SOME PROPERTIES OF UNISERIALLY EMBEDDING OF SUBGROUPS OF p-GROUPS

HASSAN NARAGHI

ABSTRACT. This paper focuses attention on the study of the Question 3.1. of [1] and it can be considered as a continuation of the previously mentioned paper. A subgroup H of a p-group G is n-uniserial if for each i=1,...,n, there is a unique subgroup K_i such that $H \leq K_i$ and $|K_i:H|=p^i$. In case the subgroups of G containing H form a chain we say that H is uniserially embedded in G. We prove that if H is an n-uniserial subgroup of a cyclic p-group G, then H is uniserially embedded in G. We also show that if H is an n-uniserial subgroup of the p-group G such that $|G| \leq p^5$, then H is uniserially embedded in G and we determine that if H is a 1-uniserial subgroup of order p^2 in the p-group G of order p^5 and $C_G(H) = H$, then H is uniserially embedded in G.

1. Introduction

This paper focuses attention on the study of the Question 3.1. of [1]: what are the conditions on an n-uniserial subgroup for it to be uniserially embedded and it can be considered as a continuation of the previously mentioned paper. Let us say that a subgroup H of a p-group G is n-uniserial if for each i = 1, ..., n, there is a unique subgroup K_i such that $H \leq K_i$ and $|K_i:H| = p^i$. Thus H is uniserially embedded in K_n . When does n-uniseriality imply uniserially embedded. The condition that H is 1-uniserial is equivalent to $N_G(H)/H$ being cyclic (p odd). If |H| = p and G is not cyclic, this condition is equivalent to $N_G(H) = H \times T$ for a cyclic subgroup T of G. This situation was studied in [2], from which it follows that H is uniserially embedded if and only if |T| = p. Blackburn and He'thelyi in [1] discuss on the conditions of a 2-uniserial subgroup in the p-group G which it to be uniserially embedded in G. They proved the following theorems:

Theorem 1.1. [1] Suppose that p is odd and that K is a 2-uniserial subgroup of order p in the p-group G. Then K is uniserially embedded in G.

Theorem 1.2. [1] For p > 3, let K be a 2-uniserial cyclic subgroup of the p-group G. Then K is uniserially embedded in G.

Theorem 1.3. [1] For p odd let K be a 2-uniserial elementary Abelian subgroup of order at most p^{p-1} of a p-group G. Then K is uniserially embedded in G.

 $^{2000\} Mathematics\ Subject\ Classification.\ :\ 20D15.$

Key words and phrases. : n-uniserial subgroup, p-group, soft subgroup, uniserially embedding. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: Nov.10,2008

Accepted: June 16,2009.

In this paper, we study the conditions on an n-uniserial subgroup which it to be uniserially embedded. We also study the conditions on a 1-uniserial subgroup in the p-group G of order p^5 which it to be uniserially embedded in G.

Whenever possible we follow the notation and terminology of [5, 6]

2. Preliminaries

A subgroup H of a p-group G is n-uniserial if for each i = 1, ..., n, there is a unique subgroup K_i such that $H \leq K_i$ and $|K_i| = p^i$. Thus H is uniserially embedded in K_n .

Definition 2.1. [3]. Let G be a finite p-group, where p is a prime number. A proper subgroup H of G is called soft if H is a maximal Abelian subgroup of G and is of index p in its normalizer. The chief properties of soft subgroups are given in [3] and [4].

Theorem 2.2. [2]. Suppose that p is odd and that G is a p-group. Then H is 1-uniserial if and only if $N_G(H)/H$ is cyclic.

Theorem 2.3. [1]. Suppose that p is odd and that K is a 2-uniserial subgroup of order p in the p-group G. Then K is uniserially embedded in G.

Theorem 2.4. [3]. Let H be a soft subgroup in G. Then there is a unique maximal subgroup M of G which contains H.

3. Uniserially embedding of subgroup

Lemma 3.1. Let G be a finite cyclic p-group. Then every subgroup H of G of order n is unique.

Proof. Straight forward.

Theorem 3.2. Suppose that p is a prime number, then any subgroup of a finite cyclic p-group G is uniserially embedded in G.

