QUASI b-OPEN AND STRONGLY b-OPEN FUNCTIONS

JAMAL M. MUSTAFA

ABSTRACT. In this paper we introduce b-open, b-closed, quasi b-open, quasi b-closed, strongly b-open and strongly b-closed functions and investigate properties and characterizations of these new types of functions.

1. Introduction

In 1996, Andrijevic [1] introduced the notion of b-open sets. This type of sets discussed by El-Atik [3] under the name of $\gamma-open$ sets. We continue to explore further properties and characterizations of b-open, quasi b-open and strongly b-open functions. We also introduce and study properties and characterizations of b-closed, quasi b-closed and strongly b-closed functions.

Let A be a subset of a space (X, τ) . The closure (resp. interior) of A will be denoted by Cl(A) (resp. Int(A)).

A subset A of a space (X, τ) is called b-open [1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$. The complement of a b-open set is called a b-closed set. The union of all b-open sets contained in A is called the b-interior of A, denoted by bInt(A) and the intersection of all b-closed sets containing A is called the b-closure of A, denoted by bCl(A). The family of all b-open (resp. b-closed) sets in (X,τ) is denoted by BO(X) (resp. BC(X)).

A subset A of a space (X, τ) is called semi-open [4] if $A \subseteq Cl(Int(A))$. The complement of a semi-open set is called semi-closed [2]. The family of all semi-open (resp. semi-closed) sets in (X, τ) is denoted by SO(X) (respectively SC(X)).

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary: 54C05, Secondary: 54C08 , 54C10 .

Key words and phrases. : b – open sets, b – open functions, b – closed functions, quasi b – open functions, quasi b – closed functions, strongly b – open functions, strongly b – closed functions.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: July 23, 2009 Accepted: April 5, 2010.

2. b-Open and b-Closed Functions

In this section we define the concept of b-open functions as a generalization of open functions and investigate some properties of such functions.

Definition 2.1. A function $f:(X,\tau)\to (Y,\rho)$ is called b – open if $f(U)\in BO(Y)$ for every open set U in X.

The following theorem follows immediately from the above definition.

Theorem 2.2. A function $f:(X,\tau)\to (Y,\rho)$ is b – open if and only if for each $x\in X$, and each open set U in X with $x\in U$, there exists a set $V\in BO(Y)$ containing f(x) such that $V\subseteq f(U)$.

Theorem 2.3. Let $f:(X,\tau)\to (Y,\rho)$ be b-open. If $V\subseteq Y$ and C is a closed subset of X containing $f^{-1}(V)$, then there exists a set $F\in BC(Y)$ containing V such that $f^{-1}(F)\subseteq C$.

Proof. Let F = Y - f(X - C). Then $F \in BC(Y)$. Since $f^{-1}(V) \subseteq C$, we have $f(X - C) \subseteq (Y - V)$ and so $V \subseteq F$. Also $f^{-1}(F) = X - f^{-1}[f(X - C)] \subseteq X - (X - C) = C$.

Theorem 2.4. A function $f:(X,\tau)\to (Y,\rho)$ is b – open if and only if $f[Int(A)]\subseteq bInt[f(A)]$, for every $A\subseteq X$.

Proof. ⇒). Let $A \subseteq X$ and $x \in Int(A)$. Then there exists an open set U_x in X such that $x \in U_x \subseteq A$. Now $f(x) \in f(U_x) \subseteq f(A)$. Since f is b - open, $f(U_x) \in BO(Y)$. Then $f(x) \in bInt[f(A)]$. Thus $f[Int(A)] \subseteq bInt[f(A)]$.

 \Leftarrow). Let U be an open set in X. Then by assumption, $f[Int(U)] \subseteq bInt[f(U)]$. Since $bInt[f(U)] \subseteq f(U)$, f(U) = bInt[f(U)]. Thus $f(U) \in BO(Y)$. So f is b-open.

The equality in the last theorem need not be true as shown in the following example

Example 2.5. Let $X = Y = \{a, b\}$. Let τ be the indiscrete topology on X and ρ be the discrete topology on Y. Then $BO(X) = \{\phi, X, \{a\}, \{b\}\}\}$ and $BO(Y) = \rho$. Let $f: (X, \tau) \to (Y, \rho)$ be the identity function and $A = \{a\}$. Then $f[Int(A)] = \phi$ and $bInt[f(A)] = \{a\}$.

Theorem 2.6. A function $f:(X,\tau)\to (Y,\rho)$ is b – open if and only if $Int[f^{-1}(B)]\subseteq f^{-1}[bInt(B)]$, for every $B\subseteq Y$.

