if for
each x € X and for any U € BO(X) with x € U, there exists V € BO(Y') such that
f(x) eV and V C f(U).

Proof. 1t is obvious. O

Theorem 4.4. A function f: (X, 1) — (Y, p) is strongly b — open if and only if for
each x € X and for any b—neighborhood U of x in X, there exists a b—neighborhood
V oof f(x) inY such that V C f(U).

Proof. =). Let x € X and let U be a b — neighborhood of x. Then there exists
W € BO(X) such that z € W C U. Then f(z) € f(W) C f(U). But ,
f(W) € BO(Y) since f is strongly b— open. Hence V = f(W) is a b — neighborhood
of f(x) and V C f(U).

<). Let U € BO(X) and € U. Then U is a b — neighborhood of x. So by
assumption, there exists a b — neighborhood Vi, of f(x) such that,
f(x) € Vi C f(U). It follows that f(U) is a b — neighborhood of each of its points.
Therefore, f(U) € BO(Y). Hence f is strongly b — open. O

Theorem 4.5. A function f : (X,7) — (Y, p) is strongly b — open if and only if
floInt(A)] C bint[f(A)], for every A C X.

Proof. =). Let A C X and = € bint(A). Then there exists U, € BO(X) such that
xeU, CA. So f(x) € f(U;) C f(A) and by assumption, f(U,) € BO(Y). Hence,
f(z) € bInt[f(A)]. Thus f[bInt(A)] C bint[f(A)].

<). Let U € BO(X). Then by assumption, f[bint(U)] C bInt[f(U)]. Since
bint(U) = U and bInt[f(U)] C f(U). Hence, f(U) = bInt[f(U)]. Thus,
f(U) € BO(Y). O

Theorem 4.6. A function f : (X,7) — (Y, p) is strongly b — open if and only if
bInt[f~Y(B)] C f~tbInt(B)], for every BCY.



QUASI b—OPEN AND STRONGLY b—OPEN FUNCTIONS 29

Proof. =). Let B C Y. Since bint[f~'(B)] € BO(X) and f is strongly b — open,
fbInt(f~1(B))] € BO(Y). Also we have f[bInt(f‘ (B))] € flf~Y(B)] € B. Hence,
floInt(f~Y(B))] C bint(B). Therefore, bInt[f~*(B)] C f~'[bInt(B)].

<). Let A C X. Then f(A) CY. Hence by assumption, we obtain,

bInt(A) CbInt[f~1(f(A)] C f~bInt(f(A))].
This implies that,

fIbInt(A)] € ff 7 (bInt(f(A))] € bInt[f(A)].

Thus, f[bInt(A)] C bInt[f(A)], for all A C X. Hence, by Theorem 4.5, f is strongly
b — open. Il

Theorem 4.7. A function f : (X,7) — (Y, p) is strongly b — open if and only if
f~HpCIl(B)] C bCU[f~Y(B)], for every B C Y.

Proof. =). Let BCY and x € f~}[bCIl(B)]. Then f(z) € bCI(B). Let

U € BO(X) such that x € U. By assumption, f(U) € BO(Y) and f(x) € f(U).
Thus f(U) N B # ¢. Hence U N f~(B) # ¢. Therefore, z € bCI[f~(B)]. So we
obtain f~'[bCI(B)] € bCI[f~(B)].

<). Let BCY. Then Y — B CY. By assumption,

[ HoCl(Y — B)] CoCl[f~ (Y — B)].
This implies that,
X —bClf"Y —=B)] C X — fpCl(Y — B)].

Hence,

X — bC’l[X — fY(B) C fY —oCl(Y — B)].
Then, bInt[f~'(B)] C f'[bInt(B)]. Now by Theorem 4.6, it follows that f is
strongly b — open. Il
Definition 4.8. [3]. A function f : (X,7) — (Y, p) is said to be b — irresolute if

f~Y(V) e BO(X) for every V € BO(Y).

Theorem 4.9. Let f : (X,7) — (Y,p) be a function and g : (Y,p) — (Z,0) be a
strongly b — open myectwn If gof : (X, 1) — (Z,0) is b — irresolute, then f is
b — irresolute.

Proof. Let U € BO(Y). Then g(U) € BO(Z) since g is strongly b — open. Also gof

is b — irresolute, so we have (gof) '[g(U)] € BO(X). Since g is an injection, we

have (gof)'g(U)] = (f~tog™)[g(U)] = fHg " (g(U))] = f~H(U). Then,
Y U) € BO(X). So f is b — irresolute. 0
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Theorem 4.10. Let [ : (X, 1) — (Y, p) be strongly b — open surjection and
g:(Y,p) — (Z,0) be any function. If gof : (X,7) — (Z,0) is b — irresolute, then g
1s b — irresolute.

Proof. Let V € BO(Z). Then (gof)~' (V) € BO(X) since gof is b—irresolute. Also

fis strongly b—open, so f[(gof) V)] e BO( ). Since f is surjective, we note that
fllgof)= (V)] = [folgof)H](V) = [fo(ftog™)](V) = [(fofH)og™}(V) = g7(V).

Hence g is b — irresolute. O

Definition 4.11. A function f : (X,7) — (Y, p) is said to be strongly b — closed if
f(C) € BC(Y) for every C € BC(X) .

