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ROBUST ESTIMATION OF THE SEASONAL AUTOCORRELATION 
OF THE PAR(1) MODEL * 

 
 

ABDULLAH SMADI        NOOR ABU AFOUNA         AREEN AL-QURAAN  
 

 
ABSTRACT:  In this article we are interested in the robust estimation of seasonal 
autocorrelation for the periodic autoregressive model of order one (PAR (1)). We used 
three estimators for the first – lag seasonal autocorrelation including the classical 
moment estimator beside two new proposed robust estimators. The effect of a single 
additive outlier contaminated in the time series is examined via bias and MSE. We 
have also studied the effects of some other factors on the quality of those estimators. 
The investigation is carried out using Monte – Carlo simulation. The results show that 
our proposed estimators are robust whereas the moment estimator is not. This 
conclusion is also assured via the bias and MSE of those estimators. 

 

1. Introduction 
   The periodic autoregressive moving – average (PARMA) model is an extension of 
the ordinary Box – Jenkins ARMA model which is appropriate for modeling 
seasonal time series. A classical and complete reference of the ordinary ARMA 
models is Box et al. (1994). Denoting the number of seasons per year (period) as ω, 
the varying orders PARMA model denoted by PARMAω(p(ν),q(ν)) is written as: 

 

                    (1.1) 

 

where ν=1,2,…,ω denotes the season , k denotes the year, {ak,ν} is a zero – mean 
white noise process with periodic variance σ2(ν) , p(ν) and q(ν) are, respectively, the 
AR and MA orders for season ν , µν is the mean of the νth season and φ1(ν),…, φp(ν)(ν) 
and θ1(ν),…, θq(ν)(ν) are the AR and MA parameters of season ν , respectively.  For 
more details on PARMA models see Franses and Paap (2004). 
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   The periodic autoregressive (PAR) model is a special case of the PARMA model. 
In equation (1.1), setting q(ν)=0 and p(ν)=1 for each ν=1,2,…,ω we get the equation 
of the PARω(1) model. The PARω(1) model is of particular interest in this article. 
Although it could be the simplest PARMA model, it is however very important in 
practice. Beside its simplicity, its mathematical properties as the estimation of 
parameters and forecasting are straight forward. This model is also proved an 
efficient model to describe periodic autocorrelations among seasonal time series 
(Mcleod,1993). Assuming ω=4, corresponding to the common quarterly time series, 
the zero – mean PAR4(1) model is written as: 

ννν νφ ,1,1, )( kkk aXX += − ,                                           (1.2) 

where ν=1,2,3,4 and k any integer. Note that the PARω(1) model, as in (1.2), consists 
of ω equations with each equation as AR(1), so that (1.2) can be written as: 
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In this model, the varying AR parameters as well as varying white noise variances 
makes this model suitable for modeling periodic autocorrelations. 

   In this article, we are interested in the robust estimation of the seasonal 
autocorrelation function (Seas. ACF) of the PARω(1) model. On one hand, the 
traditional estimation of PARMA models was studied by several authors including, 
for example, Pagano (1978), Vecchia (1985) and Basawa and Lund (1999). On the 
other hand, robust estimation in time series analysis is an area of interest for a long 
period of time. Fox (1972) could be the first who discussed the issue of outliers in 
time series data. Other references to this issue are, for example, Martin (1981) and 
Chang et al. (1988). 

    Moreover, the autocorrelation function (ACF) is a very important tool in time 
series modeling. For instance, in the ARMA context, the ACF plays a primary role in 
the identification and estimation phases (Box et al., 1994). For periodic time series, 
the ACF extends to the seasonal ACF which is defined in the next section. This 
function again play an important role in PARMA modeling (Franses and Paap, 
2004). 

    In the next section, the theoretical and sample seasonal ACF is defined. Then 
the first lag periodic autocorrelation is explored for the PARω(1) model. Besides, 
three estimators for the first lag ordinary autocorrelation of the AR(1) model 
previously investigated by Berkoun et al. (2003) which include the moment estimator 
and two other robust estimators. Those estimators are then generalized to the 
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PARω(1) model. Later on, those estimators are investigated using Monte – Carlo 
simulation. 
 