 $Proof. \Rightarrow$). Let $B \subseteq Y$. Then $f[Int(f^{-1}(B))] \subseteq f[f^{-1}(B)] \subseteq B$. But $f[Int(f^{-1}(B))] \in BO(Y)$ since $Int[f^{-1}(B)]$ is open in X and f is b-open. Hence, $f[Int(f^{-1}(B))] \subseteq bInt(B)$. Therefore $Int[f^{-1}(B)] \subseteq f^{-1}[bInt(B)]$.

 \Leftarrow). Let $A \subseteq X$. Then $f(A) \subseteq Y$. Hence by assumption, we obtain, $Int(A) \subseteq Int[f^{-1}(f(A)] \subseteq f^{-1}[bInt(f(A))]$. Thus $f[Int(A)] \subseteq bInt[f(A)]$, for every $A \subseteq X$. Hence, by Theorem 2.4, f is b-open.

Theorem 2.7. A function $f:(X,\tau)\to (Y,\rho)$ is b – open if and only if $f^{-1}[bCl(B)]\subseteq Cl[f^{-1}(B)]$, for every $B\subseteq Y$.

Proof. ⇒). Assume that f is b-open and $B \subseteq Y$. Let $x \in f^{-1}[bCl(B)]$. Then $f(x) \in bCl(B)$. Let U be an open set in X such that $x \in U$. Since f is b-open, then $f(U) \in BO(Y)$. Therefore, $B \cap f(U) \neq \phi$. Then $U \cap f^{-1}(B) \neq \phi$. Hence $x \in Cl[f^{-1}(B)]$. We conclude that $f^{-1}[bCl(B)] \subseteq Cl[f^{-1}(B)]$.

 \Leftarrow). Let $B \subseteq Y$. Then $(Y - B) \subseteq Y$. By assumption,

$$f^{-1}[bCl(Y-B)] \subseteq Cl[f^{-1}(Y-B)].$$

This implies,

$$X - Cl[f^{-1}(Y - B)] \subseteq X - f^{-1}[bCl(Y - B)].$$

Hence

$$X - Cl[X - f^{-1}(B)] \subseteq f^{-1}[Y - bCl(Y - B)].$$

Now

$$X-Cl[X-f^{-1}(B)]=Int[X-(X-f^{-1}(B))]=Int[f^{-1}(B)]$$

then we have Y - bCl(Y - B) = bInt[Y - (Y - B)] = bInt(B).

Then, $Int[f^{-1}(B)] \subseteq f^{-1}[bInt(B)]$. Now from Theorem 2.6, it follows that f is b-open.

Now we introduce b-closed functions and study certain properties of this type of functions.

Definition 2.8. A function $f:(X,\tau)\to (Y,\rho)$ is called b-closed if $f(C)\in BC(Y)$ for every closed set C in X.

Theorem 2.9. A function $f:(X,\tau)\to (Y,\rho)$ is b-closed if and only if $bCl[f(A)]\subseteq f[Cl(A)]$ for every $A\subseteq X$.

Proof. ⇒). Let f be b-closed and let $A \subseteq X$. Then $f[Cl(A)] \in BC(Y)$. But $f(A) \subseteq f[Cl(A)]$. Then $bCl[f(A)] \subseteq f[Cl(A)]$.

 \Leftarrow). Let $A \subseteq X$ be a closed set. Then by assumption,

$$bCl[f(A)] \subseteq f[Cl(A)] = f(A)$$
. This shows that $f(A) \in BC(Y)$. Hence f is $b-closed$.

Corollary 2.10. Let $f:(X,\tau)\to (Y,\rho)$ be b-closed and let $A\subseteq X$. Then $bInt[bCl(f(A))]\subseteq f[Cl(A)]$.

Theorem 2.11. Let $f:(X,\tau) \to (Y,\rho)$ be a surjective function. Then f is b-closed if and only if for each subset B of Y and each open set U in X containing $f^{-1}(B)$, there exists a set $V \in BO(Y)$ containing B such that $f^{-1}(V) \subseteq U$.

