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THE GENERALIZED STIELTJES AND FOURIER TRANSFORMS OF
CERTAIN SPACES OF GENERALIZED FUNCTIONS

S.K.Q.AL-OMARI

Abstract. Inspired of Roumieu and Beurling definitions, we defined spaces of ultrad-
ifferentiable functions of rapid descents in Lp spaces which shown to be closed with re-
spect to the classical Stieltjes transform. The generalized Stieltjes transform is thereby
defined on the duals through the generalization of the Parseval’s equation. Further, we
obtained spaces and derived certain related results justifying multiplication. Adopting
the concept of Boehmian spaces, the celebrated Fourier transforms were extended to a
so-called space of ultradifferentiable Boehmians .

1. Introduction

The Schwartz’ Theory of distributions and its applications are well known in the
literature. Spaces of generalization of the theory were obtained and developed by many
authors in the recent past. As a space of generalized functions the theory of ultradis-
tributions, being more general than distributions, considered by Roumieu [17], [18] and
Beurling [6] is formulated so that it generalizes the Schwartz’ space D

′
of distributions.

Various integral transforms for various spaces of ultradistributions have been obtained
and the corresponding properties are developed in Refs [1], [2] and [3] and, many oth-
ers. Tempered ultradistributions or ultradistributions of slow growth established in this
note and the ultradistributions which are employed in [3] and [4] generalize the Schwartz
space S

′
of tempered distributions [5]. However, the ultradistributions described in [2]

are, indeed, expand the space E
′
of distributions of bounded support [22]. For detailed

treatment and relevant properties ( see [6] , [17] and references therein).
For a conventional function f , the Stieltjes transform, as a function of y, is given

by [21]

(1.1) (τf) (y) =

∞∫

0

f (x) (y + x)−1 dx, (y > 0)
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provided the integral is convergent. Its generalized transform for an arbitrary complex
number p except the zero and negative integers and, all z in the z-plane cut from the
origin along the negative real axis is defined in [7, 18] by

(1.2) (τ pf) (z) =

∞∫

0

f (x) (z + x)−p dx

Authors such as Erdelyi [9], Pandey [13], Pathak [15] and others extended (1.2) to
certain spaces of generalized functions. The generalized Stieltjes transform , as a well-
known fact, can be formulated as an iterated Laplace transform and therefore its inverse
is , explicitly, expressed as an iterated inverse Laplace transform [19]. Authors, such as
Love and Byrne [11] and Pollard [16] obtain formulae for the inverse of the transform
for real values . The complex inversion formulae are established in [8] and [20] as well .

A complex valued measurable function f is said to belong to the space Lp (R) if

‖f‖p =





∫

R

|f (x)|p dx





1

p

is finite .Two functions are identified whenever they are equal almost everywhere in the
Lebesgue sense.

2. Definitions and Notations

A base of this paper will be certain spaces of test functions of ultradifferentiable
functions and tempered ultradistributions which correspond to spaces DLs and D

′
Ls [14]

and spaces of type S [10] . Sequences (ai) and (bi) wherever they appear together with
conditions employed are to be treated as in [4] .

Definition 2.1. Let α be a fixed real number. Then, the following have a meaning in
the sense of results

(i) By SLr

α,(ai),a
(0,∞) (respectively, SLr

α,{ai},a (0,∞) ), 1 ≤ r ≤ ∞, we denote the set of

all complex valued infinitely differentiable functions ϕ (x) such that there is a constant
m > 0 for which

(2.1)
∥∥(1 + x)α xkDkϕ (x)

∥∥
Lr ≤ maαaα

for all a > 0 (respectively, for some a > 0).

(ii) ϕ (x) ∈ S
Lr,(bj),b
α (0,∞) (respectively, S

Lr,{bj},b
α (0,∞) ), 1 ≤ r ≤ ∞ if and only if

it is infinitely smooth and for some constant n > 0,

(2.2)
∥∥(1 + x)α xkDkϕ (x)

∥∥
Lr ≤ mbkbk

for all b > 0 (respectively, for some b > 0).
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(iii) Similarly ,the C∞-function ϕ (x) ∈ S
Lr,(bj),b

α,(ai),a
(0,∞) (respectively, S

Lr,{bj},b
α,{ai},a (0,∞)

if and only if for some constant L and for all a > 0, b > 0 (respectively, for some
a > 0, b > 0) the following

(2.3)
∥∥(1 + x)α xkDkϕ (x)

∥∥
Lr ≤ Laαbkaαbk

holds good .