2. The Seasonal ACF of  PAR(1) Model 
      The PAR model is not stationary in the ordinary sense. Alternatively, the 
PAR model is subject to a weaker type of stationarity named as periodic stationarity. 
The ordinary type of stationarity, known as second order stationarity requires 
constant mean and variance and that the autocovariances depend on time lag only 
(Cryer,1986). On the other hand, periodic stationarity requires that the mean and 
variances of the process are constants for each season and periodic with period ω, 
and that the autocovariance depend on time lag and season only. The periodic 
stationarity conditions for various PARMA processes can be obtained by solving an 
eigen–value problem. This approach is achieved by transforming the PARMA model 
consisting of ω equations into its corresponding ω – variate vector ARMA model. 
For more details on this issue, see Ula and Smadi (1997). For instance, for the 
PARω(1) model , the periodic stationarity conditions is that 

1
1

1 <νφ∏
ω

=ν
)( .                                        (2.1) 

    Taking ω=1; the PAR4(1) model reduces to the ordinary zero – mean AR(1) 
model written as: 

 ttt aXX += −1φ .                                        (2.2) 

It is known that this model is stationary if |φ| < 1 which is the same as (2.1) for ω=1. 

    The ACF of AR(1) model is ρk = φk, k=0,1,…Thus, the first order 
autocorrelation ρ1 is nothing but φ. Berkoun et al. (2003) investigated robust 
estimation of ρ1 for the zero – mean AR(1) model. Assuming that the time series has 
a single additive outlier, they have investigated three estimators of ρ1 , namely: 
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where 1ρ̂  is the ordinary moment estimator of ρ1, 1
~ρ and 1ρ( are two robust estimators of 

ρ1 that are originally proposed by Hurwicz (1950) and Haddad (2000), respectively. 
Berkoun et al. (2003) showed that the inference based on the moment estimator 1̂ρ  is 
highly sensitive to a single additive outlier. They also suggested replacing 1ρ̂ with the 
robust alternatives 1

~ρ and 1ρ
( for inference purposes in the presence or suspect of 

outliers in data. Now, for periodic stationary PARMA models, the seasonal 
autocorrelation function (Seasonal ACF) depends on the time lag and season only 
and is defined as: 

            (2.6) 

 

where γj(ν) denotes the seasonal autocovariance function and γo(ν) denotes the 
variance of the process for season ν and time lag j=0,1,… The moment estimator of 
ρj(ν) is given by: 
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where cj(ν) denotes the sample seasonal autocovariance function, defined as: 
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where νX  is the sample mean of data in season ν and n is the number of years of data 
(see,  McLeod, 1994).  
 

    As far as the PARω(1) model is considered, it can be proved that the first lag 
autocorrelations are given by: 

,
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for ν=1,2,…,ω. Note that in this case the first order autocorrelation are not the same 
as AR parameters but of similar sign and a function of them. For the computation of 
ρ1(ν), given φ1(ν) and σ2(ν), (2.9) can be used along the fact that for the PARω(1) 
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This system of ω equations can be written as: 

Σ=Γ   0A , 

where     
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So that Σ=Γ −1
0 A . 

    For example, for the PAR4(1) model with φ1(1) = 0.8, φ1(2) = 1.1, φ1(3) =  – 
0.7 and φ1(4) = 0.3 and σ2(1) = …= σ2(4) = 1, we can easily show that ρ1(1) = 
0.6636, ρ1(2) = 0.8269, ρ1(3) =  – 0.7796 and ρ1(4) = 0.4320. 

   Shao (2007) investigated robust estimation of PAR models. He extends the 
results of Basawa (1985) towards PAR models. Shao focused on the estimation of 
the parameters of PAR models. In this article, we are interested in the estimation of 
the first order autocorrelation for the PARω(1) model. Beside the moment estimate of 
ρ1(ν) given in (2.7) with j=1 which we will denote as )(1̂νρ , we propose in the next 
section two robust estimators for the PARω(1) model similar to 1

~ρ and 1ρ
(  for the AR(1) 

model given by (2.4) and (2.5), respectively. 

 

3. Robust Estimation of the First Order Auto-Correlation 

      Assume that the stochastic process {Xk,ν} follows the PARω(1) model. Let {Z 

k,ν} be the same process but contaminated with an additive outlier at year ko and 
season νo. That is,  
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for which we are interested in estimating the first lag seasonal autocorrelation. Here, 
we generalize the three estimators in Berkoun et al. (2003) shown in equations (2.3), 
(2.4) and (2.5) for ρ1(ν) of the PARω(1) model, for ν=1,…,ω, as follows: 
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where{ *
,νkZ }is the seasonally median subtracted time series, that is 

 *
,νkZ = { }νν ,, j

jk ZMedZ − , k = 1, …, n.      