Proof. \Rightarrow). Let V = Y - f(X - U). Then $V \in BO(Y)$. Since $f^{-1}(B) \subseteq U$, we have $f(X - U) \subseteq Y - B$ and so $B \subseteq V$. Also,

$$f^{-1}(V) = X - f^{-1}[f(X - U)] \subseteq X - (X - U) = U.$$

 \Leftarrow). Let C be a closed set in X and $y \in Y - f(C)$. Then,

 $f^{-1}(y) \subseteq X - f^{-1}(f(C)) \subseteq X - C$ and X - C is open in X. Hence by assumption, there exists a set $V_y \in BO(Y)$ containing y such that $f^{-1}(V_y) \subseteq X - C$. This implies that $y \in V_y \subseteq Y - f(C)$. Thus $Y - f(C) = \bigcup \{V_y : y \in Y - f(C)\}$. Hence $Y - f(C) \in BO(Y)$. Thus $f(C) \in BC(Y)$.

Definition 2.12. [3]. A function $f:(X,\tau)\to (Y,\rho)$ is said to be b- continuous if $f^{-1}(V)\in BO(X)$ for every open set V in Y.

Theorem 2.13. Let $f:(X,\tau)\to (Y,\rho)$ be a bijection. Then the following are equivalent:

- 1) f is b-closed
- 2) f is b open
- 3) f^{-1} is b-continuous

Proof. (1) \rightarrow (2). Let U be an open subset of X. Then X-U is closed in X. By (1), $f(X-U) \in BC(Y)$. But f(X-U) = f(X) - f(U) = Y - f(U). Thus $f(U) \in BO(Y)$.

- $(2) \rightarrow (3)$. Let U be an open subset of X. Since f is b-open
- $f(U) = (f^{-1})^{-1}(U) \in BO(Y)$. Hence f^{-1} is b-continuous.
- $(3) \to (1)$. Let C be an arbitrary closed set in X. Then X C is open in X. Since f^{-1} is b-continuous, $(f^{-1})^{-1}(X-C) \in BO(Y)$. But,

$$(f^{-1})^{-1}(X - C) = f(X - C) = Y - f(C).$$

Thus, $f(C) \in BC(Y)$.

Definition 2.14. [3]. A space X is called:

- a) $b T_1$ if for each pair of distinct points x and y in X, there exist b open sets U and V of X containing x and y, respectively, such that $y \notin U$ and $x \notin V$.
- b) $b-T_2$ if for each pair of distinct points x and y in X, there exist disjoint b-open sets U and V of X such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Theorem 2.15. Let $f:(X,\tau)\to (Y,\rho)$ be a b-open bijection. Then the following hold

- a) If X is T_1 then Y is $b-T_1$.
- b) If X is T_2 then Y is $b-T_2$.

Proof. (a) Let y_1 and y_2 be any distinct points in Y. Then there exist x_1 and x_2 in X such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is T_1 there exist two open sets U and V in X with $x_1 \in U$, $x_2 \notin U$ and $x_2 \in V$, $x_1 \notin V$. Now f(U) and f(V) are b - open in Y with $y_1 \in f(U)$, $y_2 \notin f(U)$ and $y_2 \in f(V)$, $y_1 \notin f(V)$.

Definition 2.16. [3]. A space X is said to be b – compact (resp. b – Lindelöf) if every b – open cover of X has a finite (resp. countable) subcover.

Theorem 2.17. Let $f:(X,\tau)\to (Y,\rho)$ be a b-open bijection. Then the following hold

- a) If Y is b-compact, then X is compact.
- b) If Y is $b-Lindel\"{o}f$, then X is $Lindel\"{o}f$.

Proof. (a) Let $U = \{U_{\alpha} : \alpha \in \Delta\}$ be an open cover of X. Then $O = \{f(U_{\alpha}) : \alpha \in \Delta\}$ is a cover of Y by b - open sets in Y. Since Y is b - compact, O has a finite subcover $O' = \{f(U_{\alpha_1}), f(U_{\alpha_2}), ..., f(U_{\alpha_n})\}$ for Y. Then $U' = \{U_{\alpha_1}, U_{\alpha_2}, ..., U_{\alpha_n}\}$ is a finite subcover of U for X.

(b) Similar to (a).
$$\Box$$

Definition 2.18. [3]. A space X is said to be b – connected if it cannot be written as a union of two non-empty disjoint b – open sets.

Theorem 2.19. If $f:(X,\tau)\to (Y,\rho)$ is a b-open surjection and Y is b-connected then X is connected.

Proof. Suppose that X is not *connected*. Then there exist two non-empty disjoint open sets U and V in X such that $X = U \cup V$. Then f(U) and f(V) are non-empty disjoint b-open sets in Y with $Y = f(U) \cup f(V)$ which contradicts the fact that Y is b-connected.

