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ON FRACTIONAL DIFFERENTIABLE s—CONVEX FUNCTIONS

M. ALOMARI ), M. DARUS (), S.S. DRAGOMIR (? AND U.S. KIRMACI )

ABSTRACT. In this paper some properties of s—convex functions are considered. A
combination between local fractional a—derivative and s—convexity are introduced
and investigated.

1. Introduction

In [4], Hudzik and Maligranda considered among others the class of functions which
are s-convex in the second sense. This class is defined in the following way: a function
f:RT = R, where RT = [0, 00), is said to be s-convex in the second sense if

(1.1) flaz+ By) <o f(z) + 5°f (y)

for all z,y € [0,00), o, 8 > 0 with « + 3 = 1 and for some fixed s € (0,1]. This class
of s-convex functions in the second sense is usually denoted by K2. It is convenient
to mention that, Hudzik and Maligranda (see [4]), proved that the functions in K2
are nonnegative. Also, it can be easily seen that for s = 1, s-convexity reduces to
ordinary convexity of functions defined on [0, c0).

In [3], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s—convex functions in the second sense.

Theorem 1.1. Suppose that f : [0,00) — [0,00) is an s—convex function in the
second sense, where s € (0,1) and let a,b € [0,00), a < b. If f € L*[0,1], then the
following inequalities hold:

(1.2) 281f(a;b)§bia/f(x)dxgw.

The constant k = 5%1 is the best possible in the second inequality in (1.2).The above

inequalities are sharp.
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In literature, for a continuous function f on (a,b) and for all x € [a,b], « € Ry,
the left (respectively right) Riemann—Liouville integral at the point x is defined by

1 (f) () = ﬁ / (w0 f (8 dr,

b
Iy, (f) (x) = ﬁ/ (t —x)* " f (t)dt.

The left (respectively right) Riemann-Liouville derivative at x is given by

Di () @) = I (1) (@),
DiL () (0) = -1 () ().

Therefore, the function f admits a fractional derivative of order a, 0 < o < 1 by
below (above) if D* (f) (x) exists (if DY (f) (x) exists).

In [1], Adda and Cresson, have introduced a local fractional derivative as follows:

Definition 1.2. Let f : [a,b] — R be a continuous function. Then, f is said to have
right (resp. left) local fractional derivative of order o € (0,1) at y € [a,b] if

dy f () = lim Dy lo (f(z) = f(y)],

y
for o = £, respectively.

One can deduce the following properties for f.
(1) If f is differentiable at x, we have

lim d3f (@) = /' (@), 0 = +
(2) We have d% (C) =0, for all C € R and 0 = +.

Theorem 1.3. Let f : [a,b] — R be a continuous function. Then the right (resp.
left) local fractional derivative d3f (z), 0 < a <1 aty € |a,b] is given by

& f (2) =T (1 + ) lim W =1 @)

y—ao |y —a|”

Theorem 1.4. Let f : [a,b] — R be a continuous function such that d2f (z) exists
fora >0, 0 ==, then

F) = £ )+ o5 oty = )"+ B (o),
with

1 v d
Roog) =opes [ G Grota) (oo -y 1) de,
0
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and

where,

Fo(y,0(x—y), ) = Dy_,lo(f = f(y)](x).

Also, in [1], the notion of a local a—derivative is introduced as follows:

Definition 1.5. Let I be an open interval of R, o € (0,1] and let f be a function
on I. Then, f is said to have a right (resp. left) locally a—derivative at to € I iff the

f)—f(to)

function t — o 0=+ (resp. 0 = —), admits, a limit in R when t — tJ.

In general, the a—right or a—left local fractional derivative may not exist. However,
the following quantities are always defined:

T (%) = [ (20)

r—>x3’ (513 — xO) N Ai (IO) ’
Cf@ )
x_moJr (I_x()) _>\+< 0)7
— @S
)
lim f(;U) — f(SC0> — )\ (xO)

i—ay — (= (= 20))"

If AY (z0) and A (z) are finite and equal, then they are equal to the a-right local
derivative at xzg. Similarly, if A® (zo) and A\* (x¢) are finite and equal, then they are
equal to the a—left local derivative at z.