    The moment estimator of ρ1(ν) given in (3.1) is nothing but (2.7) with j = 1. If 
the time series {Z k,ν} is zero – mean and non – periodic (i.e., ω = 1) then c1(ν) in 

(2.8) reduces to 
1n
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reduces to the ordinary moment estimator of ρ1 in (2.3). 

 

   Similarly, it can easily be shown that the estimators in (3.2) and (3.3) reduce to 
(2.4) and (2.5) for the ordinary AR(1) model. In fact, (3.2) is developed based on 
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   Therefore, our main objective is to investigate the behaviors of the estimators   
)(1̂ νρ , )(~

1 νρ  and )(1 vρ(  in the presence of a single additive outlier using Monte – Carlo 
simulation. In addition, we aim to study other factors that may affect the quality of 
those estimators like the magnitude and the place of the outlier and the realization 
length along some other factors. 
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4. Simulation Study 
            In order to investigate the behavior of the three estimators of ρ1(ν) for the 
PARω(1) model defined in equations (3.1) – (3.3) we will carry out a simulation 
study based on the following PAR models: 

Model A: PAR4(1) with φ's : 0.8, 1.1,  – 0.7, 0.3. 

Model B: PAR4(1) with φ's: 1.8, 0.9,  – 1.2,  – 0.51. 

Model C: PAR2(1) with φ's: 0.9, 0.8. 

Model D: PAR12(1) with φ's: 1.1,  – 0.8, 0.95,  – 1.2, 0.7, 0.9,  – 1.3,  – 0.7, 1.3, 0.5, 
1.2,  – 1.8. 

    All of the PAR models above are chosen to be periodic stationary. In this study we 
will investigate several aspects during the comparison of various estimators of ρ1(ν). 
First, we study the period length ω. Notice that in models above ω covers 2, 4 and 
12.  Next, we will study the behavior of estimators when the place of outlier is 
changed. The default time of outlier is chosen at t=13, which means that the outlier 
lies in season 1. We have simulated other cases with different locations of outliers. 
Besides, model B is chosen to examine the behavior of various estimators when the 
process is close to the non – stationarity region since Πφi = 0.99 is close to 1.  

   The simulations are carried out using a FORTRAN code written by the authors for 
realization lengths N=50,100,300. In each case, one thousand simulations are done, 
based on which the mean bias and MSE of various estimators of ρ1(ν), defined by 
(4.1) − (4.3) are computed. Theoretical values of ρ1(ν) for various cases are 
computed using (2.9) and (2.10). The mean bias and MSE are computed as follows: 
Assume that for a specific PAR(1) model and specific season ν, 1000 realizations 
each of length n years are simulated. Then we compute the exact correlation ρ1(ν) 
and then 1000 estimates of ρ1(ν) are computed, say: 

 {( )(*
1 νρ )1, ( )(*

1 νρ )2, …, ( )(*
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   Tables (1) – (3) and Figures (1) – (4) present some selected results. In Figure (1) 
we compare between various estimators of ρ1(ν) for model (A) when there is no 
outlier and when an additive outlier is involved. In Table (1) we investigate the effect 
of constant variances of the white noise process against varying variances for model 
(A) for several values of realization length. Table (2) is based on model (B) in which 
we focus on the case were the parameters of the PAR(1) model is close to the non – 
stationarity region. Table (3) shows some similar results but for the PAR(1) model 
with period length 2. In Figures (2) and (3) we respectively study the mean bias and 
MSE of various estimators of ρ1(ν) for again model (A) but for various locations of 
the additive outlier. Finally, we investigate the case with period length 12 in Figure 
(4) which is based on model (D). 
 