3. Quasi b-Open and Quasi b-Closed Functions

Definition 3.1. A function $f:(X,\tau)\to (Y,\rho)$ is said to be quasi b – open if f(U) is open in Y for every $U\in BO(X)$.

Clearly, every quasi b – open function is b – open.

Definition 3.2. A subset A is called a b – neighborhood of a point x in X if there exists a b – open set U such that $x \in U \subseteq A$.

Theorem 3.3. Let $f:(X,\tau)\to (Y,\rho)$ be a function. then the following are equivalent:

- 1) f is quasi b open.
- 2) For any subset A of X we have $f[bInt(A)] \subseteq Int[f(A)]$.
- 3) For any $x \in X$ and any b neighborhood U of x, there exists a neighborhood V of f(x) in Y such that $V \subseteq f(U)$.
- *Proof.* (1) \rightarrow (2). Let f be quasi b open and $A \subseteq X$. Now we have $Int(A) \subseteq A$ and $bInt(A) \in BO(X)$. Hence we obtain that $f[bInt(A)] \subseteq f(A)$. Since f[bInt(A)] is open, $f[bInt(A)] \subseteq Int[f(A)]$.
- $(2) \to (3)$. Let $x \in X$ and U be a b-neighborhood of x in X. Then there exists $V \in BO(X)$ such that $x \in V \subseteq U$. Then by (2), we have,

$$f(V) = f[bInt(V)] \subseteq Int[f(V)]$$

and hence f(V) = Int[f(V)]. Therefore f(V) is open in Y such that $f(x) \in f(V) \subseteq f(U)$.

- $(3) \to (1)$. Let $U \in BO(X)$. Then for each $y \in f(U)$, there exists a neighborhood V_y of y in Y such that $V_y \subseteq f(U)$. Since V_y is a neighborhood of y, there exists an open set W_y in Y such that $y \in W_y \subseteq V_y$. Thus, $f(U) = \bigcup \{W_y : y \in f(U)\}$ which is an open set in Y. This implies that f is quasi b open function.
- **Theorem 3.4.** A function $f:(X,\tau)\to (Y,\rho)$ is quasi b-open if and only if $bInt[f^{-1}(B)]\subseteq f^{-1}[Int(B)]$ for every subset B of Y.
- $Proof. \Rightarrow$). Let B be any subset of Y. Then, $bInt[f^{-1}(B)] \in BO(X)$ and f is quasi b-open, then $f[bInt(f^{-1}(B))] \subseteq Int[f(f^{-1}(B))] \subseteq Int(B)$. Thus, $bInt[f^{-1}(B)] \subseteq f^{-1}[Int(B)]$.
- \Leftarrow). Let $U \in BO(X)$. Then by assumption $bInt[f^{-1}(f(U))] \subseteq f^{-1}[Int(f(U))]$ then $bInt(U) \subseteq f^{-1}[Int(f(U))]$, but bInt(U) = U so $U \subseteq f^{-1}[Int(f(U))]$ and hence $f(U) \subseteq Int(f(U))$ so f is $quasi\ b-open$.
- **Theorem 3.5.** A function $f:(X,\tau)\to (Y,\rho)$ is quasi b-open if and only if for any subset B of Y and for any set $C\in BC(X)$ containing $f^{-1}(B)$, there exists a closed subset F of Y containing B such that $f^{-1}(F)\subseteq C$.
- *Proof.* ⇒). Let f be quasi b open and $B \subseteq Y$. Let $C \in BC(X)$ with $f^{-1}(B) \subseteq C$. Now, put F = Y - f(X - C). It is clear that since $f^{-1}(B) \subseteq C$, $B \subseteq F$. Since f is quasi b – open, F is a closed subset of Y. Also, we have $f^{-1}(F) \subseteq C$.
- \Leftarrow). Let $U \in BO(X)$ and put B = Y f(U). Then $X U \in BC(X)$ with $f^{-1}(B) \subseteq X U$. By assumption, there exists a closed set F of Y such that $B \subseteq F$

and $f^{-1}(F) \subseteq X - U$. Hence, we obtain $f(U) \subseteq Y - F$. On the other hand, it follows that $B \subseteq F$, $Y - F \subseteq Y - B = f(U)$. Thus, we have f(U) = Y - F which is open and hence f is a quasi b – open function.

Theorem 3.6. A function $f:(X,\tau)\to (Y,\rho)$ is quasi b – open if and only if $f^{-1}[Cl(B)]\subseteq bCl[f^{-1}(B)]$ for any subset B of Y.