Obviously, due to definitions, subsets

(2.4) SLr

α,(ai),a
⊂ SLr

α,{ai},a, S
Lr,(bj),b
α ⊂ SLr,{bj},b

α and S
Lr,(bj),b

α,(ai),a
⊂ S

Lr,{bj},b
α,{ai},a

are true and possess analysis which is similar in application and thus the concern will

be on SLr

α,(ai),a
, S

Lr,(bj),b
α and S

Lr,(bj),b

α,(ai),a
for further investigations.

Natural topologies on SLr

α,(ai),a
, S

Lr,(bj),b
α and S

Lr,(bj),b

α,(ai),a
can be defined as

(2.5) ‖ϕ‖r,a = sup ‖αx ∈ (0,∞)

∥∥(1 + x)α xkDkϕ (x)
∥∥

Lr

aαaα

, b > 0

(2.6) ‖ϕ‖r,b = sup ‖kx ∈ (0,∞)

∥∥(1 + x)α xkDkϕ (x)
∥∥

Lr

bkbk

, a > 0

and

(2.7) ‖ϕ‖r,a = sup ‖α, kx ∈ (0,∞)

∥∥(1 + x)α xkDkϕ (x)
∥∥

Lr

aαbkaαbk

, a, b > 0

A sequence (ϕn) ∈ SLr

α,(ai),a
, S

Lr,(bj),b
α and S

Lr,(bj),b

α,(ai),a

converges to SLr

α,(ai),a
, S

Lr,(bj),b
α and S

Lr,(bj),b

α,(ai),a
if

lim
n→∞

∥∥(1 + x)α xkDk (ϕn (x)− ϕ (x))
∥∥

Lr = 0

and there is a constant m > 0 independent of n such that

lim
n→∞

∥∥(1 + x)α xkDk (ϕn (x)− ϕ (x))
∥∥

Lr ≤ maαaα

for all a > 0 .

Denoting by S ′L
r

α,(ai),a
, S

′Lr,(bj),b
α and S

′Lr,(bj),b

α,(ai),a

(
S
′Lr

α,{ai},a, S
′Lr,{bj},b
α and S

′Lr,{bj},b
α,{ai},a

)
.

The set of continuous linear forms on SLr

α,(ai),a
, S

Lr,(bj),b
α and

S
Lr,(bj),b

α,(ai),a

(
SLr

α,{ai},a, S
Lr,{bj},b
α and S

Lr,{bj},b
α,{ai},a

)
.

The resulting spaces are the tempered (temperate) ultradistribution spaces of
Beurling - type ( of Roumieu-type respectively).
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3. Stieltjes Transform for Slow Growth Ultradistributions

For our results the following is the main theorem in this section which enables to define
the generalized Stieltjes transform in certain Lp spaces

Theorem 3.1. Let z be a complex number, neither zero nor negative real, then

(z + x)−p ∈ SLr

α,(ai),a
(0,∞)

where ,
αr + kr + 1 < 0, k = 0, 1, 2, ...and α ∈ Re p.

Proof. Assume z = σ + iw. The fact we shall need is that

(3.1) |z|Re p e−π|Im p| ≤ |zp| ≤ |z|Re p eπ|Im p|

Employing (3.1) we have

∣∣(1 + x)α xkDk (z + x)−p
∣∣ =

(1 + x)α xk |(p)k|∣∣∣(z + x)p+k
∣∣∣

≤ |(p)k| (1 + x)α xkeπ|Im p|
[
(σ + x)2 + w2

] 1
2(Re(p+k))

(3.2)

where (p)k = p (p + 1) (p + 2) ... (p + k − 1).
We consider the following cases
Case I. Let σ > 0. Properties of integration then yields

∞∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx =

σ∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx

+

∞∫

σ

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx (3.3)

≡ I1 (α, k, r) + I2 (α, k, r)

