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HOMOTOPY ANALYSIS METHOD FOR
DELAY-INTEGRO-DIFFERENTIAL EQUATIONS

E. A. RAWASHDEH, H. M. JARADAT, FADI AWAWDEH

Abstract. In this paper, we implement the homotopy analysis method to
solve delay-integro-differential equations. The convergence of the method is
investigated. In the end, numerical experiments are presented to illustrate the
computational effectiveness of the method.

1. Introduction

This paper considers an analytical solution to the delay-integro-differential equa-
tions (DIDEs)

y′(t) = λy(t) + µy(t− τ) + γ

∫ t

t−τ

K(t, s)y(s)ds, t ≥ 0, (1.1)

y(t) = ϕ(t), t ≤ 0,

where λ, µ, γ are real numbers.
Delay-integro-differential equations have been studied by many authors. A mo-

tivating factor for the study of these equations is their application to the areas of
science, engineering and technology. Many typical examples, such as stress-strain
states of materials, motion of rigid bodies, aeroauto-elasticity problems and models
of polymer crystallization, can be found in Kolmanovskii and Myshkis’ monograph
[9] and the references therein. Generally speaking, it is difficult to give the exact
solutions of such equations. Recently, this class of equations have come to intrigue
researchers in numerical computation and analysis [6, 8]. For example, Baker and
Ford [3], Koto [10] dealt with the linear stability of numerical methods for VDIDEs.
Baker and Ford [4, 5], Brunner [7] and Enright and Hu [9] studied the convergence of
linear multistep methods, collocation methods and continuous Runge–Kutta meth-
ods, respectively. Zhang and Vandewalle [16, 17] investigated nonlinear stability of
BDF methods, Runge–Kutta methods and general linear methods.

The homotopy analysis method (HAM) [1, 12, 13, 14, 15] is thoroughly used by
many researchers to handle a wide variety of scientific and engineering applications.
Awawdeh et al. [2] used HAM to solve the multi-pantograph delay differential
equation

y′(t) = λy(t) +
k∑

i=1

µiy(qit) + f(t), 0 < t < T,

y(0) = α,
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where 0 < qk < qk−1 < · · · < q1 < 1.
In this paper, the homotopy analysis method (HAM) is applied to solve DIDEs

of type (1.1). It is expected the proposed technique can be further applied to derive
solutions for other types of DIDEs. Examples to illustrate the results are presented
throughout the paper.

2. Solution Method

2.1. Approach based on the HAM. Consider the operator N defined according
to Eq. (1.1) by

N [φ(t; q)] =
∂φ(t; q)

∂t
− λφ(t; q)− µφ(t− τ ; q)− γ

∫ t

t−τ

K(t, s)φ(s; q)ds, t ≥ 0.
(2.1)

Let y0(t) be an initial guess of the exact solution y(t). Also, ~ 6= 0 an auxiliary
parameter and L an auxiliary linear operator satisfies

L[f(x)] = 0 when f(x) = 0.

All of y0(x), L and ~ will be chosen later with great freedom. Then we construct
the HAM deformation equation in the following form:

(1− q)L[φ(t; q)− y0(t)] = q~N [φ(t; q)], (2.2)

where q ∈ [0, 1] is an embedding parameter.
Obviously, when q = 0, Eq. (2.2) has the solution

φ(t; 0) = y0(t), (2.3)

and when q = 1, since ~ 6= 0, Eq. (2.2) is equivalent to the original one (1.1),
provided

φ(t; 1) = y(t). (2.4)

Thus, according to (2.3) and (2.4), as the embedding parameter q increases from
0 to 1, φ(t; q) varies continuously from the initial approximation y0(t) to the exact
solution y(t). This kind of deformation φ(t; q) is totally determined by the so-called
zeroth-order deformation equation (2.2).

Expanding φ(t; q) in Taylor’s series with respect to q, we have

φ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (2.5)

where

ym(t) = Dm[φ(t; q)] =
1
m!

∂mφ(t; q)
∂qm

|q=0.

Dm is called the mth-order homotopy-derivative of φ.
Fortunately, the homotopy-series (2.5) contains an auxiliary parameter ~, and

besides we have great freedom to choose the auxiliary linear operator L, as illus-
trated by Liao [12]. If the auxiliary linear parameter L and the nonzero auxiliary
parameter ~ are properly chosen so that the power series (2.5) of φ(t; q) converges
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at q = 1. Then, we have under these assumptions the the so-called homotopy-series
solution

y(t) = y0(t) +
∞∑

m=1

ym(t). (2.6)

According to the fundamental theorems in calculus, each coefficient of the Tay-
lor series of a function is unique. Thus, ym(t) is unique, and is determined by
φ(t; q). Therefore, the governing equations and boundary conditions of ym(t) can
be deduced from the zeroth-order deformation equation (2.2). For brevity, define
the vectors

−→y n(t) = {y0(t), y1(t), y2(t), . . . , yn(t)}.