Proof. \Rightarrow). Suppose that f is quasi b – open. For any subset B of Y,

 $f^{-1}(B) \subseteq bCl[f^{-1}(B)]$. Therefore by Theorem 3.5, there exists a closed set F in Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq bCl[f^{-1}(B)]$. Therefore, we obtain,

$$f^{-1}[Cl(B)] \subseteq f^{-1}(F) \subseteq bCl[f^{-1}(B)].$$

 \Leftarrow). Let $B \subseteq Y$ and $C \in BC(X)$ with $f^{-1}(B) \subseteq C$. Put F = Cl(B), then we have $B \subseteq F$ and F is closed and $f^{-1}(F) \subseteq bCl[f^{-1}(B)] \subseteq C$. Then by Theorem 3.5, the function f is $quasi\ b-open$.

Definition 3.7. A function $f:(X,\tau)\to (Y,\rho)$ is said to be quasi b – closed if f(C) is closed in Y for every $C\in BC(X)$.

Clearly, every quasi b-closed function is b-closed.

Theorem 3.8. If a function $f:(X,\tau)\to (Y,\rho)$ is quasi b-closed then $f^{-1}[Int(B)]\subseteq bInt[f^{-1}(B)]$ for every subset B of Y.

Proof. Similar to the proof of Theorem 3.4.

Theorem 3.9. A function $f:(X,\tau)\to (Y,\rho)$ is quasi b-closed if and only if for any subset B of Y and for any $U\in BO(X)$ containing $f^{-1}(B)$, there exists an open subset V of Y containing B such that $f^{-1}(V)\subseteq U$.

Proof. Similar to the proof of Theorem 3.5.

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19, we can prove the following three theorems

Theorem 3.10. Let $f:(X,\tau)\to (Y,\rho)$ be a quasi b – open bijection. Then the following hold

- a) If X is $b T_1$ then Y is T_1 .
- \vec{b}) If X is $b-T_2$ then Y is T_2 .

Theorem 3.11. Let $f:(X,\tau)\to (Y,\rho)$ be a quasi b – open bijection. Then the following hold

- a) If Y is compact, then X is b-compact.
- b) If Y is Lindelöf, then X is $b-Lindel\"{o}f$.

Theorem 3.12. If $f:(X,\tau)\to (Y,\rho)$ is a quasi b – open surjection and Y is connected then X is b – connected.

4. Strongly b-Open and Strongly b-Closed Functions

Definition 4.1. A function $f:(X,\tau)\to (Y,\rho)$ is said to be strongly b – open if $f(U)\in BO(Y)$ for every $U\in BO(X)$.

Clearly, every $strongly\ b-open$ function is b-open.

Theorem 4.2. Let $f:(X,\tau)\to (Y,\rho)$ and $g:(Y,\rho)\to (Z,\sigma)$ be two strongly b – open functions. Then the composition function $gof:(X,\tau)\to (Z,\sigma)$ is strongly b – open.

Proof. Let $U \in BO(X)$. Then $f(U) \in BO(Y)$ since f is $strongly \ b-open$. But g is $strongly \ b-open$ so $g(f(U)) \in BO(Z)$. Hence gof is $strongly \ b-open$.

Theorem 4.3. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b – open if and only if for each $x\in X$ and for any $U\in BO(X)$ with $x\in U$, there exists $V\in BO(Y)$ such that $f(x)\in V$ and $V\subseteq f(U)$.

Proof. It is obvious. \Box

Theorem 4.4. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b – open if and only if for each $x\in X$ and for any b – neighborhood U of x in X, there exists a b – neighborhood V of f(x) in Y such that $V\subseteq f(U)$.

Proof. ⇒). Let $x \in X$ and let U be a b-neighborhood of x. Then there exists $W \in BO(X)$ such that $x \in W \subseteq U$. Then $f(x) \in f(W) \subseteq f(U)$. But , $f(W) \in BO(Y)$ since f is $strongly\ b-open$. Hence V = f(W) is a b-neighborhood of f(x) and $V \subseteq f(U)$.

 \Leftarrow). Let $U \in BO(X)$ and $x \in U$. Then U is a b-neighborhood of x. So by assumption, there exists a b-neighborhood $V_{f(x)}$ of f(x) such that, $f(x) \in V_{f(x)} \subseteq f(U)$. It follows that f(U) is a b-neighborhood of each of its points. Therefore, $f(U) \in BO(Y)$. Hence f is strongly b-open.

Theorem 4.5. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b – open if and only if $f[bInt(A)]\subseteq bInt[f(A)]$, for every $A\subseteq X$.

