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GENERALIZED HANKEL-TYPE TRANSFORMATION FOR A CLASS
OF TEMPERED ULTRADISTRIBUTIONS OF ROUMIEU-TYPE

S.K.Q.AL-OMARI

Abstract. As the third in a series of papers the present paper aims at investigat-
ing a theory supporting Hankel-type transformation on certain spaces of generalized
functions. In an attempt to extend the transform to a space of generalized functions,
namely, a space of tempered ultradistributions, an adequate definitions of classes of
rapid descent ultradifferentiable functions is provided .In light of those definitions, var-
ious mappings involving various differential operators are shown to be continuous .
Further, the generalized Hankel-type transform of Roumieu-type tempered (of slow
growth) ultradistributions is obtained .

1. Introduction

The theory of ultradistributions is one of the generalizations of the theory of
Schwartz’ distributions. Since then in the recent past and even earlier it was exten-
sively studied by many authors such as : Roumieu[13], [14], Komatsu [9], Beaurling [7],
Carmichael, Pathak and Pilipović [12], Pathak[10], [11], Al-omari [2], [3], . . . ,to mention
but few. The discussed spaces of tempered ultradistributions (ultradistributions of slow
growth) which function as spaces of generalized functions are quite obviously include
the Schwartz space S

′
of tempered distributions. For the sake of desired extensions of

classical integral transforms to generalized functions researchers , along time of research,
have reported two approaches which we find appropriate to be employed for tempered
ultradistributions. The approach we specifically apply in this article consists in defining

an appropriate testing function spaces H ν
µ,ai,A

,H
ν,bj ,B
µ ,H

ν,bj ,B
µ,ai,A

of ultradifferentiable func-
tions of rapid descents .Those test function spaces are shown to be closed with respect to
the classical Hankel-type transform(see [1] and [6] ). The corresponding transform of an
ultradistribution f in the dual spaces is accordingly defined through the generalization
of the Parseval’s equation

〈Tf, φ〉 = 〈f, Tφ〉
for all φ ∈ H ν

µ,ai,A
,H

ν,bj ,B
µ ,H

ν,bj ,B
µ,ai,A

.
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Let µ be an arbitrary real parameter. The Hankel-type transformation is defined by

(1.1) (hµ,νf) (y) = y1+2µ

∞∫

0

ϑµ,ν (xy) f (x) dx, ν ≥ −1

2

where ϑµ,y (z) = z−µJν (z) , Jν (z) is the Bessel function of first kind of order ν.
For real values µ = −1

2
and µ = −ν − 1, the transformation (1.1) respectively includes

the Hankel transform [15,p.127] and the celebrated Schwartz -Hankel transformation as
well.

Verifying results spreads in two sections, namely, Section 3 and 4. In Section 3, we
establish certain results for certain differential operators and further, make use of a new
defined differential operator and accordingly prove new relevant theorem. Section 4,
extend the Hankel-type transform to spaces of tempered ultradistributions of Roumieu-
type we have recently discussed in [4, 5].

2. Ultradifferentiable Functions of Rapid Descent

It is assumed the reader is acquainted with the results reported in [4, 5]. The notation
and terminology used in those papers will be continued. Sequences ai and bj,
i, j = 0, 1, 2, ..., wherever they appear, are sequences of positive real numbers imposed
by some of the following constraints:

(2.1) a2
i ≤ ai−1ai+1, ∀i ∈ N,

(2.2) b2
j ≤ bj−1bj+1,∀j ∈ N,

There are constants S, S1 and T, T1 such that,

(2.3) ai ≤ ST i min
0≤k≤i

akai−k, i ∈ N◦,

(2.4) bj ≤ S1T
j
1 min

0≤k≤j
bkbj−k, j ∈ N◦.

From [5,pp.2], recall the consequences

(2.5) aiak ≤ a◦ai+k,∀i, k ∈ N◦

and

(2.6) bibk ≤ b◦bi+k,∀j, k ∈ N◦

Definition 2.1. By H ν
µ,ai,A

, we denote the set of all infinitely smooth functions on (0,∞)
satisfying

(2.7)
∣∣∣xi

(
x−1D

)j
x−µ−ν−1φ (x)

∣∣∣ ≤ Cµ,ν
j (A + α)i ai, i, j ∈ N◦

where A,Cµ,ν
j are positive constants depending on φ and a > 0 being an arbitrary con-

stant.
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An infinitely differentiable function φ (x) , 0 < x < ∞, belongs to H
ν,bj ,B
µ if it

possesses the property that

(2.8)
∣∣∣xi

(
x−1D

)j
x−µ−ν−1φ (x)

∣∣∣ ≤ Cµ,ν
j (B + β)i bj, i, j ∈ N◦

where β > 0,Cµ,ν
j and B are positive constants depending on φ.

