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ON FRACTIONAL DIFFERENTIABLE s–CONVEX FUNCTIONS

M. ALOMARI (1), M. DARUS (1), S.S. DRAGOMIR (2) AND U.S. KIRMACI (3)

Abstract. In this paper some properties of s–convex functions are considered. A
combination between local fractional α–derivative and s–convexity are introduced
and investigated.

1. Introduction

In [4], Hudzik and Maligranda considered among others the class of functions which
are s-convex in the second sense. This class is defined in the following way: a function
f : R+ → R+, where R+ = [0,∞), is said to be s-convex in the second sense if

f (αx + βy) ≤ αsf (x) + βsf (y)(1.1)

for all x, y ∈ [0,∞), α, β ≥ 0 with α + β = 1 and for some fixed s ∈ (0, 1]. This class
of s-convex functions in the second sense is usually denoted by K2

s . It is convenient
to mention that, Hudzik and Maligranda (see [4]), proved that the functions in K2

s

are nonnegative. Also, it can be easily seen that for s = 1, s-convexity reduces to
ordinary convexity of functions defined on [0,∞).

In [3], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s–convex functions in the second sense.

Theorem 1.1. Suppose that f : [0,∞) → [0,∞) is an s–convex function in the
second sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1], then the
following inequalities hold:

2s−1f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s + 1
.(1.2)

The constant k = 1
s+1

is the best possible in the second inequality in (1.2).The above
inequalities are sharp.
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In literature, for a continuous function f on (a, b) and for all x ∈ [a, b], α ∈ R+,
the left (respectively right) Riemann–Liouville integral at the point x is defined by

Iα
a,− (f) (x) =

1

Γ (α)

∫ x

a

(x− t)α−1 f (t) dt,

Iα
b,+ (f) (x) =

1

Γ (α)

∫ b

x

(t− x)α−1 f (t) dt.

The left (respectively right) Riemann–Liouville derivative at x is given by

Dα
a,− (f) (x) =

d

dx
I1−α
a,− (f) (x) ,

Dα
b,+ (f) (x) =

d

dx
I1−α
b,+ (f) (x) .

Therefore, the function f admits a fractional derivative of order α, 0 < α < 1 by
below (above) if Dα

− (f) (x) exists (if Dα
+ (f) (x) exists).

In [1], Adda and Cresson, have introduced a local fractional derivative as follows:

Definition 1.2. Let f : [a, b] → R be a continuous function. Then, f is said to have
right (resp. left) local fractional derivative of order α ∈ (0, 1) at y ∈ [a, b] if

dα
σf (x) = lim

x→yσ
Dα

y,−σ [σ (f (x)− f (y))] ,

for σ = ±, respectively.

One can deduce the following properties for f .

(1) If f is differentiable at x, we have

lim
α→1

dα
σf (x) = f ′ (x) , σ = ±.

(2) We have dα
σ (C) = 0, for all C ∈ R and σ = ±.

Theorem 1.3. Let f : [a, b] → R be a continuous function. Then the right (resp.
left) local fractional derivative dα

σf (x), 0 < α < 1 at y ∈ [a, b] is given by

dα
σf (x) = Γ (1 + α) lim

y→xσ

σ (f (y)− f (x))

|y − x|α .

Theorem 1.4. Let f : [a, b] → R be a continuous function such that dα
σf (x) exists

for α > 0, σ = ±, then

f (x) = f (y) + σ
dα

σf (x)

Γ (1 + α)
[σ (y − x)]α + Rσ (x, y) ,

with

Rσ (x, y) = σ
1

Γ (1 + α)

∫ x−y

0

d

dt
Fσ (y, σt, α) (σ (x− y − t))α dt,
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and

lim
x→yσ

Rσ (x, y)

(σ (x− y))α = 0,

where,

Fσ (y, σ (x− y) , α) = Dα
y,−σ [σ (f − f (y))] (x) .