We evaluate the integral I2 (α, k, r) as follows :

∞∫

σ

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx < |(p)k|

∞∫

σ

(1 + x)αr xkrerπ|Im p|

(2σ)r(Re(p+k))
dx

<
erπ|Im p| |(p)k|
(2σ)r(Re(p+k))

∞∫

σ

(1 + x)(α+k)r

dx

<
|(p)k| erπ|Im p| (1 + σ)ar+kr+1

(ar + kr + 1) (2σ)r(Re(p+k))
(3.4)
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The values of x are finite in (0, σ] and hence, the integral I1 (α, k, r) will be reduced to
the form

σ∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx ≤ |(p)k|

∫ σ

0

(1 + σ)rα

σr Re p
erπ|Im p|dx

Hence,

(3.5)

σ∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx ≤ |(p)k|

σ (1 + σ)rα

σr Re p
eπ|Im p|.

Invoking (3.4) and (3.5) into (3.3) and multiplying by
1

aαaα

, for any a > 0, and consid-

ering supremum over α ≤ Re p implies that

‖ϕ‖r,a < M

where

M =

[
σ1−Re p (1 + σ)α − (1 + σ)a+k+ 1

r

2σ(Re(p+k)) (αr + kr + 1)
1
r

]
|(p)k| eπ|Im p|

Case II. if σ = 0 then z = iw. Set v = |w|.Therefore

∞∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx =

ν∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx

+

∞∫

ν

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx (3.6)

≡ I∗1 (α, k, r) + I∗2 (α, k, r)

The integral I∗1 (α, k, r) < |(p)k|
ν∫
0

(1 + ν)ar

νr(Re p)
eπ|Im p|rdx . That is,

(3.7) I∗1 (α, k, r) < |(p)k|
ν∫

0

(1 + ν)ar

ν(r(Re p)+1)
eπ|Im p|rdx

Estimation of the improper integral I∗2 (α, k, r) can be confirmed as follows :

I∗2 (α, k, r) <

∞∫

σ

|(p)k|
(1 + x)α xkerπ|Im p|

[v2 + w2]
1

2(Re p+k)

dx

<

∞∫

σ

|(p)k|
(1 + x)α+k erπ|Im p|

(√
2v

)Re(p+k)
dx (3.8)
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and , therefore, (3.8) assumes the expression

(3.9) I∗2 (α, k, r) <
|(p)k| − eπ|Im p|r (1 + x)(a+k)r+1

((a + k) r + 1)
(√

2ν
)Re(p+k)

provided rα + rk + 1 < 0 .
The right hand side part of (3.9) is a positive value for any non-negative integer k,

α ≤ Re p. Thus, combining (3.7), (3.9), Multiplying by
1

aαaα
, (3.6) can be formed as

(3.10)
∥∥(1 + x)α xkDk (z + x)−p

∥∥
Lr < Caαaα

where

C =

[
(1 + ν)αr

ν [r(Re p)+1]
− (1 + ν)αr+kr+1

(αr + kr + 1)
(√

2ν
)Re(p+k)

]
|(p)k| eπ|Im p|r

Letting α traverse the set of real numbers such that α ≤ Re p, x ∈ (0,∞) we have

‖ϕ‖r,a < ∞
for any a > 0. To complete the proof of the theorem it remains to be shown that the
theorem holds true for σ < 0. For this end assume σ = −β, β > 0

Let γ > β > 0 . We have
∞∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx =





γ∫

0

+

∞∫

γ





∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx

Similar proof to the proof considered in the Cases I and II yields
∞∫

0

∣∣(1 + x)α xkDk (z + x)−p
∣∣r dx (3.11)

<

[
(1 + γ)αr γkr+1

|w|r(Re p)
− (1 + γ)(α+k)r+1

|w|r(Re p+k) (αr + kr + 1)

]
|(p)k| eπ|Im p|

provided αr + kr + 1 < 0.
Allowing α traverse the set of real numbers which are less or equal to Re p and

x ∈ (0,∞) implies
‖ϕ‖r,a < ∞

for any a > 0 .
Thus, the theorem is completely proved. ¤
Due to analysis employed above we state