Similarly, φ ∈ H
ν,bj ,B
µ,ai,A

if φ ∈ C∞ (0,∞) and,

(2.9)
∣∣∣xi

(
x−1D

)j
x−µ−ν−1φ (x)

∣∣∣ ≤ Cµ,ν (A + α)i (B + β)j aibj,

holds for i, j ∈ N◦ and positive constants α, β depend on φ.

In view of Definition 2.1 we, on H ν
µ,ai,A

,H
ν,bj ,B
µ , and H

ν,bj ,B
µ,ai,A

, respectively, define the
norms

(2.10) iµ,ν
j,α (φ) = sup ‖x ∈ (0,∞) , i ∈ N◦

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(A + α)i ai

, j ∈ N◦, α = 1,
1

2
, ...

(2.11) iµ,ν
i,β (φ) = sup ‖x ∈ (0,∞) , j ∈ N◦

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(B + β)j ai

, i ∈ N◦, β = 1,
1

2
, ...

and

(2.12) iµ,ν
α,β (φ) = sup ‖x ∈ (0,∞) , i, j ∈ N◦

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(A + α)i (B + β)i aibj

, α, β = 1,
1

2
, ...

Inspired in the work of Roumieu [13], the dual spaces H ν́
µ,ai,A

,H
ν́,bj ,B
µ , and H

ν́,bj ,B
µ,ai,A

are called tempered ultradistributions of Roumieu-type .The generalized Hankel-type trans-
form of the classes on the duals is called tempered ultradistributional Hankel-type trans-
formation of Roumieu-type.

3. Operations of H ν
µ,ai,A

,H
ν,bj ,B
µ , AND H

ν,bj ,B
µ,ai,A

We initiate the study with known differential operators [10,p.243]

(3.1) Nµ,ν = xν−µDx−µ−ν−1,

and

(3.2) Mµ,ν = xµ−νDxµ+ν+1

Theorem 3.1. (i) The mapping φ → Nµ,νφ is a continuous linear mapping from H ν
µ,ai,A

into H ν
−µ,ai,A

.
(ii)Let the sequence (bj) satisfy (2.4) . Then, the mapping φ → Nµ,νφ is a continuous

linear mapping from H ν,bj ,B into H
ν,bj ,BT1

−µ .
(iii) If the sequence (bj) satisfy (2.4) then the map φ → Nµ,νφ is a continuous linear

mapping of H
ν,bj ,B
µ,ai,A

into H
ν,bj ,BT1

−µ,ai,A
.
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Proof of (i) is a straightforward consequence of (2.7) and (3.1)and thus, details are
avoided.

Proof of (ii). Let φ ∈ H
ν,bj ,B
µ . By virtue of (2.8) and (3.1) we have

∣∣∣xi
(
x−1D

)j
xµ−ν−1 (Nµ,νφ) (x)

∣∣∣ ≤ Cµ,ν
i (B + β)j+1 bj+1

Employing (2.4) yields
∣∣∣xi

(
x−1D

)j
xµ−ν−1 (Nµ,νφ) (x)

∣∣∣ ≤ Cµ,ν
i (B + β)j+1 S1T

j+1
1 b1bj

Therefore, ∣∣∣xi
(
x−1D

)j
xµ−ν−1 (Nµ,νφ) (x)

∣∣∣ ≤ C µ́,ν
i

(
BT1 + β

)́j
bj

where β´ = T1β and C µ́,ν
i = Cµ,ν

i (B + β) S1T1b1.
This proves Part (ii).

Proof of (iii). Let φ ∈ H
ν,bj ,B
µ,ai,A

. Allowing bj satisfy (2.4) yields
∣∣∣xi

(
x−1D

)j
xµ−ν−1 (Nµ,νφ) (x)

∣∣∣ ≤ Cµ,ν
α,β (A + α)i (B + β)j+1 aibj+1

≤ Cµ,ν
α,β (A + α)i (B + β)j (B + β) aiS1T

j+1
1 b1bj.