Also, in [1], the notion of a local α–derivative is introduced as follows:

Definition 1.5. Let I be an open interval of R, α ∈ (0, 1] and let f be a function
on I. Then, f is said to have a right (resp. left) locally α–derivative at t0 ∈ I iff the

function t → f(t)−f(t0)
σ(σ(t−t0)α)

, σ = + (resp. σ = −), admits, a limit in R when t → tσ0 .

In general, the α–right or α–left local fractional derivative may not exist. However,
the following quantities are always defined:

lim
x→x+

0

f (x)− f (x0)

(x− x0)
α = Λα

+ (x0) ,

lim
x→x+

0

f (x)− f (x0)

(x− x0)
α = λα

+ (x0) ,

lim
x→x−0

f (x)− f (x0)

− ( − (x− x0))
α = Λα

− (x0) ,

lim
x→x−0

f (x)− f (x0)

− ( − (x− x0))
α = λα

− (x0) .

If Λα
+ (x0) and λα

+ (x0) are finite and equal, then they are equal to the α–right local
derivative at x0. Similarly, if Λα

− (x0) and λα
− (x0) are finite and equal, then they are

equal to the α–left local derivative at x0.
Let us assume that lim

t→xσ
ux (t) = dα

σf (x), then lim
t→xσ

{ux (t)− dα
σf (x)} = 0. Set

lim
t→xσ

ux (t) = 0. Then,

ux (t) = dα
σf (x)− f (t)− f (x)

σ (σ (t− x))α , t 6= x.

and we write

f (t)− f (x)

σ (σ (t− x))α = dα
σf (x)− ux (t)

which is equivalent to

f (t) = f (x) + σ (σ (t− x))α [dα
σf (x)− ux (t)] .

Simply, we show that f is right (resp. left) α–differentiable at x, if lim
t→xσ

ux (t); exists.
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In this paper we study some properties of s–convex functions, and we give a com-
bination between the local fractional α–derivative and s–convexity for some function
f defined on real interval.

2. Some Properties of s–Convex Functions

We begin with the following theorem, see also [2]:

Theorem 2.1. Let f be an s–convex function on (a, b) and let xi ∈ (a, b),
i = 1, 2, 3, .... If αi > 0 and

∑n
i=0 αi = 1, then

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αs
if (xi).(2.1)

Proof. Let xi ∈ (a, b), αi > 0 and
∑n

i=0 αi = 1, for all i = 1, 2, 3, .... The proof will
be done by induction. For n = 2, the result holds by the assumptions, since f is
s–convex. Suppose that (2.1) holds for n = k, that is

f

(
k∑

i=1

αixi

)
≤

k∑
i=1

αs
if (xi).(2.2)

We want to show that (2.2) is true for n = k + 1. Therefore, by induction we have,

f

(
k+1∑
i=1

αixi

)
= f

(
k∑

i=1

αixi + αk+1xk+1

)

≤
k∑

i=1

αs
if (xi) + αs

k+1f (xk+1)

=
k+1∑
i=1

αs
if (xi),

which is required. ¤

Theorem 2.2. Fix s ∈ (0, 1]. Let f be an s–convex function on the open (a, b) and
let x(t) : [c, d] → R+ be integrable with a < x(t) < b. If α(t) : [c, d] → R+ is positive,∫ d

c
α (t) dt = 1, and αx(t) is integrable on [c, d], then

f

(∫ d

c

α (t) x (t) dt

)
≤

∫ d

c

αs (t) f (x (t)) dt.(2.3)

Proof. The proof follows from the discrete version (2.1) by considering Riemann sums.
The details are left to the interested reader. ¤
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Theorem 2.3. Let f : [a, b] → R+, be an s–convex function in [a, b], then, for all
distinct x1, x2, x3 ∈ [a, b], such that x1 < x2 < x3, the following inequality

f (x2) (x3 − x1)
s ≤ (x3 − x2)

s f (x1) + (x2 − x1)
s f (x3) ,(2.4)

holds, for all s ∈ (0, 1].