Theorem 3.2. For any complex number p , neither zero nor negative real, we have

(z + x)−p ∈ SLr,(bj),b
α

(
S

Lr,(bj),b

α,(ai),a

)

where αr + kr + 1 < 0, α ≤ Re p, k = 0, 1, 2, ..., and x ∈ (0,∞) .
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Proof. The proof is simillar to that in theorem 3.1 ¤

Definition 3.3. Let f ∈ S ′L
r

α,(ai),a
, S

′Lr,(bj),b
α and S

′Lr,(bj),b

α,(ai),a
, α ≤ Re p . By virtue of The-

orem 3.1 and 3.2 we define the ultradistributional Stieltjes transform of slow growth of
Beurling-type to be the map of z such that

(3.12) F (z) =
〈
f (x) , (z + x)−p〉

where, αr + kr + 1 < 0, k = 0, 1, 2, ....
Proofs of Theorem 3.1 and Theorem 3.2 for ultradifferentiable functions of Roumieu-

type are similar and thus, the generalized Stieltjes transform of Roumieu-type

f ∈ S ′L
r

α,(ai),a
, S

′Lr,(bj),b
α and S

′Lr,(bj),b

α,(ai),a
, is justified and can be defined as

S (z) =
〈
f (x) , (z + x)−p〉

for some constants a, b > 0.

4. Multiplicity of Ultradistributions

Definition 4.1. Denote by MLr

(ai),a
the set of complex-valued infinitely smooth θ (x) ,

on I (0,∞), such that
∥∥∥(1 + x)` Diθ (x)

∥∥∥
Lr
≤ Caiai for some positive constant C and

arbitrary ` and a .

Theorem 4.2. Let θ ∈ MLu

(ai),a
and φ ∈ SLν

α,(ai),a
(0,∞). Let u ≥ r and

1

u
+

1

v
=

1

r
.Then

φ → θφ

maps SLv

α−`,(ai),a
(0,∞) into SLr

α,(ai),a
(0,∞),continuously .

Proof. With the aid of Leibnitz’ rule and the triangle inequality we have

∣∣(1 + x)α xkDk (θφ) (x)
∣∣ ≤

∣∣∣∣∣(1 + x)α xk

k∑
j=0

Djθ (x) Dk−jφ (x)

∣∣∣∣∣ (4.1)

≤
k∑

j=0

(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)α−` xk
∣∣Dk−jφ (x)

∣∣

Therefore ,

∣∣(1 + x)α xkDk (θφ) (x)
∣∣r ≤

∣∣∣∣∣
k∑

j=0

(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)
α−`

xk
∣∣Dk−jθ (x)

∣∣
∣∣∣∣∣

r

.
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Hence,
∞∫

0

∣∣(1 + x)α xkDj (θφ) (x)
∣∣r dx (4.2)

≤
∞∫

0

∣∣∣∣∣
k∑

j=0

(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)α−` xk
∣∣Dk−jθ (x)

∣∣
∣∣∣∣∣

r

dx

i.e



∞∫

0

∣∣(1 + x)α xkDk (θφ) (x)
∣∣r dx




1
r

(4.3)

≤



∞∫

0

∣∣∣
∑

(1 + x)` Djθ (x) (1 + x)α−` xk
∣∣Dk−jφ (x)

∣∣
∣∣∣
r

dx




1
r

Employing Minkowski for (4.2) yields

∥∥(1 + x)α xkDk (θφ) (x)
∥∥

Lr (4.4)

≤
k∑

j=0




∞∫

0

∣∣∣(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)α−` xk
∣∣Dk−jφ (x)

∣∣
∣∣∣
r

dx




1
r

≤
k∑
0

∥∥∥(1 + x)`
∣∣∣Djθ (x) (1 + x)α−` xk

∣∣Dk−jφ (x)
∣∣
∣∣∣
∥∥∥

Lr

By using the Hölder’s inequality we find
∞∫

0

∣∣∣
{

(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)α−` xk
∣∣Dk−jφ (x)

∣∣
}r∣∣∣ dx (4.5)

≤



∞∫

0

∣∣∣(1 + x)` Djθ (x)
∣∣∣
rŕ

dx




1
ŕ



∞∫

0

∣∣∣(1 + x)α−` xkDk−jφ (x)
∣∣∣
rr̋

dx




1
r̋

where
1

ŕ
+

1

r̋
= 1, ŕ ≥ 1.