Proof. \Rightarrow). Let $A \subseteq X$ and $x \in bInt(A)$. Then there exists $U_x \in BO(X)$ such that $x \in U_x \subseteq A$. So $f(x) \in f(U_x) \subseteq f(A)$ and by assumption, $f(U_x) \in BO(Y)$. Hence, $f(x) \in bInt[f(A)]$. Thus $f[bInt(A)] \subseteq bInt[f(A)]$.

 \Leftarrow). Let $U \in BO(X)$. Then by assumption, $f[bInt(U)] \subseteq bInt[f(U)]$. Since bInt(U) = U and $bInt[f(U)] \subseteq f(U)$. Hence, f(U) = bInt[f(U)]. Thus, $f(U) \in BO(Y)$.

Theorem 4.6. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b-open if and only if $bInt[f^{-1}(B)]\subseteq f^{-1}[bInt(B)]$, for every $B\subseteq Y$.

 $Proof. \Rightarrow$). Let $B \subseteq Y$. Since $bInt[f^{-1}(B)] \in BO(X)$ and f is $strongly \ b-open$, $f[bInt(f^{-1}(B))] \in BO(Y)$. Also we have $f[bInt(f^{-1}(B))] \subseteq f[f^{-1}(B)] \subseteq B$. Hence, $f[bInt(f^{-1}(B))] \subseteq bInt(B)$. Therefore, $bInt[f^{-1}(B)] \subseteq f^{-1}[bInt(B)]$.

 \Leftarrow). Let $A \subseteq X$. Then $f(A) \subseteq Y$. Hence by assumption, we obtain,

$$bInt(A) \subseteq bInt[f^{-1}(f(A))] \subseteq f^{-1}[bInt(f(A))].$$

This implies that,

$$f[bInt(A)] \subseteq f[f^{-1}(bInt(f(A))] \subseteq bInt[f(A)].$$

Thus, $f[bInt(A)] \subseteq bInt[f(A)]$, for all $A \subseteq X$. Hence, by Theorem 4.5, f is strongly b-open.

Theorem 4.7. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b – open if and only if $f^{-1}[bCl(B)]\subseteq bCl[f^{-1}(B)]$, for every $B\subseteq Y$.

Proof. \Rightarrow). Let $B \subseteq Y$ and $x \in f^{-1}[bCl(B)]$. Then $f(x) \in bCl(B)$. Let

 $U \in BO(X)$ such that $x \in U$. By assumption, $f(U) \in BO(Y)$ and $f(x) \in f(U)$. Thus $f(U) \cap B \neq \phi$. Hence $U \cap f^{-1}(B) \neq \phi$. Therefore, $x \in bCl[f^{-1}(B)]$. So we obtain $f^{-1}[bCl(B)] \subseteq bCl[f^{-1}(B)]$.

 \Leftarrow). Let $B \subseteq Y$. Then $Y - B \subseteq Y$. By assumption,

$$f^{-1}[bCl(Y-B)] \subseteq bCl[f^{-1}(Y-B)].$$

This implies that,

$$X - bCl[f^{-1}(Y - B)] \subseteq X - f^{-1}[bCl(Y - B)].$$

Hence,

$$X - bCl[X - f^{-1}(B)] \subseteq f^{-1}[Y - bCl(Y - B)].$$

Then, $bInt[f^{-1}(B)] \subseteq f^{-1}[bInt(B)]$. Now by Theorem 4.6, it follows that f is $strongly \ b-open$.

Definition 4.8. [3]. A function $f:(X,\tau)\to (Y,\rho)$ is said to be b-irresolute if $f^{-1}(V)\in BO(X)$ for every $V\in BO(Y)$.

Theorem 4.9. Let $f:(X,\tau)\to (Y,\rho)$ be a function and $g:(Y,\rho)\to (Z,\sigma)$ be a strongly b – open injection. If $gof:(X,\tau)\to (Z,\sigma)$ is b – irresolute, then f is b – irresolute.

Proof. Let $U \in BO(Y)$. Then $g(U) \in BO(Z)$ since g is strongly b-open. Also gof is b-irresolute, so we have $(gof)^{-1}[g(U)] \in BO(X)$. Since g is an injection, we have $(gof)^{-1}[g(U)] = (f^{-1}og^{-1})[g(U)] = f^{-1}[g^{-1}(g(U))] = f^{-1}(U)$. Then, $f^{-1}(U) \in BO(X)$. So f is b-irresolute.