Differentiating the zero-order deformation equation (2.2) m times with respect to
q and then dividing by m! and finally setting q = 0, we have the so-called high-order
deformation equation

L[ym(t)− χmym−1(t)] = ~<m(−→y m−1(t)), (2.7)
ym(0) = 0,

where

<m(−→y m−1(x)) = Dm−1(N [φ]) =
1

(m− 1)!
∂m−1N [φ(x; q)]

∂qm−1
|q=0 (2.8)

and

χm =
{

0, m ≤ 1
1, m > 1 .

In this line we have that,

<m(−→y m−1(t)) = y′m−1(t)− λym−1(t)− µym−1(t− τ)− γ

∫ t

t−τ

K(t, s)ym−1(s)ds
(2.9)

So, by means of symbolic computation software such as Mathematica, Maple, Mat-
lab and so on, it is not difficult to get <m(−→y m−1(t)) for large value of m.

The solutions of the high-order deformation equations (2.7) exist when the aux-
iliary linear operator L is invertible. By taking the inverse of the linear operator
L = d

dt in (2.7), we get for m ≥ 1,

ym(t) = χmym−1(t) + ~
∫ t

0

<m(−→y m−1(ζ))dζ. (2.10)

In this way, it is easily to obtain ym(t) one by one in the order m = 1, 2, 3, ..., and
we have

y(t) =
M∑

m=0

ym(t).

When M →∞, we get an accurate approximation of the original equation (1.1).
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2.2. Convergence analysis.

Theorem 2.1. If the series (2.6) converges, then it is the exact solution of the
integral equation (1.1).

Proof 1. If the series (2.6) converges, we can write

S(t) =
∞∑

m=0

ym(t),

and it holds that

lim
m→∞

ym(t) = 0. (2.11)

We can verify that
n∑

m=1

[ym(t)− χmym−1(t)] = y1 + (y2 − y1) + · · ·+ (yn − yn−1)

= yn(t),

which gives us, according to (2.11),
∞∑

m=1

[ym(t)− χmym−1(t)] = lim
n→∞

yn(t) = 0. (2.12)

Furthermore, using (2.12) and the definition of the linear operator L, we have
∞∑

m=1

L[ym(t)− χmym−1(t)] = L[
∞∑

m=1

[ym(t)− χmym−1(t)]] = 0.

In this line, we can obtain that
∞∑

m=1

L[ym(t)− χmym−1(t)] = ~
∞∑

m=1

<m−1(−→y m−1(t)) = 0

which gives, since h 6= 0, that
∞∑

m=1

<m−1(−→y m−1(t)) = 0. (2.13)

Substituting <m−1(−→y m−1(x)) into the above expression and simplifying it, we have
∞∑

m=1

<m−1 =
∞∑

m=1

[y′m−1(t)− λym−1(t)− µym−1(t− τ)− γ

∫ t

t−τ

K(t, s)ym−1(s)ds]

=
∞∑

m=0

y′m − λ

∞∑
m=0

ym − µ

∞∑
m=0

ym(t− τ)− γ

∫ t

t−τ

K(t, s)
∞∑

m=0

ym(s)ds

= S′(t)− λS(t)− µS(t− τ)− γ

∫ t

t−τ

K(t, s)S(s)ds (2.14)

From (2.13) and (2.14), we have

S′(t) = λS(t) + µS(t− τ) + γ

∫ t

t−τ

K(t, s)S(s)ds,

and so, S(t) is the exact solution of (1.1). This completes the proof of the theorem.
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Note that we have great freedom to choose the value of the auxiliary parameter ~.
Mathematically the value of y(t) at any finite order of approximation is dependent
upon the auxiliary parameter ~, because the zeroth and high-order deformation
equations contain ~. Let R~ be the set of all values of ~ which ensures the con-
vergence of the HAM series solution (2.6) of y(t). According to Theorem 1, all of
these series solutions must converge to the solution of the original equations (1.1).
Let ~ be the variable of the horizontal axis and the limit of the series solution (2.6)
of y(t) be the variable of vertical axis. Plot the curve y(t) vs ~, where y(t) denotes
the limit of the series (2.6). Because the limit of all convergent series solutions (2.6)
is the same, there exists a horizontal line segment above the region ~ ∈ R~. So, by
plotting the curve y(t) vs ~ at a high enough order approximation, one can find an
approximation of the set R~ (for more details see [12]).