 
Figure (1): The mean bias and MSE for various estimates of ρ1(ν) for the PAR4(1) model (model A) 
with unit white noise variances and n = 300. 
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(●: No outliers, ■: With an additive outlier of ∆ = 50 at t =13) 

Table (1): The mean bias and MSE (given in parentheses) of estimates of ρ1(ν) for the 
PAR4(1) model (model A) with additive outlier ∆ = 50 at time t = 13 

  (a) 
2
νσ = 1,1,1,1 (b) 

2
νσ = 10,100,1,4 

N Season )ˆ1(νρ  )~
1(νρ  )1(νρ(  )ˆ1(νρ  )~

1(νρ  )1(νρ(  

1 
– 0.5451 

(0.3171) 

– 0.0611 

(0.0332) 

– 0.1592 

(0.0706) 

– 0.0499 

(0.0049) 

– 0.0435 

(0.0224) 

– 0.1089 

(0.0419) 

2 
– 0.6701 

(0.4678) 

– 0.0036 

(0.0239) 

– 0.1037 

(0.0429) 

– 0.0720 

(0.0146) 

– 0.0195 

(0.0466) 

– 0.0888 

(0.0315) 

3 
0.5943 

(0.3540) 

0.0037 

(0.0251) 

0.1077 

(0.0425) 

0.0415 

(0.0017) 

– 0.0008 

(0.0003) 

0.0000 

(0.0000) 

50 

4 
– 0.3420 

(0.1177) 

– 0.0229 

(0.0398) 

– 0.1484 

(0.0515) 

– 0.4353 

(0.1895) 

– 0.0011 

(0.0086) 

– 0.0125 

(0.0071) 

1 
– 0.4924 

(0.2515) 

– 0.0282 

(0.0164) 

– 0.1486 

(0.0407) 

– 0.0276 

(0.0017) 

– 0.0222 

(0.0109) 

– 0.0863 

(0.0210) 

2 
– 0.6159 

(0.3878) 

– 0.0011 

(0.0118) 

– 0.0959 

(0.0240) 

– 0.0674 

(0.0089) 

– 0.0082 

(0.0075) 

– 0.0921 

(0.0194) 

3 
0.5310 

(0.2826) 

– 0.0024 

(0.0134) 

0.1020 

(0.0284) 

0.0408 

(0.0017) 

– 0.0003 

(0.0002) 

0.0001 

(0.0000) 

100 

4 
– 0.3126 

(0.0984) 

– 0.0085 

(0.0178) 

– 0.1432 

(0.0366) 

– 0.4352 

(0.1894) 

– 0.0028 

(0.0045) 

– 0.0121 

(0.0048) 

1 
– 0.3866 

(0.1523) 

– 0.0100 

(0.0053) 

– 0.1288 

(0.0226) 

– 0.0097 

(0.0003) 

– 0.0043 

(0.0032) 

– 0.0722 

(0.0099) 

2 
– 0.5000 

(0.2522) 

– 0.0022 

(0.0035) 

– 0.0888 

(0.0128) 

– 0.0704 

(0.0064) 

– 0.0039 

(0.0075) 

– 0.1004 

(0.0138) 

3 
0.4156 

(0.1731) 

0.0031 

(0.0038) 

0.1006 

(0.0157) 

0.0399 

(0.0016) 

0.0002 

(0.0001) 

– 0.0001 

(0.0001) 

300 

4 
– 0.2646 

(0.0704) 

– 0.0062 

(0.0063) 

– 0.1413 

(0.0260) 

– 0.4348 

(0.1890) 

– 0.0004 

(0.0014) 

– 0.0117 

(0.0019) 
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Table (2): The mean bias and MSE (given in parentheses) of estimates of ρ1(ν) for the 
PAR4(1) model (model B) with unit white noise variances and additive outlier ∆ = 50 at time 
t = 13 

 (a) N = 50 (b) N = 300 

Season )ˆ1(νρ  )~
1(νρ  )1(νρ(  )ˆ1(νρ  )~

1(νρ  )1(νρ(  

1 
– 0.3766 

(0.1684) 

– 0.0396 

(0.0111) 

– 0.0569 

(0.0146) 

– 0.0341 

(0.0015) 

– 0.0057 

(0.0009) 

– 0.0093 

(0.0009) 

2 
– 0.4068 

(0.1853) 

– 0.0050 

(0.0107) 

– 0.0630 

(0.0158) 

– 0.1489 

(0.0224) 

– 0.0005 

(0.0010) 

– 0.0130 

(0.0010) 

3 
0.5304 

(0.2866) 

0.0086 

(0.0079) 

0.0264 

(0.0075) 

0.3910 

(0.1530) 

0.0021 

(0.0008) 

0.0054 

(0.0007) 

4 
0.5288 

(0.2844) 

0.0521 

(0.0178) 

0.0866 

(0.0263) 