Therefore, the relation can be formed as
∣∣∣xi

(
x−1D

)j
xµ−ν−1 (Nµ,νφ) (x)

∣∣∣ ≤ C
′µ,ν
α,β (A + α)i

(
BT1 + β

′
)j

aibj

where C
′µ,ν
α,β = Cµ,ν

α,β (B + β) S1T1b1 and β
′
= T1β.

This completes the proof of the theorem.
In an attempt to provide alternative differential operators which possess linearity

among the test function spaces we define a differential operator Sµ,ν through a motivation
of the operators Nµ,ν and Mµ,ν defined by

(3.3) Sµ,νφ = x−µ−νDxµ+ν+1φ

The operator (3.3) is shown to possess the property of linearity of the rapid spaces
and hence the corresponding duals as follows:

Theorem 3.2. (i) Let the sequence (ai) satisfy (2.3). Then the mapping

H ν
µ,ai,A

→ H ν
µ,ai,AT

φ → Sµ,νφ

is a continuous linear map.
(ii) Let (bi) satisfy (2.4). Then, the map φ → Sµ,νφ is a continuous linear map of

H
ν,bj ,B
µ into H

ν,bj ,BT1
µ .

(iii) Let ai and bi satisfy (2.3) and (2.4), respectively. The operation φ → Sµ,νφ maps

H
ν,bj ,B
µ,ai,A

into H
ν,bj ,BT1

µ,a1,AT continuously.
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Proof of (i). Let φ ∈ H ν
µ,ai,A

. With the aid of (3.3) we have

(x−1D)
j
x−µ−ν−1 (Sµ,νφ) (x) =

(x−1D)
j
x−2µ−2ν−1

[
x2µ+2ν+2Dx−µ−ν−1φ

+ (2µ + 2ν + 2) x−µ−ν−1φ (x) x2µ+2ν+1

]

Simple calculations yields
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x) =

(
x−1D

)j
x2

(
x−1D

)
x−µ−ν−1φ (x)

+ (2µ + 2ν + 2)
(
x−1D

)j
x−µ−ν−1φ (x)

That is,
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x) =

(
x−1D

)j−1 (
x−1D

) (
x2

(
x−1D

)
x−µ−ν−1φ (x)

)

+ (2µ + 2ν + 2)
(
x−1D

)j
x−µ−ν−1φ (x)

= 2
(
x−1D

)j
x−µ−ν−1φ (x)

+
(
x−1D

)j−1
x2

(
x−1D

)2
x−µ−ν−1φ (x)

+ (2µ + 2ν + 2)
(
x−1D

)j
x−µ−ν−1φ (x)

and hence the equation simplified to the form
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x) = (2 + 2µ + 2ν + 2)

(
x−1D

)j
x−µ−ν−1φ (x)

+
(
x−1D

)j−1
x2

(
x−1D

)2
x−µ−ν−1φ (x)

Proceeding , j-times , as above, implies
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x) = 2j (2µ + 2ν + 2)

(
x−1D

)j
x−µ−ν−1φ (x)

+x2
(
x−1D

)j+1
x−µ−ν−1φ (x)

Employing (2.3) yields∣∣∣xi
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ 2j (2µ + 2ν + 2)
∣∣∣xi

(
x−1D

)j
x−µ−ν−1φ (x)

∣∣∣
+

∣∣∣xi+2
(
x−1D

)j+1
x−µ−ν−1φ (x)

∣∣∣ (3.4)

.
Thus, we write∣∣∣xi

(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ 2j (2µ + 2ν + 2) Cµ,ν
j (A + α)i ai

+ Cµ,ν
j (A + α)i+2 ai+2

≤ 2j (2µ + 2ν + 2) Cµ,ν
j (A + α)i ai

+ Cµ,ν
j (A + α)2 (A + α)i aiST iT 2a2.

The inequality is, in short, put into the form
∣∣∣xi

(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ C
′µ,ν
j

(
TA + a

′
)i

ai,
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where a
′
= αT and C

′µ,ν
j is certain constant.

Part (i) of the theorem is, therefore, proved.