Proof. Let x1, x2, x3 be a distinct points in [a, b]. Setting λ = x3−x2

x3−x1
, x2 = λx1 +

(1− λ) x3, we have,

f (x2) = f (λx1 + (1− λ) x3)

≤ λsf (x1) + (1− λ)s f (x3)

=

(
x3 − x2

x3 − x1

)s

f (x1) +

(
x2 − x1

x3 − x1

)s

f (x3) ,

which gives the required result. ¤

Theorem 2.4. If f : [a, b] → R+ is s–convex, and a < t < u+t
2
≤ r < u < b, then,

f (r)− f (t)

(r − t)s ≤ f (u)− f (t)

(u− t)s ,(2.5)

for all s ∈ (0, 1].

Proof. Suppose that f is s–convex. Let a < t < u+t
2
≤ r < u < b, set λ = r−t

u−t
and

r = λu + (1− λ) t, then we have

f (r) = f (λu + (1− λ) t) ≤ λsf (u) + (1− λ)s f (t)

≤
(

r − t

u− t

)s

f (u) +

[
1−

(
r − t

u− t

)]s

f (t)

=

(
r − t

u− t

)s

f (u) +

(
u− r

u− t

)s

f (t)

However, u+t
2
≤ r, which is equivalent to write, r − t ≥ u − r, and this implies that

r−t
u−t

≥ u−r
u−t

, for all t < u+t
2
≤ r < u, therefore the inequalities

(
r − t

u− t

)s

f (u) +

(
u− r

u− t

)s

f (t) ≤
(

r − t

u− t

)s

(f (u)− f (t))

≤
(

r − t

u− t

)s

(f (u)− f (t)) + f (t) ,

hold, since f is nonnegative. Thus,

f (r) ≤
(

r − t

u− t

)s

(f (u)− f (t)) + f (t) ,
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and we write,

f (r)− f (t) ≤
(

r − t

u− t

)s

(f (u)− f (t)) ,

hence,

f (r)− f (t)

(r − t)s ≤ f (u)− f (t)

(u− t)s ,

which holds if f is s–convex, and the proof is completed. ¤

3. Fractional Derivatives and s–Convexity

In Definition 1.5, we assumed that f has an α–derivative of order α if dα
σf exists

and dα
−f = dα

+f . We denote the α–derivative of f by dαf .

Lemma 3.1. If f : I → R+ is an s–convex function, then f is s–Hölder (0 < s < 1)
on any compact interval [a, b] ⊆ I◦.

Proof. By Theorem 2.4, we have

ds
+f (a) ≤ ds

+f (x) ≤ f (y)− f (x)

(y − x)s ≤ ds
−f (x) ≤ ds

−f (b) ,

for all x, y ∈ [a, b] with x < y, hence f verifies the Hölder conditions with
H = 1

Γ(1+s)
max

{∣∣ds
+f (a)

∣∣ ,
∣∣ds
−f (b)

∣∣}. ¤

Theorem 3.2. Let f : [a, b] → R+, be an s–convex function, then f is s–Hölder on
I◦ := (a, b) and ds

− (f) (x) and ds
+ (f) (x) exist and are finite at each point in I◦.

Proof. According to Theorem 2.4 and Lemma 3.1, we have

f (x)− f (a)

(x− a)s ≤ f (y)− f (a)

(y − a)s ≤ f (z)− f (a)

(z − a)s

for all x ≤ y < a < z ∈ I. It follows that

ds
−f (a) ≤ f (z)− f (a)

(z − a)s .

A symmetric argument will then yield the existence of ds
+f (a) and the availability of

the relation ds
−f (a) ≤ ds

+f (a). On the other hand, starting with x < u ≤ v < y ∈ I◦,
Theorem 2.4 and Lemma 3.1 yield

f (u)− f (x)

(u− x)s ≤ f (v)− f (x)

(v − x)s ≤ f (y)− f (v)

(y − v)s .