Let us assume that tlirg ug (t) = d2f (z), then tlgg] {u, (t) —d%f (z)} = 0. Set

lim w, (t) = 0. Then,

f () = f(x)

ooy T

ug (t) = dy f (z) —
and we write

f(t) = fx)

o= dof (z) — ue (t)

which is equivalent to

fO)=[f(@)+o(o(t—2)"df (x) = us (1))
Simply, we show that f is right (resp. left) a—differentiable at x, if tlima ug (t); exists.
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In this paper we study some properties of s—convex functions, and we give a com-
bination between the local fractional a—derivative and s—convexity for some function
f defined on real interval.

2. Some Properties of s—Convex Functions

We begin with the following theorem, see also [2]:

Theorem 2.1. Let f be an s—convex function on (a,b) and let x; € (a,b),
i=1,23,.... Ifa; >0 and Y jo; =1, then

(2.1) f (Z Oéﬂ'i) < Z@ff ().

Proof. Let z; € (a,b), a; > 0 and " ja; =1, for all i = 1,2,3,.... The proof will
be done by induction. For n = 2, the result holds by the assumptions, since f is
s—convex. Suppose that (2.1) holds for n = k, that is

(2.2) f (Z aixi> < Zaf (x;).

We want to show that (2.2) is true for n = k 4+ 1. Therefore, by induction we have,

k1 k
/ (Z Oéﬂz’) = f (Z T + Oék+1xk+1>
i—1

i=1

IN

k
Z o f (@) + gy f (@)
i=1
k+1
= Zaff (xl)v
i=1
which is required. O

Theorem 2.2. Fiz s € (0,1]. Let f be an s—convex function on the open (a,b) and
let x(t) : [c,d] — RT be integrable with a < z(t) < b. If a(t) : [c,d] — R is positive,
fcda (t)dt =1, and ax(t) is integrable on [c,d], then

(2.3) f </cda (1) (1) dt) < /Cd o (1) f (z (b)) dt.

Proof. The proof follows from the discrete version (2.1) by considering Riemann sums.
The details are left to the interested reader. u
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Theorem 2.3. Let [ : [a,b] — Ry, be an s—convex function in |a,b], then, for all
distinct x1, x9, x5 € [a,b], such that x1 < x9 < x3, the following inequality

(2.4) f(@2) (x5 —21)" < (23 — 22)° f (21) + (22 — 71)° f (3),
holds, for all s € (0,1].

Proof. Let 1, 29,23 be a distinct points in [a,b]. Setting A\ = o2, Ty = Az +
(1 — X\) z3, we have,

flzs) = fQai+(1—A) )
< N f (@) + (1 =N f (23)

- (jjjij) f<x1>+(jjj2) f ().

which gives the required result. U

Theorem 2.4. If f : [a,b] — Ry is s—convex, and a <t < “Ft <r <u <b, then,

fr)=f@) _ fu) = f Q@)
(r—t°* — (u—1t)" "~

(2.5)

for all s € (0,1].
r—t

Proof. Suppose that f is s—convex. Let a <t < % <r <u < b, set A = —. and
r = Au+ (1 — A)t, then we have

Fr)y=fQut+@=XN1t) < Xf(u)+(1=2)"f(1)

(o p (2 e
- (=) 1w+ (A=) o

However, “TH < r, which is equivalent to write, r — ¢t > u — r, and this implies that

ol > umt for all £ < Y < < u, therefore the inequalities
u—t u—t 2

(=0 s+ (5=7) r0 < (555) vw-so)

(2=5) -y +s0.

u—t

IN

hold, since f is nonnegative. Thus,

ros(

r—t

u—t

)s(f(U)—f(t))Jrf(t),
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and we write,

u—1
hence,
F) = F@) _ f@) = 1)
(r=t" = (=t~
which holds if f is s—convex, and the proof is completed. O

3. Fractional Derivatives and s—Convexity

In Definition 1.5, we assumed that f has an a—derivative of order « if d% f exists
and d® f = df f. We denote the a—derivative of f by df.