Proof. Let K be an n-uniserial subgroup of G. Hence for each i = 1, ...n, there is a unique subgroup K_i such that $K \leq K_i$ and $|K_i:K| = p^i$. Let $K \leq T_1 \leq ... \leq T_m \leq G$ be a chain of subgroups G containing K and $|T_i:K| = p^i (i=1,...,m)$. By Lemma 3.1, K is a m-uniserial subgroup in G. Since G is a cyclic p-group, therefore $m \leq n$ and for each i=1,...,m, $T_i = K_i$. Thus K is uniserially embedded in G.

Theorem 3.3. Suppose that p is a prime number and K is a 2-uniserial subgroup of order p^{α} in p-group G of order at most p^5 . Then K is uniserially embedded in G.

Proof. If $\alpha=1$, then by Theorem 1.1, the proof is complete. Let $\alpha\geq 2$ and H_1,H_2 be the unique subgroups of orders $p^{\alpha+1},p^{\alpha+2}$ respectively containing K. So $|H_1|=p^{\alpha+1}$ and $|H_2|=p^{\alpha+2}$. Thus $p^{\alpha+2}\leq |G|\leq p^5$, so $4\leq \alpha+2\leq 5$. If $\alpha+2=5$, then $\alpha=3$ and $H_2=G$. In this case, let $K\leq T_1\leq ...T_m\leq G$ be a chain of subgroups of G such that $|T_i:H|=p^i({\rm i=1,...,m})$. Therefore $m\leq 2$. Thus $T_1=H_1$ and $T_2=H_2=G$,

that is, K is uniserially embedded in G. If $\alpha + 2 = 4$, then $|K| = p^2, |H_1| = p^3$ and $|H_2| = p^4$. Let $K \leq K_1 \leq K_2 \leq ... \leq K_m \leq G$ be a chain of subgroups of G containing K and $|K_i: K| = p^i (i=1,...,m)$. So $|K_m| = p^{m+2}$. Thus $m \leq 3$, and $G = K_3$. So $K \leq K_1 \leq K_2 \leq K_3 = G$ such that $|K_i: K| = p^i (i=1,2,3)$. Since K is a 2-uniserial, then $K_1 = H_1$ and $K_2 = H_2$, that is, K is uniserially embedded in G and the proof is completed.

Theorem 3.4. Suppose that p is a prime number and that n > 1. If H is a non-trivial n-uniserial subgroup in the p-group G of order at most p^5 , then H is uniserially embedded in G.

Proof. Since $|G| \leq p^5$, $n \leq 4$. If n = 2, by Theorem 3.3, the proof is complete. Let $n \geq 3$ and $|H| = p^{\alpha}$ such that $\alpha \geq 1$. If n = 3, then there are unique subgroups K_1, K_2 and K_3 such that $H \leq K_i$ and $|K_i| = p^i (i=1,2,3)$, so $|K_3| = p^{\alpha+3}$. Thus $1 \leq \alpha \leq 2$ and $|G| \geq p^4$. If $\alpha = 1$, then $|K_3| = p^4$. If $|G| = p^4$, then the proof is complete. Let $|G| = p^5$ and $H \leq T_1 \leq T_2 \leq ... \leq T_m \leq G$ be a chain of subgroups of G such that $|T_i| = p^i (i=1,...,m)$. So $|T_m| = p^{m+1}$. Thus $m \leq 4$ and $|T_4| = p^5$, that is, $T_4 = G$. Since G is a 3-uniserial, hence G is a 3-uniserially embedded in G. If G is a 3-uniserially embedded in G is a 3-uniserially embedded in G. If G is a subgroup G is uniserially embedded in G is a 3-uniserially embedded in G. If G is a 3-uniserially embedded in G is a 3-uniserially embedded in G.

Theorem 3.5. Suppose that H is a 1-uniserial subgroup in the p-group G of order p^{α} . If $|H| = p^{\beta}$ and $\alpha - 2 \le \beta \le \alpha - 1$, then H is uniserially embedded in G.

Proof. Let $\beta = \alpha - 1$. Since H is a 1-uniserial subgroup in G, hence there is a unique subgroup K such that $H \leq K$ and |K| = p. So $|H| = p^{\alpha - 1}$ and $|K| = p^{\alpha}$, thus G=K. Let $\beta = \alpha - 2$. Since K is unique and the only subgroup containing K is G itself, so H < K < G and hence H is uniserially embedded in G and the proof is completed.

