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AN ALTERNATIVE PROOF 
OF THE FRIENDSHIP THEOREM* 

 
 

MOHAMMAD BATAINEH 
 

 
ABSTRACT 

Several proofs of the friendship theorem are known. In this paper an alternative proof will 
be given for friendship theorem. The goal of this paper is to provide a proof which is perhaps 
more combinatorial. 

 

1. INTRODUCTION 
 

For our purposes a graph G is finite, undirected and has no loops or multiple 
edges. We denote the vertex set of G by )(GV  and the edge set of G by E(G). The 

cardinalities of these sets are denoted by v(G) and )(Gε , respectively. The cycle on n 

vertices is denoted by nC  Let G be a graph and )(GVu∈ .  The degree of a vertex u 

in G, denoted by )(udG , is the number of edges of G incident to u.  The neighbour set 

of a vertex u of G in a subgraph H of G, denoted by )(uN H , consists of the vertices of 

H adjacent to u; we write )()( uNud HH = . Further, we define the non-neighbours 

)(uN G .  

Let 1G and 2G be graphs.The Union 21 GG ∪  of 1G and 2G  is a graph with 

vertex set )()( 21 GVGV ∪   and  and edge set )()( 21 GEGE ∪   Two graphs 

1G and 2G  are disjoint if and only if φ=∩ )()( 21 GVGV ; 1G and 2G are edge disjoint 

if φ=∩ )()( 21 GEGE .  If 1G and 2G are disjoint, we denote their union by 21 GG + .  

The intersection 21 GG ∩  of graphs 1G and 2G is defined similarly, but in this case we 

need to assume φ≠∩ )()( 21 GVGV .  The join G V H  of two disjoint graphs G and 

H is the graph obtained from G + H by joining each vertex of G to each vertex of H.  

For vertex disjoint subgraphs 1H  and 2H  of G  we let 

1 2 1 2 1 2 1 2( , ) { ( ) : ( ), ( )} and ( , ) ( , ) .E H H xy E G x V H y V H H H E H Hε= ∈ ∈ ∈ =
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2. The Friendship Theorem 

The friendship theorem can be stated as follows:  Suppose, in a group of at least 
three people we have the situation that any pair have precisely one common friend.  
Then there is always a person who is everybody's friend (Erdös, P., Rényi, A. & Sós, 
V. (1966)).  The friendship theorem can be stated as follows: 

 

Theorem 2.1.  If G is a graph in which any two distinct vertices have exactly one 
common neighbour, then G has a vertex joined to all others.  

 

Graphs satisfying the above property are called friendship graphs and such 
graphs are completely determined; they consist of edge disjoint triangles around a 
common vertex. 

 

Several proofs of the friendship theorem are known.  The first was due to Erdös, 
Rényi and Sós (1966).  It is based on a theorem of Baer (1946) about polarities in finite 
projective planes.  

 

A second proof is due to Wilf (1971).  While this proof does not use Bear’s 
theorem, it is based on computing the eigenvalues (and their multiplicities) of the 
square of the adjacency matrix of the graph argument.  

 

A third proof was provided by Longyear and Parsons (1972).  The proof is purely 
combinatorial, with no explicit reference to eigenvalues.  But, in this proof Chvátal 
(1971) has observed, eigenvalues are involved indirectly, because the crucial step 
involves counting closed walks, and these numbers are the diagonal entries in powers 
of the adjacency matrix.  The original application of this counting argument, by Ball 
(1948), was, moreover, an alternative proof and generalization of Baer’s theorem.  

 

Hammersley (1989) suggest that proofs avoiding eigenvalues exist, but they 
require complicated numerical arguments to eliminate regular graphs.  Thus, in some 
sense, all known proofs of the friendship theorem rely on the eigenvalue techniques of  
Baer ( Bondy 1985). The goal of this paper is to provide a proof which is perhaps more 
combinatorial.  

 

We now recall some notation and terminology.  A complete graph is a graph with 

every pair of vertices adjacent.  The complete graph on n vertices is denoted by nK .  

Let /V  be a non-empty subset of V(G), the subgraph of G induced by /V , denoted by 

G[ /V ], is the graph with vertex set  /V  and },:)({])[( // VwuGEuwVGE ∈∈= .  

For a proper subgraph H of G we write G[V(H)] and G – V(H) simply as G[H] and  

G – H  respectively. The minimum and maximum degrees of a graph G are denoted by 
)(Gδ  and )(G∆ , respectively. We consider graphs with the property: 
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Property P: For every pair x and y of vertices of G, 1)()( =∩ wNxN GG . 

 

The class of graphs with n vertices satisfying property P is denoted by G (n; P).  

An example of a graph in G (n; P) is displayed in Figure 1. 

 

 

 

 

 

 

 

 

We will prove: 

  G ))
2

1((),( 21 KnKPn −
∨=  

 

Using graph theory, we establish the proof using the following important well 
know properties, the proofs of which use some rather straight forward ideas. 

 

Lemma 2.1.  Let G ∈ G(n; P).  Then G is regular or ∆(G) = n – 1. 

 

Proof:  Suppose ∆(G) < n – 1.  Consider a vertex x in G.  Let NG(x) and  

)(xN G  denote the neighbours and non-neighbours respectively of x.  Let  

NG(x) = {x1, x2, …, xt}.  Since G has property P, each xi is joined to exactly one vertex 
in NG(x).  Consequently, H = G[NG(x)] is a 1-regular graph with t vertices.  Hence, t is 
even.  In fact, every vertex of G must have even degree.  Without loss of generality, we 

let xi xi+1 ∈ E(G) for i = 1, 3, 5, …, t – 1.  Now, consider a vertex w ∈ )(xN G .  For 

1)()( =∩ wNxN GG , w must be joined to exactly one vertex, say x1, of N(x). 