Theorem 4.10. Let $f:(X,\tau)\to (Y,\rho)$ be strongly b – open surjection and $g:(Y,\rho)\to (Z,\sigma)$ be any function. If $g\circ f:(X,\tau)\to (Z,\sigma)$ is b – irresolute, then g is b – irresolute.

Proof. Let $V \in BO(Z)$. Then $(gof)^{-1}(V) \in BO(X)$ since gof is b-irresolute. Also f is strongly b-open, so $f[(gof)^{-1}(V)] \in BO(Y)$. Since f is surjective, we note that $f[(gof)^{-1}(V)] = [fo(gof)^{-1}](V) = [fo(f^{-1}og^{-1})](V) = [(fof^{-1})og^{-1}](V) = g^{-1}(V)$. Hence g is b-irresolute.

Definition 4.11. A function $f:(X,\tau)\to (Y,\rho)$ is said to be strongly b-closed if $f(C)\in BC(Y)$ for every $C\in BC(X)$.

The straight forward proof of the following theorem is omitted.

Theorem 4.12. If $f:(X,\tau)\to (Y,\rho)$ and $g:(Y,\rho)\to (Z,\sigma)$ are two strongly b-closed functions, then $gof:(X,\tau)\to (Z,\sigma)$ is a strongly b-closed function.

Theorem 4.13. Let $f:(X,\tau)\to (Y,\rho)$ and $g:(Y,\rho)\to (Z,\sigma)$ be two functions such that $gof:(X,\tau)\to (Z,\sigma)$ is a strongly b-closed function. Then

- 1) If f is b-irresolute and surjection then g is strongly b-closed.
- 2) If g is b-irresolute and injection, then f is strongly b-closed.

Proof. (1). Let $F \in BC(Y)$. Since f is b-irresolute, $f^{-1}(F) \in BC(X)$. Now gof is $strongly\ b-closed$ and f is surjection, then $(gof)(f^{-1}(F))=g(F)\in BC(Z)$. This implies that g is $strongly\ b-closed$.

(2). Let $C \in BC(X)$. Since gof is $strongly \ b-closed$, $(gof)(C) \in BC(Z)$. Now g is b-irresolute and injection, so $g^{-1}[(gof)(C)] = f(C) \in BC(Y)$. This shows that f is $strongly \ b-closed$.

Theorem 4.14. A function $f:(X,\tau)\to (Y,\rho)$ is strongly b-closed if and only if $bCl[f(A)]\subseteq f[bCl(A)]$, for every $A\subseteq X$.

Proof. ⇒). Let f be $strongly\ b-closed$ and $A \subseteq X$. Then $f[bCl(A)] \in BC(Y)$. Since $f(A) \subseteq f[bCl(A)]$, we obtain $bCl[f(A)] \subseteq f[bCl(A)]$.

 \Leftarrow). Let $C \in BC(X)$. By assumption, we obtain,

$$f(C)\subseteq bCl[f(C)]\subseteq f[bCl(C)]=f(C).$$

Hence f(C) = bCl[f(C)]. Thus, $f(C) \in BC(Y)$. It follows that f is strongly b-closed.

Theorem 4.15. Let $f:(X,\tau)\to (Y,\rho)$ be a function such that $Int[Cl(f(A))]\subseteq f[bCl(A)]$ for every $A\subseteq X$. Then f is strongly b-closed.

Proof. Let $C \in BC(X)$. Then by assumption we have,

$$Int[Cl(f(C))] \subseteq f[bCl(C)] = f(C).$$

Put F = Cl[f(C)]. Then F is closed in Y. Also it implies that $Int(F) \subseteq f(C) \subseteq F$. Hence, f(C) is semi closed in Y. Since $SO(Y) \subseteq BO(Y)$, $f(C) \in BC(Y)$. This implies that f is $strongly \ b-closed$.

Theorem 4.16. Let $f:(X,\tau)\to (Y,\rho)$ be a strongly b-closed function and $B\subseteq Y$. If $U\in BO(X)$ with $f^{-1}(B)\subseteq U$, then there exists $V\in BO(Y)$ with $B\subseteq V$ such that $f^{-1}(B)\subseteq f^{-1}(V)\subseteq U$.

Proof. Let V = Y - f(X - U). Then Y - V = f(X - U). Since f is strongly b-closed, $V \in BO(Y)$. Since $f^{-1}(B) \subseteq U$, we have $Y - V = f(X - U) \subseteq f[f^{-1}(Y - B)] \subseteq Y - B$. Hence, $B \subseteq V$. Also $X - U \subseteq f^{-1}[f(X - U)] = f^{-1}(Y - V) = X - f^{-1}(V)$. So $f^{-1}(V) \subseteq U$.