Therefore, from(4.5) we have∥∥∥(1 + x)`
∣∣Djθ (x)

∣∣ (1 + x)α−` xkDk−jφ (x)
∥∥∥

Lr
(4.6)

≤
∥∥∥(1 + x)` Djθ (x)

∥∥∥
Lrŕ

∥∥∥(1 + x)α−` xkDk−jφ (x)
∥∥∥

Lrr̋

Setting u = rŕ and v = rr̋ implies
1

u
+

1

v
=

1

r
and ŕ ≥ 1 implies u ≥ r.
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Putting (4.6) into (4.4), then Definition 3.3 and multiplying (4.4) by 1 \ aαaα leads to
the relation

∥∥(1 + x)α xkDk (θφ) (x)
∥∥

Lr

aαaα

≤ (4.7)

k∑
j=0

Cajaj

∥∥∥(1 + x)α−` xkDk−jφ (x)
∥∥∥

Lv

aαaα

=
k∑

j=0

Cajaja
−`

∥∥∥(1 + x)α−` xkDk−jφ (x)
∥∥∥

Lv

aα−`aα

.From [4, (1.2)]we have

aα−` ≤ a0a`/aα.

Using this in (4.7) leads to
∥∥∥(1 + x)α−` xkDk (θφ) (x)

∥∥∥
Lr

aαaα

≤ C

k∑
j=0

Cajaj

a`

a0

a`

∥∥∥(1 + x)α−` xkDk−jφ (x)
∥∥∥

Lv

aα−`aα−`

Considering the supremum over all x ∈ (0,∞) and α ≤ Re p yields

(4.8) ‖θφ‖r,a ≤ C

k∑
j=0

ajaja0

a`aα

‖φ‖v,a .

Thus, from (4.8) we observe that (θφn) → 0, as n → ∞ in the topology of SLr

α−`,(ai),a

when φn → 0 in the topology of SLv

α,(ai),a
. This completes the proof of the theorem . ¤

The theorem, above, suggests a space of operators for multiplication for a space MLr

(ai),a

of Beurling-type ultradifferentiable functions of rapid descents in SLr

α−`,(ai),a
for the Stielt-

jes transforms . However the theorem includes no evident that MLr

(ai),a
admits all multi-

pliers of such spaces .

Definition 4.3. To define multiplication for S
Lv,(bj),b
α

(
S

Lv ,(bj),b

α,(ai),a

)
denote, respectively, by

MLu,(bj),b
(
M

Lu,(bj),b

(ai),a

)
the spaces of all infinitely smooth θ such that

(I )
∥∥∥(1 + x)` Djθ (x)

∥∥∥
Lr

≤ Cbjbj

and

(II )
∥∥∥(1 + x)` Djθ (x)

∥∥∥
Lr

≤ Cajbjajbj

with arbitrary constants a and b. Then ,
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Theorem 4.4. Let θ ∈ MLu,(bj),b
(
M

Lu,(bj),b

(ai),a

)
and φ ∈ S

Lv ,(bj),b
α

(
S

Lv,(bj),b

α,(ai),a

)
then if u ≥ r

and
1

u
+

1

v
=

1

r
the mapping

φ → θφ

resp., maps φ ∈ S
Lv,(bj),b
α−`

(
S

Lv,(bj),b

α−`,(ai),a

)
into φ ∈ S

Lr,(bj),b
α

(
S

Lr,(bj),b

α,(ai),a

)
continuously .

Proof. The proof is analogous to that of theorem 4.2 and thus avoided. ¤
Having permitted the constants a and b to be suitably selected in Definition 4.1 and

4.3 defines spaces MLr

{ai},a,M
Lu,{bj},b and M

Lu,{bj},b
{ai},a in the sense of Roumieu which leads

to the following results

Theorem 4.5. Let θ ∈ MLu

{ai},a and φ ∈ SLv

α,{ai},a. The map φ → θφ is continuous from

SLv

α−`,{ai},a into SLr

α,{ai},a where u ≥ r and
1

u
+

1

v
=

1

r
.