3. Applications

In this section, the validity of the proposed approach is illustrated by two exam-
ples.

3.1. Example 1. First we consider the following delay integro-differential equation

y′(t) = y(t− 1) +
∫ t

t−1

y(s)ds, t ≥ 0, (3.1)

y(t) = et, t ≤ 0,

which has the exact solution y(t) = et. We use the set of base functions

{tn : n ≥ 1, n ∈ N},
in order to represent y(t),

y(t) =
∞∑

k=1

bktk, (3.2)

where bk is a coefficient to be determined later. According to (2.2), the zeroth-order
deformation equation can be given by

(1− q)L[φ(t; q)− y0(t)] = q~(
∂φ(t; q)

∂t
− φ(t− 1; q) +

∫ t

t−1

φ(s; q)ds).

Under the rule of solution expression denoted by (3.2), we can choose the initial
guess of y(t) as follows:

y0(t) = 1,

and we choose the auxiliary linear operator

L[φ(t; q)] =
∂φ(t; q)

∂t
,

with the property

L[C] = 0,
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where C is an integral constant. Hence, the mth-order deformation equation, m ≥ 1,
can be given by

ym(t) = χmym−1(t) + ~
∫ t

0

(y′m−1(τ)− ym−1(τ − 1)−
∫ τ

τ−1

ym−1(s)ds)dτ.

ym(0) = 0

Consequently, the HAM series solution is

y(t) = y0(t) +
K∑

m=1

ym(t), (3.3)

where K is the number of terms. To investigate the influence of ~ on the convergent
of the solution series (3.2), we plot the so-called ~-curve of y(0.4) as shown in Fig.
1.
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Figure 1. The curve y(0.4) vs ~ the 5th order of approximation for
Example 1.

According to this ~-curve, it is easy to conclude that −2 ≤ ~ ≤ 0 is the valid
region of ~, which corresponds to the line segments nearly parallel to the horizontal
axis. A proper value of ~ = −0.5 is taken and then the twenty terms from the series
solution expression b HAM is plotted in Figure 2.

3.2. Example 2. As a second example, we consider the delay integro-differential
equation

y′(t) = y(t) + 2y(t− 1
2
) +

∫ t

t− 1
2

ts y(s)ds, t ≥ 0,

y(t) = ϕ(t), t ≤ 0,

where ϕ(t) is chosen so that the exact solution is y(t) = sin t. We use the set of
base functions

{tn : n ∈ N},
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to represent y(t),

y(t) =
∞∑

k=1

bktk,

where bk is a coefficient to be determined. As an initial approximation of y(t) we
choose

y0(t) = 0.

and we select the the auxiliary linear operator

L[φ(t; q)] =
∂φ(t; q)

∂t
,

with property

L[C] = 0,

where C is an integral constant. Hence, that the mth order deformation equation
is

ym(t) = (χm + ~)ym−1(t)− ~(ym−1(t) + 2ym−1(t− 1
2
) +

∫ t

t− 1
2

ts ym−1(s)ds),

subject to the initial condition

ym(0) = 0.

Now we successfully obtain y1(t), y2(t), . . . , ym(t). In order to find range of admis-
sible values of ~, the ~-curve is plotted in Figure. 3 for 8th-order approximation.
Figure 4 presents a comparison of the numerical solution of 10th-order HAM ap-
proximation and the exact solution.
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Figure 2. Comparison of the exact solution for Example 1 to the
numerical solution. Hollow dots: 20th-order HAM approximation; con-
tinued solid : exact solution.
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4. Conclusion

Solving delay-integro-differential equations lack of analytical or closed form solu-
tions. Based on the fact, this study has focused on developing a procedure to obtain
an explicit analytical solution concerning the delay-integro-differential equations. A
series solution is evaluated in a very fast convergence rate where the accuracy is
improved by increasing the number of terms considered. Shortly, from now on,
HAM can be used as a powerful solver for delay-integro-differential equations of
type (1.1). However, it is difficult to extend the present research to more general
nonlinear DIDEs, such as the case with many independent constant delays and the
case with time-depending delays. We hope to leave these opening problems to the
future work.
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Figure 3. The curve y(0.4) vs ~ the 8th order of approximation for
Example 2.
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Figure 4. Comparison of the exact solution for Example 2 to the
numerical solution. Hollow dots: 20th-order HAM approximation with
~ = −0.5; continued solid : exact solution.
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