Theorem 4.17. Let $f:(X,\tau)\to (Y,\rho)$ be a surjective strongly b-closed function and $B,C\subseteq Y$. If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint b-neighborhoods, then so have B and C.

Proof. Let E and F be the disjoint b-neighborhood of $f^{-1}(B)$ and $f^{-1}(C)$ respectively. Then by the last theorem There exist two sets $U, V \in BO(Y)$ with $B \subseteq U$ and $C \subseteq V$ such that $f^{-1}(B) \subseteq f^{-1}(U) \subseteq bInt(E)$ and $f^{-1}(C) \subseteq f^{-1}(V) \subseteq bInt(F)$. Since E and F are disjoint, so are bInt(E) and bInt(F), and hence so $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint as well. It follows that U and V are disjoint too since f is a surjective function.

Theorem 4.18. A surjective function $f:(X,\tau)\to (Y,\rho)$ is strongly b-closed if and only if for each subset B of Y and each set $U\in BO(X)$ containing $f^{-1}(B)$, there exists a set $V\in BO(Y)$ containing B, such that $f^{-1}(V)\subseteq U$.

Proof. \Rightarrow). This follows from Theorem 4.16.

 \Leftarrow). Let $C \in BC(X)$ and $y \in Y - f(C)$. Then $f^{-1}(y) \subseteq X - f^{-1}(f(C)) \subseteq X - C$ and $X - C \in BO(X)$. Hence by assumption, there exists a set $V_y \in BO(Y)$ containing y such that $f^{-1}(V_y) \subseteq X - C$. This implies that $y \in V_y \subseteq Y - f(C)$. Thus, $Y - f(C) = \bigcup \{V_y : y \in Y - f(C)\}$. Hence, $Y - f(C) \in BO(Y)$. Therefore, $f(C) \in BC(Y)$.

Theorem 4.19. Let $f:(X,\tau)\to (Y,\rho)$ be a bijection. Then the following are equivalent:

- 1) f is strongly b closed.
- 2) f is strongly b open.
- 3) f^{-1} is b-irresolute.

- *Proof.* (1) \rightarrow (2). Let $U \in BO(X)$. Then $X U \in BC(X)$. By (1),
- $f(X-U) \in BC(Y)$. But f(X-U) = f(X) f(U) = Y f(U). Thus $f(U) \in BO(Y)$.
- $(2) \to (3)$. Let $A \subseteq X$. Since f is $strongly \ b-open$, so by Theorem 4.7, $f^{-1}[bCl(f(A))] \subseteq bCl[f^{-1}(f(A))]$. It implies that $bCl[f(A)] \subseteq f[bCl(A)]$. Thus $bCl[(f^{-1})^{-1}(A)] \subseteq (f^{-1})^{-1}[bCl(A)]$, for all $A \subseteq X$. Then, it follows that f^{-1} is b-irresolute.
- (3) → (1). Let $C \in BC(X)$. Then $X C \in BO(X)$. Since f^{-1} is b irresolute, $(f^{-1})^{-1}(X C) \in BO(Y)$. But $(f^{-1})^{-1}(X C) = f(X C) = Y f(C)$. Thus $f(C) \in BC(Y)$.

In a similar way used in proving Theorem 2.15, Theorem 2.17 and Theorem 2.19 we can prove the following three theorems

Theorem 4.20. Let $f:(X,\tau)\to (Y,\rho)$ be a strongly b – open bijection. Then the following hold

- a) If X is $b T_1$ then Y is $b T_1$.
- b) If X is $b-T_2$ then Y is $b-T_2$.

Theorem 4.21. Let $f:(X,\tau)\to (Y,\rho)$ be a strongly b – open bijection. Then the following hold

- a) If Y is b-compact, then X is b-compact.
- b) If Y is $b-Lindel\"{o}f$, then X is $b-Lindel\"{o}f$.

Theorem 4.22. If $f:(X,\tau)\to (Y,\rho)$ is a strongly b – open surjection and Y is b – connected then X is b – connected.

References

- [1] D. Andrijević, On b-open sets, Mat. Vesnik., 48(1996), 59-64.
- [2] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [3] A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta Univ., 1997.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**(1963), 36-41.

FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, AL AL-BAYT UNIVERSITY, P.O. BOX: 130095, MAFRAQ, JORDAN

E-mail address: jjmmrr971@yahoo.com