Theorem 4.6. Let θ ∈ MLu,(bj),b
(
M

Lu,(bj),b

(ai),a

)
and φ ∈ S

Lv ,(bj),b
α

(
S

Lv ,{bj},b
α,(ai),a

)
then if u ≥ r

and
1

u
+

1

v
=

1

r
the mapping

φ → θφ

maps φ ∈ S
Lv,(bj),b
α−`

(
S

Lv ,{bj},b
α−`,{ai},a

)
into φ ∈ S

Lr,{bj},b
α

(
S

Lr,{bj},b
α,{aj},a

)
continuously .

The poof of Theorems 4.5 and 4.6 is similar to that considered for Theorem 4.2.

5. Fourier Transform of Ultradifferentiable Boehmians

The concept of Boehmians is motivated by regular operators introduced by Boehme [7].
Boehmians have an algebraic character of Mikusinski operators and at the same time do
not have restriction on the support. Applying the general construction of Boehmians to
various function spaces yields various spaces of Boehmians. General Boehmians contain
the Schwartz space of distributions , Roumieu ultradistributions, regular operators and
tempered distributions as well.

The construction of Boehmians is similar to the construction of field of quotients. The
space of Boehmians we consider in this note contains the space of the tempered Boehmi-
ans [1] which in turn contains the space of tempered distributions and, the obtained
definition of the Fourier transform coincides with the definition of the Fourier transform
of the locally integrable Boehmian which appears in [12] .

Definition 5.1. An infinitely smooth function φ is said to be in Sai,a (R) if for some
positive constants a and A its derivatives are estimated by

∣∣xiDjφ (x)
∣∣ ≤ A (a + α)i ai

for all i, j ∈ N0, and α > 0 being arbitrary constant. Elements in Sai,a (R) are ,indeed
,ultradifferentiable functions of rapid descent. By D denote the space of all infinitely
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differentiable complex-valued functions on R with bounded support. A delta sequence ∆
is a sequence of real-valued functions δ1, δ2, ......., δn ∈ D such that

i− ∫
δn (x) dx = 1 for all n ∈ N .

ii− ∫ |δn (x)| dx ≤ M for some M > 0, n ∈ N .
iii- for every ε > 0 there is n0 ∈ N such that δn (x) = 0 for |x| ≥ ε and n > n0.
The convolution product of two functions f and g is defined by

(f ∗ g) (x) =

∫

R

f (u) g (x− u) du

whenever the integral exists. A pair of sequences (fn, ϕn) , or fn/ϕn ,is said to be a
quotient of sequences if fn ∈ Sai,a, (ϕn) ∈ ∆ , and fn ∗ ϕm = fm ∗ ϕn for all m,n ∈ N.

Two quotients of sequences fn/ϕn and gn/ψn are equivalent if fn ∗ψm = gm ∗ϕn for all
m,n ∈ N. The equivalence class of fn/ϕn is denoted by [fn/ϕn].The space of all equiva-
lence classes of quotients is denoted by Bsai ,a

. Its elements are called ultradifferentiable
Boehmians of rapid descents. The space Bsai ,a

, indeed, contains the space of tempered
Boehmians defined in [1]. Properties of addition and multiplication and, convergence
and the same as in [1, 12]. Retaining the set of delta sequences, concept of quotients and
equivalence classes we construct, similarly, a space of C∞ - Boehmians BC∞ .

Lemma 5.2. Let fn/ϕn be a quotient in Bsai ,a
.Then f̂n/ϕ̂n is a quotient in BC∞ .

Proof. fn/ϕn quotient in B̂sai ,a
implies fi ∗ ϕj = fj ∗ ϕi for all i, j ∈ N . Employing the

Fourier transform to both sides implies f̂iϕ̂j = f̂jϕ̂i for all i, j ∈ N. This completes the
proof of the theorem. ¤

Let the Boehmian B = [fn/ϕn] ∈ Bsai ,a
then B̂ = f̂n/ϕ̂n . Since ϕn ∈ ∆, ϕ̂n → 1 as

n →∞.Hence, the defined Fourier transform of the ultradifferentiable Boehmian B can
simply be simplified to

B̂ = lim f̂n.
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