Since f admits finite s–derivatives at each interior point, it will be s-Hölder continuous
at each interior point. ¤
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Theorem 3.3. A function f : (a, b) → R+ is s–convex iff there is an increasing
function g : (a, b) → R+ and a point c ∈ (a, b) such that for all x ∈ (a, b),

f (x)− f (c) =

∫ x

c

g (t) dt.(3.1)

Proof. (⇒) Suppose that f is s–convex. Choose g = ds
+f , which exists and is increas-

ing (follows by Theorems 2.4, 3.2) and let c ∈ (a, b), then f is absolutely continuous
on [c, x]. By elementary calculus

f (x)− f (c) =

∫ x

c

ds
+f (t) dt =

∫ x

c

g (t) dt.

(⇐) Conversely, suppose that (3.1) holds with g increasing. Let α, β be positive
with α + β = 1. Then for x < y in (a, b),

αsf (x) + βsf (y)− f (αx + βy)

= αsf (x) + βsf (y)− (α + β) f (αx + βy)

= αsf (x)− αf (αx + βy) + βsf (y)− βf (αx + βy)

≥ αf (x)− αf (αx + βy) + βf (y)− βf (αx + βy)

= β

∫ y

αx+βy

g (t) dt− α

∫ αx+βy

x

g (t) dt.

To bound the last expression, since g is increasing, we simply replace both integrands
by the constant g (αx + βy), this being the smallest value of the first integrand and
the largest of the second. Thus,

αsf (x) + βsf (y)− f (αx + βy)

≥ β

∫ y

αx+βy

g (t) dt− α

∫ αx+βy

x

g (t) dt

≥ βg (αx + βy) [y − (αx + βy)]− αg (αx + βy) (αx + βy − x) ≥ 0.

which is equivalent to the inequality that defines s-convexity. ¤

Theorem 3.4. Let αn = 1
2n+1

, n ∈ N. If f : [a, b] → R+, is locally αn–differentiable
on (a, b), and has a local maximum (minimum) at x0 then dαn

σ (f) (x0) = 0, σ = ±.

Proof. Without loss of generality, assume that f has a local maximum at x0. Then,
there exists a δ > 0 such that f (x0) ≥ f (x), ∀x ∈ (x0 − δ, x0 + δ). If x ∈ (x0, x0 + δ),
then x− x0 > 0 ⇒ (x− x0)

αn > 0 and f (x)− f (x0) < 0, which means that

(3.2) dαn
+ f (x0) = lim

x→x0

f (x)− f (x0)

(x− x0)
αn

≤ 0, x ∈ (x0, x0 + δ) .
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If x ∈ (x0 − δ, x0), then x − x0 < 0 ⇒ (x− x0)
αn < 0 and f (x) − f (x0) > 0, which

means that

(3.3) dαn
+ f (x0) = lim

x→x0

f (x)− f (x0)

(x− x0)
αn

≥ 0, x ∈ (x0 − δ, x0) .

Therefore, by (3.2) and (3.3) we have dαn
+ (f) (x0) = 0, for all n = 1, 2, 3, ... . The

proof where f has a local minimum at x0 goes likewise. ¤
Theorem 3.5. Let αn = 1

2n+1
, n ∈ N. If f : [a, b] → R+ is a continuous function,

then there exists a point c ∈ (a, b), such that

(3.4) dαn
σ f (c) ≤ f (b)− f (a)

σ (σ (b− a)αn)
≤ dαn

σ f (c) .

Here,

dαn
σ f (x) = lim inf

x→c

f (x)− f (c)

σ (σ (x− c)αn)
, and dαn

σ f (x) = lim sup
x→c

f (x)− f (c)

σ (σ (x− c)αn)
,

are respectively the lower derivative and the upper derivative of f at c, σ = ±.

Proof. As in the smooth case, and since f is continuous, we consider the function

F (x) = f (x)− f (b)− f (a)

(b− a)αn
(x− a)αn , x ∈ [a, b] .