Proof of part (ii). Let φ (x) ∈ H
ν,bj ,B
µ . Employing (3.4) implies

∣∣∣xi
(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ (2j) (2µ + 2ν + 2) Cµ,ν
j (B + β)i bj

+ Cµ,ν
i (B + β)j+1 bj+1.

≤ (2j) (2µ + 2ν + 2) Cµ,ν
j (B + β)i bj

+ Cµ,ν
i (B + β)j (B + β) S1T

j+1
1 b1bj.

That is, ∣∣∣xi
(
x−1

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ C
′µ,ν
i

(
BT1 + β

′
)j

bj,

where β
′
= βT1 and C

′µ,ν
i = Cµ,ν

i (B + β) S1T1b1 + (2j) (2µ + 2ν + 2) Cµ,ν
j .

This proves Part(ii).
Proof of part (iii). Once again, using (3.4) and (2.9) and the fact that

2j ≤ Cr (1 + r)j , r > 0,

implies
∣∣∣xi

(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ Cr (1 + r)j (2µ + 2ν + 2) Cµ,ν (A + α)i (B + β)j aibj

+Cµ,ν (A + α)i+2 (B + β)j+2 ai+2bj+1

Invoked with (2.3) and (2.4) the above equation is reduced to the form
∣∣∣xi

(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ Cr (1 + r)j (2µ + 2ν + 2) Cµ,ν (A + α)i (B + β)j aibj

+Cµ,ν (A + α)2 (B + β) (A + α)i (B + β)j ST i+2a2aiS1T
i+1
1 b1bj

That is,
∣∣∣xi

(
x−1D

)j
x−µ−ν−1 (Sµ,νφ) (x)

∣∣∣ ≤ C
′µ,ν
j,r

(
AT + α

′
)i (

BT1 + β
′
)j

aibj,

where α
′
= Tα,β

′
= βT1 and

C
′µ,ν
j,r = Cr (1 + r)j (2µ + 2ν + 2) Cµ,ν + Cµ,ν (A + α)2 (B + β) ST 2a2S1T1b1.

This completes the proof of the theorem .

Theorem 3.3. Let the sequence (ai) satisfy (2.3) and (bi) satisfy (2.6), n ∈ 2N . Then

H
ν+2,bj ,B
µ,ai,A

⊂ H
ν,bj ,B
µ,ai,AT n

Further, convergence in H
ν+2,bj ,B
µ,ai,A

implies convergence in H
ν,bj ,B
µ,ai,AT n .

Proof. We prove the theorem for n = 2 . Through simple calculations we obtain
(x−1D)

j
x−µ−ν−1φ (x) = 2 (x−1D)

j−1
x−µ−ν−3φ (x)+(x−1D)

j−3
x2 (x−1D) x−µ−ν−3φ (x) .

But,
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(x−1D)
j−3

x2 (x−1D) x−µ−ν−3φ (x) =

(x−1D)
j−2

[
x2 (x−1D)

2
x−µ−ν−3φ (x) + 2 (x−1D) x−µ−ν−3φ (x)

]
.

Thus,

(x−1D)
j
x−µ−ν−1φ (x) =

2 (x−1D)
j−1

x−µ−ν−3φ (x) + (x−1D)
j−2

[
x2 (x−1D)

2
x−µ−ν−3φ (x)

+2 (x−1D) x−µ−ν−3φ (x)

]

Simplifying the equation yields

(x−1D)
j
x−µ−ν−1φ (x) =

2.2 (x−1D)
j−1

x−µ−ν−3φ (x) + (x−1D)
j−2

x2 (x−1D)
2
x−µ−ν−3φ (x) .

Proceeding , j−times, leads to the equation

(3.5)
(x−1D)

j
x−µ−ν−1φ (x) =

2j (x−1D)
j−1

x−µ−ν−3φ (x) + x2 (x−1D)
j
x−µ−ν−3φ (x)

Using (3.5) and the fact that 2j ≤ Cr (1 + r)j , r > 0,, implies

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(A + α)i (B + β)j aibj

≤

∣∣∣xi (2j) (x−1D)
j−1

x−µ−ν−1φ (x)
∣∣∣

(A + α)i (B + β)j−1 aibj−1

· bj−1

bj (B + β)

+

∣∣∣xi+2 (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(A + α)i+2 (B + β)j ai+2bj

· ai+2 (A + α)2

ai

.