The straight forward proof of the following theorem is omitted.
Theorem 4.12. If f : (X,7) — (Y,p) and g : (Y,p) — (Z,0) are two strongly
b — closed functions, then gof : (X,7) — (Z,0) is a strongly b — closed function.
Theorem 4.13. Let f : (X, 7) — (Y,p) and g : (Y, p) — (Z,0) be two functions such
that gof : (X, 7) — (Z,0) is a strongly b — closed function. Then

1) If f is b —irresolute and surjection then g is strongly b — closed.
2) If g is b— irresolute and injection, then f is strongly b — closed.
Proof. (1). Let F € BC(Y). Since f is b—irresolute, f~'(F) € BC(X). Now gof is

strongly b — closed and f is surjection, then (gof)(f~(F)) = g(F) € BC(Z). This
implies that g is strongly b — closed.

(2). Let C € BC(X). Since gof is strongly b — closed, (gof)(C) € BC(Z).Now g
is b — irresolute and injection, so g~'[(gof)(C)] = f(C) € BC(Y). This shows that
f is strongly b — closed. U

Theorem 4.14. A function f: (X, 1) — (Y, p) is strongly b — closed if and only if
bCI[f(A)] C fbCI(A)], for every A C X.

Proof. =). Let f be strongly b — closed and A C X. Then f[bCI(A)] € BC(Y).
Since f(A) C f[bCI(A)], we obtain bCI[f(A)] C f[bCI(A)].
<). Let C € BC(X). By assumption, we obtain,
f(C) SBCUf(O)] € fCUC)] = f(C).

Hence f(C) = bCI[f(C)]. Thus, f(C) € BC(Y). It follows that f is strongly
b — closed. U

Theorem 4.15. Let f: (X, 1) — (Y, p) be a function such that
Int[CU(f(A))] C fIbCI(A)] for every A C X. Then f is strongly b — closed.
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Proof. Let C' € BC(X). Then by assumption we have,
Int[CI(f(C)] € fCUC)] = f(O).

Put F = CI[f(C)]. Then F is closed in Y. Also it implies that Int(F) C f(C) C
Hence, f(C) is semi closed in Y. Since SO(Y) C BO(Y), f(C) € BC(Y). This
implies that f is strongly b — closed. U

Theorem 4.16. Let f : (X, 7) — (Y, p) be a strongly b—-closed function and B C Y.
If U € BO(X) with f~%(B) C U, then there exists V € BO(Y) with B C V such
that f~1(B) C f~'(V) CU.

Proof. Let V=Y —f(X—=U). Then Y-V = f(X—U). Since f is strongly b—closed,

V € BO(Y). Since f'(B) C U, wehave Y-V = f(X-U) C f[f~'(Y-B)] C Y-B.
Hence, BC V. Also X —U C f7Hf(X-U)]=f(Y-V)=X—fYV). So
fiv)cu. O

Theorem 4.17. Let f : (X, 7) — (Y, p) be a surjective strongly b— closed function
and B,C CY. If f7Y(B) and f~(C) have disjoint b — neighborhoods, then so have
B and C.

Proof. Let E and F be the disjoint b — neighborhood of f~*(B) and f~'(C') respec-

tively. Then by the last theorem There exist two sets U,V € BO(Y') with B C U and
C C V such that f~(B) C f~Y(U) C bInt(E) and f~Y(C) C f~4(V) C bInt(F).
Since E and F are disjoint, so are bInt(E) and bInt(F), and hence so f~}(U) and
f~YV) are disjoint as well. It follows that U and V are disjoint too since f is a
surjective function. U

Theorem 4.18. A surjective function f : (X,7) — (Y,p) is strongly b — closed
if and only if for each subset B of Y and each set U € BO(X) containing f~*(B),
there exists a set V€ BO(Y') containing B, such that f~*(V) C U.

Proof. =). This follows from Theorem 4.16.

<). Let C € BO(X)andy €Y — f(C). Then f~'(y) C X — f 1 (f(C) C X -C
and X —C' € BO(X). Hence by assumption, there exists aset V,, € BO(Y') containing
y such that f~*(V,) € X — C. This implies that y € V,, C Y — f(C). Thus,
Y - f(C) = UV, :y € Y — f(C)}. Hence, Y — f(C) € BO(Y). Therefore,

f(C) e BC(Y). O
Theorem 4.19. Let f : (X,7) — (Y,p) be a bijection. Then the following are
equivalent:

1) f is strongly b — closed.
2) f is strongly b — open.
3) =1 is b — irresolute.
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Proof. (1) — (2). Let U € BO(X). Then X — U € BC(X). By (1),
f(X=U) € BC(Y). But f(X=U) = f(X)=f(U) =Y—f(U). Thus f(U) € BO(Y).
(2) (3). Let A C X. Since f is strongly b — open, so by Theorem 4.7,
ol f ( )] C bC’l[f (f(A))] It implies that bCI[f(A)] C f[bCI(A)]. Thus
bCl[(f’ )yHA)] C (fH7HbCI(A)], for all A € X. Then, it follows that f~! is
b —irresolute.
(3) — (1). Let C € BC(X). Then X — C € BO(X). Since f~1is b — irresolute,
(fFH (X —=C) e BOY). But (f)y (X -C)=f(X—-C)=Y — f(C). Thus
f(C) e BC(Y). O

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19
we can prove the following three theorems

Theorem 4.20. Let f: (X, 7) — (Y, p) be a strongly b — open bijection. Then the
following hold

a) If X is b—T, then' Y is b—"T7.
b) If X isb—T, then'Y is b—T,.

Theorem 4.21. Let f: (X,7) — (Y, p) be a strongly b — open bijection. Then the
following hold

a) If Y is b — compact, then X is b — compact.
b) If Y is b— Lindelof, then X is b — Lindeldf.

Theorem 4.22. If f : (X,7) — (Y, p) is a strongly b — open surjection and Y is
b — connected then X 1s b — connected.
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