 

 

 

 

 

 

 

 

 

Figure 1 
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w 

NG(x) 

x 

( )GN x  

Figure 2 
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For i ≥ 3, let zi ∈ NG(xi) ∩ NG(w).  Clearly, )(xNz Gi ∈ .  Hence, w is joined to 

different vertices z3, z4,… zt of )(xN G , and thus dG(w) ≥ 1 + t – 2 = t – 1.  Since dG(w) 

must be even, dG(w) ≥ t.  In particular, for the case when t = ∆ we have dG(w) = ∆.  In 

fact, every vertex in )(xN G  has degree ∆.  Since each vertex in NG(x) is at distance 2 

from some vertex in )(xN G  it follows that every vertex in NG(x) has degree ∆.  

Consequently, G is regular.  This completes the proof. 

 

Lemma 2.2.  (Füredi (1996))  Let G be a graph on n = q2 + q + 1 vertices with 

1)()( ≤∩ yNxN GG  for every pair x, y ∈ V(G).  Then for q ≥ 15   

 

21( ) ( 1)
2

G q qε ≤ +
 

 

with equality holding if and only if q is a prime power greater than 13. 

 

Lemma 2.3.  Let G be a graph on n vertices with 1)()( ≤∩ yNxN GG  for every pair x, 

y ∈ V(G), such that G contains no cycle of length 4.  Then 

 

( ) (1 4 3)
4

ε < + −
nG n

. 

 

Proof:  Let G be a graph containing no cycle of length 4.  Let v1, v2, …, vn be the 
vertices of G.  Now, clearly, one can select from the set N(vi) of vertices joined by an 

edge to vi, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
( )ivd

 pairs, and no pair (vi, vj) can be contained in both N(vk) and N(vl) 

with k ≠ l because otherwise vi, vj, vk, vl would be a cycle of length 4 contained in G.  
Thus we must have, 

 

1

( )
2 2=

⎛ ⎞ ⎛ ⎞
≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑
n

i

i

d v n

 
 

Now, we have, 

 

2 2

1 1
( ( )) ( ( ))
= =

≤∑ ∑
n n

i i
i i

d v n d v
 

and 
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2

1 1
( ( )) ( ( ))
= =

−∑ ∑
n n

i i
i i

d v n d v
 1

( )
2

2=

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
∑
n

i

i

d v
n

 

    
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

2
2

n
n

 

    

2
2 ( )

2
n nn −

=
 

    
3 2n n= − . 

 

Because,∑
=

=
n

i
i Gvd

1
)(2)( ε , we have 232 )(2))((4 nnGnG −≤− εε  which 

implies )341(
4

)( −+≤ nnGε . 

 

Equality is possible only if 34 −n = 3 + 4m  with m a positive integer and this 

is same as 1234 +=− kn  for some odd integer k.  Therefore, n = k2 + k + 1. 

 

   

2( 1)(1 4 3) (2 2)
4 4

+ +
+ − = +

n k kn k
 

    

2( 1)( 1)
2

+ + +
=

k k k
 

    

1 ( ( 1) 1) ( 1)
2

k k k= + + +
 

    

21 1( 1) ( 1)
2 2

= + + +k k k
 

    

21 ( 1)
2

> +k k
. 

 

Which contradicts Lemma 2.2.  Thus, equality in lemma 2.3 is not possible. This 
completes the proof. 

 

Lemma 2.4.  Let  n > 3 and G ∈  G (n; P).  Then G is not regular. 

 

Proof:  Suppose to the contrary that G is a k-regular graph.  The situation is depicted 
in Figure 3. 
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Consider the vertex )(xNy G∈    We may assume that )()( xNyNx GGi ∩=  

and for i = 3, 4, …, k,  iiGG zxNyN =∩ )()(  .Since 1)()( =∩ iGG xNxN   for every 

i and kxd iG =)(  for each kii ≤≤1, . 

 

( , ( )) 2i Gx N x kε = − . 

 

Further, 1)(,( =xNy Gε  for every vertex )(xNy G∈  and  1)()( =∩ yNxN GG . 

 

Hence, 

( ) ( 2)= −GN x k k
 

and so, 

 

n = 1 + k + k(k – 2)= k2 – k + 1. 

NG(x) 

x 

… 
x1        x2           x3     x4     x5      x6        xk-1       xk 

… 
y                   z3              z4                z5                zk ( )GN x  

Figure 3 
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Now, 

 

2( 1)( )
2

ε − +
=

k k kG
. 

 

By Lemma 2.3, we have, 

 

2 2
2( 1) 1( ) (1 4 4 1)

2 4
ε − + − +

= < + − +
k k k k kG k k

 
 

that is 

 

1 (1 2 1)
2

< + − =k k k
 

 

a contradiction.  This proves that G cannot be regular.  This completes the proof. 

 

Theorem 2.2.  Let G ∈ G (n; P).  Then  

 

G 21 )
2

1(),( KnKPn −
∨=  

 

Proof:  By Lemma 2.4, G has a vertex, say x, of degree n – 1:  The proof of Lemma 
2.1 gives that G – x is a 1-regular graph.  Hence, 

 

 G 21 )
2

1(),( KnKPn −
∨=  . This completes the proof of the theorem. 
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