Employing (2.6) implies

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(A + α)i (B + β)j aibj

≤ Cr (1 + r)j b◦
b1 (B + β)

·

∣∣∣xi (x−1D)
j−1

x−µ−ν−1φ (x)
∣∣∣

(A + α)i (B + β)j−1 aibj−1

+
(
(A + α)2 ST i+2a2

)
∣∣∣xi+2 (x−1D)

j
x−µ−ν−3φ (x)

∣∣∣
(A + α)i+2 (B + β)j ai+2bj

But since
∣∣∣xi (x−1D)

j
x−µ−ν−1φ (x)

∣∣∣
(T 2 (A + α))i (B + β)j aibj

≤

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
(T (A + α))i (B + β)j aibj
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we have∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
T 2 (A + α)i (B + β)j aibj

≤ Cr (1 + r)j b◦
b1 (B + β)

·

∣∣∣xi (x−1D)
j−1

x−µ−ν−1φ (x)
∣∣∣

(A + α)i (B + β)j−1 aibj−1

+
(
(A + α)2 ST 2a2

)
∣∣∣xi+2 (x−1D)

j
x−µ−ν−3φ (x)

∣∣∣
(A + α)i+2 (B + β)j ai+2bj

Upon considering supremum over all x ∈ (0,∞) i, j ∈ N◦ , we have

sup
x,i,j

∣∣∣xi (x−1D)
j
x−µ−ν−1φ (x)

∣∣∣
T 2 (A + α)i (B + β)j aibj

≤ H β
r iµ,ν+2

α,β (φ) + (A + α)2 ST 2ai2i
µ,ν+2
α,β (φ) ,

for some constant H β
r .This establishes the theorem for n = 2 .

Induction on n completes the proof of the theorem. ¤

4. Hankel-Type Transformation of Tempered Ultradistributions.

This section is devoted for the investigation of the transformation (1.1) on the ob-
tained spaces. The generalized Hankel-type transformation on the duals of Roumieu-
type tempered ultradistributions is defined as the adjoint oparator. For this end recall
the equations [8, p.16]

(4.1) Dx

(
xµ+νϑµ,υ (xy)

)
= xµ+ν−1ϑµ−1,υ−1 (xy) ,

and

(4.2)
(
x−1Dx

)
xµ−νϑµ,υ (xy) = −y2xµ−νϑµ+1,υ+1 (xy) .

From those equations we derive equations which we use in the sequel

(4.3)
(
x−1Dx

)i (
xµ+νϑµ,υ (xy)

)
= xµ+ν−2iϑµ−i,υ−i

and

(4.4)
(
x−1Dx

)i (
xµ−νϑµ,υ (xy)

)
= (−1)j y2ixµ−νϑµ+1,υ+1 (xy) .

Theorem 4.1. Let µ and ν be real numbers, ν ≥ −1
2

and µ arbitrary. Let the sequence
(ai) satisfy (2.3) and ai ≤ ai+1∀i > 0. The transform (1.1) is an automorphism from
H ν

µ,ai,A
→ H ν

µ,ai,AT .

Proof. Using (4.4) leads to

∣∣∣yi
(
y−1Dy

)j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ =

∣∣∣∣∣∣
(−1)j yµ−ν+i

∞∫

0

x2jϑµ+j,υ+j (xy) φ (x) dx

∣∣∣∣∣∣
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Right hand side part of the equation∣∣∣∣(−1)j yµ−ν+i
∞∫
0

x2jϑµ+j,υ+j (xy) φ (x) dx

∣∣∣∣ =
∣∣∣∣(−1)j yµ−ν+i

∞∫
0

x (xµ+ν+2jϑµ+j+i,υ+j+i (xy)) x−µ−ν−1φ (x) dx

∣∣∣∣ .