0.4122 

(0.1700) 

0.0084 

(0.0012) 

0.0176 

(0.0019) 

 

Table (3): The mean bias and MSE (given in parentheses) of estimates of ρ1(ν) for the 
PAR2(1) model (model C) with unit white noise variances and additive outlier ∆ = 50 at time 
t = 13 

N Season )ˆ1(νρ  )~
1(νρ  )1(νρ(  

1 
– 0.6530 

(0.4459) 

– 0.0801 

(0.0283) 

– 0.1364 

(0.0558) 
50 

2 
– 0.6445 

(0.4341) 

– 0.0369 

(0.0315) 

– 0.1417 

(0.0581) 

1 
– 0.5642 

(0.3276) 

– 0.0328 

(0.0123) 

– 0.1093 

(0.0294) 
100 

2 
– 0.5695 

(0.3327) 

– 0.0185 

(0.0128) 

– 0.1091 

(0.0303) 

1 
– 0.3868 

(0.1523) 

– 0.0118 

(0.0039) 

– 0.0842 

(0.0127) 
300 

2 
– 0.4316 

(0.1883) 

– 0.0071 

(0.0040) 

– 0.0872 

(0.0137) 
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Figure (2): The mean bias for the PAR4(1) model (model A) with unit white noise variances and n = 
300,  ∆ = 50. The place of additive outlier (a) t = 13, (b) t = 14, (c) t = 15, (d) t = 16.  

(●: )ˆ1(νρ , ■: )~
1(νρ , ♦: )1(νρ( ) 

 
Figure (3): The MSE for the PAR4(1) model (model A) with unit white noise variances and n = 300,  
∆ = 50. The place of additive outlier (a) t = 13, (b) t = 14, (c) t = 15, (d) t = 16. 

 (●: )ˆ1(νρ , ■: )~
1(νρ , ♦: )1(νρ( ) 
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Figure (4): The mean bias and MSE for the PAR12(1) model (Model D) and unit white noise 
variances = 1, n = 300,  ∆ = 50 and place of additive outlier at time t = 13. (a) Mean bias, (b) MSE.  

(●: )ˆ1(νρ , ■: )~
1(νρ , ♦: )1(νρ( ) 

 

5. Discussion and Conclusion 

         In view of the simulation results above, we can see in all tables and figures 
above that the moment estimator of ρ1(ν), )ˆ1(νρ , is affected by the outlier while the 
other two estimators were apparently robust. This fact is true via bias and MSE. For 
instance, in Figure (1) we can see that for the two robust estimators )~

1(νρ and )1(νρ( , the 
bias and MSE were not affected by the presence of outliers while )ˆ1(νρ is clearly 
affected as in Figure (1 – 1b). 

   We also conclude that, in general, for all estimators the mean bias and MSE 
decrease as the realization length increases. The best of the two robust estimators in 
almost all cases was )~

1(νρ , defined by (3.2), in view of bias and MSE. Changing the 
white noise variances makes no significant changes on the behavior of )~

1(νρ and )1(νρ( , 
as can be seen in Table (1), whereas )ˆ1(νρ is slightly affected by this change. If the 
parameters of the PAR(1) model is close to the non – stationarity region, then all 
estimators seem not affected by this issue as shown in Table (2). 

    As for the period length ω, we can see in Tables (1) and (2) in which ω = 4 
and in Table (3) and Figure (4) which correspond, respectively to ω = 2 and 12 that 
the conclusions above regarding the three estimators are in general still valid. 
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However, we may conclude from Figure (4), in which ω = 12, that the effect 
of the single additive outlier which is contaminated in the first season is apparent in 
the bias and MSE of )ˆ1(νρ for all seasons ν = 1, …, 12. The place of outlier has no 
significant change on our conclusions as depicted in Figures (2) and (3). 

    Finally, we should point out that our conclusions are initially valid for the 
selected models and cases. However, it is clear that the moment estimator of ρ1(ν) 
was not robust in the presence of outliers, as expected. We should also emphasize 
that it is not our objective to neglect outlying observations. But, in this article, we 
draw attention to the bad effect of such observations on the estimation of the ACF 
which may then affect other phases of model building as the identification and 
estimation of proper models. In addition, in this study we have considered the case of 
a single additive outlier. Further studies may examine other types and numbers of 
outliers on the autocorrelations of PAR(1) model or other PARMA models. 
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