Lemma 3.1. If f : I — R* is an s—convex function, then [ is s—Hélder (0 < s < 1)
on any compact interval [a,b] C I°.

Proof. By Theorem 2.4, we have

2 f(@) <dif(b),

(y — )
for all :v .y € |a,b] With a: < v, hence f verifies the Holder conditions with
H= I‘(1+s max{|d b} U

Theorem 3.2. Let f : [a,b] — R, be an s—convex function, then f is s—Holder on
I°:=(a,b) and d* (f) (x) and d5 (f) (x) exist and are finite at each point in I°.

Proof. According to Theorem 2.4 and Lemma 3.1, we have

f@)~fa) _ fl)~fla) _ ()1 (a)

(r—a) = (y—a ~ (z-a)
forall x <y <a<zel. It follows that
. f(z) = fla)
d’ f (a) < W‘

A symmetric argument will then yield the existence of d%_ f (a) and the availability of
the relation d° f (a) < d% f (a). On the other hand, startmg withe <u <v<yel°,
Theorem 2.4 and Lemma 3.1 yield

flu)=flx) fl)=flz) _ fly) = fv)

(w—2)" = (v—a) (y—v)
Since f admits finite s—derivatives at each interior point, it will be s-Holder continuous
at each interior point. Il

<
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Theorem 3.3. A function f : (a,b) — R is s—convex iff there is an increasing
function g : (a,b) — R* and a point ¢ € (a,b) such that for all x € (a,b),

(3.1) f (@)~ o) = / gt

Proof. (=) Suppose that f is s—convex. Choose g = d?_ f, which exists and is increas-
ing (follows by Theorems 2.4, 3.2) and let ¢ € (a,b), then f is absolutely continuous
on [c, x]. By elementary calculus

f@-1@= [ &soa= [ g

C

(<) Conversely, suppose that (3.1) holds with g increasing. Let a, 3 be positive
with a+ 3 = 1. Then for = < y in (a,b),

o' f (v) + B°f (y) — f (az + By)
o’ f(x) + B°f (y) — (a+ B) f (e + By)
o’ f(z) — af (ax + By) + B°f (y) — Bf (ax + By)
af (z) —af (ax + By) + Bf (y) — Bf (ax + By)
y az+Ly
= 0 g(t)dt—a/ g (t)dt.

az+PBy

v

To bound the last expression, since ¢ is increasing, we simply replace both integrands
by the constant g (ax + By), this being the smallest value of the first integrand and
the largest of the second. Thus,

a’ f (x) + B°f (y) — [ (ax + By)

Y az+PBy
>5[ gwi-af g
az+Py T
> fglaz+By) [y — (ax + By)] — ag (ax + By) (ax + By — ) > 0.
which is equivalent to the inequality that defines s-convexity. U

Theorem 3.4. Let a,, = ﬁ, ne€N. If f:[a,b] — R", is locally a,,—differentiable

on (a,b), and has a local mazimum (minimum) at xo then di* (f) (o) =0, 0 = +.

Proof. Without loss of generality, assume that f has a local maximum at xy. Then,
there exists a § > 0 such that f (xo) > f (), Vo € (zo — 0,20 +0). If x € (xg, 20 + 9),
then z — 29 > 0= (x — 20)*™ > 0 and f (z) — f (7¢) < 0, which means that

(3.2) @ f (3) = lim L&) = (20)

<0, € (20,70 + ) .
T—X0 (.CU - xO)an - v (xo ot )
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If € (xg — d,20), then x — 29 < 0 = (x — )" < 0 and f (z) — f(x¢) > 0, which
means that
[ (@) = ] (@)
. ds = lim &~~~ J A\
(3:3) (o) = Hm =P

Therefore, by (3.2) and (3.3) we have d5" (f) (z9) = 0, for all n = 1,2,3,.... The
proof where f has a local minimum at xy goes likewise. U

Theorem 3.5. Let o, = Tlﬂ, ne€N. If f:[a,b] = RY is a continuous function,
then there ezists a point ¢ € (a,b), such that

f(b) = f(a)

(3.4 ayio < LU <.