Theorem 3.6. Suppose that p is odd and H is a 1-uniserial subgroup of order $p^{\alpha-3}$ in the p-group G of order p^{α} . Assume that one of the following conditions is satisfied: (a) G is Abelian.

(b) There is a subgroup K of G such that $H \leq K$, K is not normal in G and |K:H| = p. Then H is uniserially embedded in G.

Proof. Let G be Abelian group. Since H is a 1-uniserial subgroup in G, there is a unique subgroup K of G such that $H \leq K$ and |K:H| = p. So $|K| = p^{\alpha-2}$, thus $H, K \geq G$. By Theorem 2.2, G/H is cyclic. So G/K is cyclic and by Lemma 3.1, G/K has a unique subgroup of order p. Let $M/K \leq G/K$ and |M/K| = p. So $|M| = p^{\alpha-1}$, and thus G has a unique subgroup of order $p^{\alpha-1}$. Therefore H is uniserially embedded in G. Let (b) hold. Thus there is a unique subgroup T such that $H \leq T$ and |T:H| = p, hence T=K, and therefore T is not normal subgroup in G. Since $T < N_G(T) < G$, hence $|N_G(K)| = p^{\alpha-1}$, so $N_G(K)$ is maximal in G. Let $H \leq S_1 \leq ... \leq S_m \leq G$ be a chain of subgroups of G such that $|S_i:H| = p^i (i=1,...,m)$, therefore $|S_m| = p^{m+\alpha-3}$, and thus $m \leq 3$. Therefore $|S_3| = p^{\alpha}$, that is, $G = S_3$. Since H is a 1-uniserial, hence $S_1 = T$.

T is a maximal subgroup in the nilpotent group S_2 . Thus $T \trianglerighteq S_2$. So $S_2 \le N_G(T)$. Since $|N_G(T)| = |S_2| = p^{\alpha-1}$, $S_2 = N_G(T)$, therefore for any chain of subgroups of G, $H \le S_1 \le ... \le S_m \le G$ such that $|S_i| : H = p^i (i=1,...,m)$, $m = 3, S_1 = T$ and $S_2 = N_G(T)$, that is, H is uniserially embedded in G.

Theorem 3.7. Suppose that p is a prime number and H is a 1-uniserial subgroup of order p^2 in the p-group G of order p^5 . If $C_G(H) = H$, then H is uniserially embedded in G.

Proof. Since $H \cong Z_{p^2}$ or $H \cong Z_p \times Z_p$ and $H < N_G(H)$, $|N_G(H)/H| = p^{\alpha}$ such that $1 \leq \alpha \leq 3$. We know that $N_G(H)/C_G(H) \hookrightarrow Aut(H)$, so $|N_G(H)/C_G(H)| = p$. Since H is Abelian, self-centralizer and $|N_G(H)| : H = p$, hence H is soft subgroup of G, by Theorem 2.4, there is a unique maximal subgroup M of G containing H. Let $H \leq T \leq S \leq G$ be a chain of G such that $|T| = p^3$ and $|S| = p^4$. Since H is a 1-uniserial in G, then T is unique. Also S is a maximal subgroup of G containing H. Thus S=M, that is, H is uniserially embedded in G and the proof is completed.

References

- [1] N. Blackburn, L. He'thelyi, Some further properties of soft subgroups, ARCH. Math. 69(1997), 365-371.
- [2] N. Blackburn, Groups of prime-power order having an Abelian centralizer of type (r,1), *Monatsh Math.***99**(1985), 1-18.
- [3] L. He'thelyi, Soft subgroups of p-groups, Ann. Univ. Sci. Budapest. Sect. Math. 27(1984), 81-85.
- [4] L. He'thelyi, On subgroups of p-groups having soft subgroups, J. London Math. Soc. (2) **41**(1990), 425-437.
- [5] J. J. Rotman, An Introduction to the Theory of Groups, Spring-Verlage, 1995.
- [6] W. R. Scott, Group Theory, Prentice-Hall, 1964.

(Naraghi) Department of Mathematics, Islamic Azad University, Ashtian Branch.

E-mail address, Naraghi: taha.naraghi@@gmail.com