Hence,∣∣∣yi (y−1Dy)
j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ =∣∣∣∣(−1)j yµ−ν+i
∞∫
0

x (xµ+ν+2jϑµ+j+i,υ+j+i (xy)) x−µ−ν−1φ (x) dx

∣∣∣∣
Equation (4.3), integrating by parts,i-times, and employing the fact∣∣∣(xy)µ−ν+i ϑµ+j−i,υ+j−i (xy)

∣∣∣ ≤ Ci,j,µ,ν

where Ci,j,µ,ν is certain constant, lead to

(4.5)

∣∣∣yi (y−1Dy)
j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ ≤
∞∫
0

∣∣∣(xy)µ−ν+i ϑµ+i+j,υ+i+j (xy) x2ν+i+2j+1 (x−1D)
i
x−µ−ν−1φ (x)

∣∣∣ dx

≤ Ci,j,µ,ν

∞∫
0

∣∣∣x2ν+i+2j+1 (x−1D)
i
x−µ−ν−1φ (x)

∣∣∣ dx

For real numbers p > 2ν + i + 2j + 1 , (4.5) can be expressed as

∣∣∣yi
(
y−1Dy

)j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ ≤ Ci,j,µ,ν

∞∫

0

∣∣∣xp
(
x−1D

)i
x−µ−ν−1φ (x)

∣∣∣ dx

≤ Ci,j,µ,ν

p+2∑

k=0

∣∣∣xk
(
x−1D

)i
x−µ−ν−1φ (x)

∣∣∣

≤ Ci,j,µ,ν

p+2∑

k=0

Cµ,ν
i (A + α)k ak

≤ C
′
i,j,µ,ν (A + α)p+2

p+2∑

k=0

ak

≤ C
′
i,j,µ,ν (p + 3) (A + α)2 ST 2a2 ((A + α) T )p ap

for some constant C
′
i,j,µ,ν . Therefore,

(4.6)

∣∣∣yi (y−1Dy)
j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ ≤
C
′
i,j,µ,ν (p + 3) (A + α)2 ST 2a2 ((A + α) T )p ap

Assuming ζ i,j,µ,ν = C
′
i,j,µ,ν (p + 3) (A + α)2 ST 2a2 and a

′
= αT implies

hµ,ν ∈ H ν
µ,ai,AT
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This completes the proof of the theorem. ¤

Theorem 4.2. (i) If φ ∈ H
ν,bj ,B
µ,ai,A

, ai ≤ ai+1, i ≥ 0 and (2.3) holds. Then

hµ,νφ ∈ H
ν,bj ,B
µ,ai,AT

(ii)If φ ∈ H
ν,bj ,B
µ , then hµ,νφ ∈ H

ν,bj ,B
µ .

Proof. Let φ ∈ H
ν,bj ,B
µ,ai,A

. Then, (4.6) ,(2.3) and, the assumption ai ≤ ai+1, i ≥ 0 , yields

∣∣∣yi
(
y−1Dy

)j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ ≤ Ci,j,µ,ν

p+2∑

k=0

Cµ,ν (A + α)k (B + β)i akbi

≤ (p + 3) Ci,j,µ,νC
µ,ν (A + α)2 ST 2a2 ((A + α) T )p ap (B + β)i bi

which can be put into the form∣∣∣yi
(
y−1Dy

)j
y−µ−ν−1 (hµ,υφ) (x)

∣∣∣ ≤ ηi,j,µ,υ

(
AT + α

′
)p

(B + β)i apbi,

where ηi,j,µ,υ = (p + 3) Ci,j,µ,νC
µ,ν (A + α)2 ST 2a2 and α

′
= αT This proves Part (i) of

the theorem.Employing(4.6), Proof of Part (ii) follows similarly. Thus, the theorem is,
therefore, completely proved. ¤

Theorem 4.1 and 4.2 suggest the following theorem to be stated from which we define
the generalized Hankel- type intregral transformation of tempered ultradistributions of

Roumieu-type f ∈ H
′ν
µ,ai,A

,
′ν,bj ,B
µ or H

′ν,bj ,B
µ,ai,A

as the adjoint mapping.

Theorem 4.3. (i)Let f ∈ ′ν
µ,ai,A

and φ ∈ H ν
µ,ai,A

.Then
〈
h´

µ,νf, φ
〉

= 〈f, hµ,νφ〉
(ii)Let f ∈ H

′ν,bj ,B
µ

(
H

′ν,bj ,B
µ,ai,A

)
.Then

〈
h´

µ,νf, φ
〉

= 〈f, hµ,νφ〉 ,
for all φ ∈ H

ν,bj ,B
µ

(
H

ν,bj ,B
µ,ai,A

)

Proof. The proof is a straightforward consequence of Theorem 4.1 and 4.2 ¤
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