Here,
on f(x) = limin f (@) = /() and  don f (z) = limsu f@) = f (o)
g f (x) = liminf BT and @ () = msup

are respectively the lower derivative and the upper derivative of f at ¢, o0 = +.

Proof. As in the smooth case, and since f is continuous, we consider the function

F(x)zf(x)—%(m—a)an, z € [a,b].

Clearly, I is continuous and F'(a) = F'(b). If F' attains its supremum at ¢ € (a,b),
then dg» f (¢) <0 < dy~ f (c), and the conclusion is immediate. The same is true when

F attains its infimum at an interior point of [a, b]. If both extremes are attained at
the endpoints, then F' is constant and the conclusion works for all ¢ € (a, b). U

Theorem 3.6. Let 0 < s < 1. Suppose that f is s—differentiable on (a,b). Then, f
s s—convex iff d°f is increasing.

Proof. (=) done by Theorem 3.3.
(<) Suppose that d° f (x) is increasing, then, the fundamental theorem of calculus
assures that

f(r)—f(c)z/xdsf(t)dt

C

for any ¢ € (a,b). It follows that f is s—convex. O

Definition 3.7. Let 0 < s < 1. We say that a function f defined on [a,b] has a
fractional support of order s at xq if there exists a function S of the form

Sy () = f(x0) + oms (o(x — x0))°, such that Sy (x) < f(x) for every x € [a,b),
where my = d*f.

Theorem 3.8. A function f : (a,b) — RY, is s—convex iff there is at least one
fractional support of order s at each xy € (a,b).
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Proof. If f is s—convex then by Theorem 3.2, d° f (z),d5 f () exist.

Let p = min {d* f (z),d5 f (z)}, and P = max {d* f (z),d5 f (z)}.

For 4 € (a,b), choose m, € [p, P|. Then
f () = [ (x0)
o(o(x —xg))°

as ¢ > g (or & < mp). In either case, f(z) — f(xg) > oms (0 (x — x9))°, that is,

f(x) > f(zg)+oms (o (x—x0))°. Conversely, suppose that f has fractional support

of order s at each point of (a,b). Let z,y € (a,b). For xo = Az + (1 — Ny, A € [0, 1],

let S, (z) = f (%) + om, (o(x — z0))° be the fractional support for f at xy. Then

f (o) = S5 (o) = N85 (2) + (1 = A)" S5 (y) < NS (2) + (1 = A)" f (),
as desired. 0

>ms (< my)

Corollary 3.9. If f : (a,b) — R", is an s—convex function, then for all x,y € |a,b],
we have

(3.5) f@)=fly) =ms(o(z—y)).
Proof. Follows directly from Definition 3.7.

Theorem 3.10. Let f : (a,b) — RT, be an s—convex function. Then f is
s—differentiable at xo iff the s—fractional support for f at xy is unique. Moreover,
S (z) = f (x0) + om (o(x — x0))” provides this unique fractional support.

Proof. 1t is clear from the proof of Theorem 3.8 that corresponding to each
ms € [p, P], there is a fractional support of order s for f at xg. Uniqueness of the frac-
tional support means d° f (x),d5 f (z); that is d°f (x) exists. Any fractional of sup-
port S, (z) = f (zo)+oms (o (x — x0))°, gives that [ (z)— f (z0) > oms (0 (x — x0))°".
For 1 < x¢ < x2, we have

f(z1) — f(xo)S <m, < f(z2) — f(xo)s_

o (o (x1 —xp)) o (o (x9 — x0))
Taking the limit as z1 — 2y and z, — af, gives d° f (z) < my < di f (z),
so s—differentiability of f at xy implies uniqueness of mg, hence the support S = S,
at xo. O
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