Clearly, F is continuous and F (a) = F (b). If F attains its supremum at c ∈ (a, b),
then dαn

σ f (c) ≤ 0 ≤ dαn
σ f (c), and the conclusion is immediate. The same is true when

F attains its infimum at an interior point of [a, b]. If both extremes are attained at
the endpoints, then F is constant and the conclusion works for all c ∈ (a, b). ¤
Theorem 3.6. Let 0 < s < 1. Suppose that f is s–differentiable on (a, b). Then, f
is s–convex iff dsf is increasing.

Proof. (⇒) done by Theorem 3.3.
(⇐) Suppose that dsf (x) is increasing, then, the fundamental theorem of calculus

assures that

f (x)− f (c) =

∫ x

c

dsf (t) dt,

for any c ∈ (a, b). It follows that f is s–convex. ¤
Definition 3.7. Let 0 < s < 1. We say that a function f defined on [a, b] has a
fractional support of order s at x0 if there exists a function S of the form
Sσ (x) = f (x0) + σms (σ(x− x0))

s, such that Sσ (x) ≤ f (x) for every x ∈ [a, b],
where ms = dsf .

Theorem 3.8. A function f : (a, b) → R+, is s–convex iff there is at least one
fractional support of order s at each x0 ∈ (a, b).
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Proof. If f is s–convex then by Theorem 3.2, ds
−f (x) , ds

+f (x) exist.
Let p = min

{
ds
−f (x) , ds

+f (x)
}
, and P = max

{
ds
−f (x) , ds

+f (x)
}
.

For x0 ∈ (a, b), choose ms ∈ [p, P ]. Then

f (x)− f (x0)

σ (σ (x− x0))
s ≥ ms ( ≤ ms )

as x > x0 (or x < x0). In either case, f (x) − f (x0) ≥ σms (σ (x− x0))
s, that is,

f (x) ≥ f (x0)+σms (σ (x− x0))
s. Conversely, suppose that f has fractional support

of order s at each point of (a, b). Let x, y ∈ (a, b). For x0 = λx + (1− λ)y, λ ∈ [0, 1],
let Sσ (x) = f (x0) + σms (σ(x− x0))

s be the fractional support for f at x0. Then

f (x0) = Sσ (x0) = λsSσ (x) + (1− λ)s Sσ (y) ≤ λsf (x) + (1− λ)s f (y) ,

as desired. ¤
Corollary 3.9. If f : (a, b) → R+, is an s–convex function, then for all x, y ∈ [a, b],
we have

(3.5) f (x)− f (y) ≥ ms (σ(x− y))s .

Proof. Follows directly from Definition 3.7.

Theorem 3.10. Let f : (a, b) → R+, be an s–convex function. Then f is
s–differentiable at x0 iff the s–fractional support for f at x0 is unique. Moreover,
S (x) = f (x0) + σm (σ(x− x0))

s provides this unique fractional support.

Proof. It is clear from the proof of Theorem 3.8 that corresponding to each
ms ∈ [p, P ], there is a fractional support of order s for f at x0. Uniqueness of the frac-
tional support means ds

−f (x) , ds
+f (x); that is dsf (x) exists. Any fractional of sup-

port Sσ (x) = f (x0)+σms (σ (x− x0))
s, gives that f (x)−f (x0) ≥ σms (σ (x− x0))

s.
For x1 < x0 < x2, we have

f (x1)− f (x0)

σ (σ (x1 − x0))
s ≤ ms ≤ f (x2)− f (x0)

σ (σ (x2 − x0))
s .

Taking the limit as x1 → x−0 and x2 → x+
0 , gives ds

−f (x) ≤ ms ≤ ds
+f (x),

so s–differentiability of f at x0 implies uniqueness of ms, hence the support S = Sσ

at x0. ¤
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25240 Kampüs, Erzurum, Turkey

E-mail address: kirmaci@atauni.edu.tr


