SOME APLLICATIONS OF THE Co-HYPONORMAL OPERATOR *

MOHAMMAD RASHID

BASEM MASAEDEH

ABSTRACT

The purpose of this article is to establish new characterizations of the co-hyponormal operator and some applications of the Fuglede-Putnam Theorem related to the co-hyponormal operator.

1. INTRODUCTION

The concept of co-hyponormal operator was introduced by P.R.Halmos [7]. In this paper we study some properties of such concept.

Our study takes advantage of the work of J.G.Stampfli [7,8], S.K.Berberian [9], R.J.Whitley [10], and P.R.Halmos [7] on the hyponormal.

Our work is a generalization of their work by changing some conditions on their theorems; such changes strengthen our results because the conditions that we discussed are weaker than their conditions.

2. Preliminary Results

The next definitions and lemmas give a brief description for the background on which the paper will build on. Let H be a separable infinite dimensional complex Hilbert space, and let B (H) denote the algebra of all bounded operators from H into H.

Definition 2.1. A mapping $A: H \to H$ is called a linear operator if for all $x, y \in H$ and $\alpha \in C$

(1)
$$A(x + y) = A(x) + A(y)$$
 (2) $A(\alpha x) = \alpha A(x)$, [7].

Note that we write Ax .instead of A(x).

Definition 2.2. The linear operator $A: H \to H$ is said to be bounded if $\sup_{\|x\| \le 1} \|Ax\| < \infty, [7].$

Definition 2.3. Let $A \in B(H)$. The spectrum of A, denoted by $\sigma(A)$, is $\sigma(A) = \{\lambda \in C : A - \lambda I \text{ is not invertible}\}$, [6].

2000 Mathematics Subject Classification: Primary: 47B20, Secondary: 47B38.

Keywords: co-hyponormal, co-subnormal, Fuglede-Putnam Theorem.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received on: Nov. 26, 2008 Accepted on: June 16, 2009

Definition 2.4. Let $A \in B(H)$. The point spectrum of A , $\sigma_p(A)$, is

$$\sigma_{n}(\mathbf{A}) = \{\lambda \in \mathbb{C} : Ker(\mathbf{A} - \lambda I) \neq 0\}, [6].$$

Definition 2.5. Let $A \in B(H)$. The approximate point spectrum of A, $\sigma_{ap}(A)$, is $\sigma_{ap}(A) = \{\lambda \in C : \text{there is a sequence } \{x_n\} \text{ in } H \text{ with } \|x_n\| = 1 \text{ and } \lim_{x \to \infty} \|(A - \lambda I)x_n\| = 0\}, [6].$

Note that $\sigma_p(A) \subseteq \sigma_{ap}(A) \subseteq \sigma(A)$.

Lemma 2.6. If $A \in B(H)$ and $\lambda \in C$, then the following statements are equivalent:

- (a) $\lambda \notin \sigma_{ap}(A)$.
- (b) $Ker(A \lambda I) = \{0\}$ and $ran(A \lambda I)$ is closed.
- (c) There is a constant c > 0 such that $\|(A \lambda I)x\| \ge c \|x\|$ for all x, [6].

Definition 2.7. Let $A \in B(H)$. The spectrum radius of A is the number

$$r(A) = \sup\{|\lambda| : \lambda \in \sigma(A)\}, [6]$$

Note that $0 \le r(A) \le ||A||$.

Suppose $A \in B(H_1, H_2)$, where H_1, H_2 are separable infinite dimensional complex Hilbert spaces. For each $y \in H_2$, the functional $f_y(x) = \langle Ax, y \rangle$ is a bounded linear functional on H_1 . By the Riesz representation theorem, there exists a unique y^* in H_1 such that for all $x \in H_1$

$$\langle Ax, y \rangle = f_{y}(x) = \langle x, y^* \rangle.$$

This gives rise to an operator $A^*: H_2 \to H_1$ defined by: $A^*y = y^*$.

Thus, for all
$$x \in H_1$$
, $\langle Ax, y \rangle = \langle y, A^*x \rangle$.

Definition 2.8. The operator A^* is called the adjoint of A, [6].

Note that
$$A^* \in B(H_2, H_1)$$
 and $||A^*|| = ||A||$.

Definition 2.9. An operator $A \in B(H)$ is said to be subnormal if it has a normal extension i.e. $A \in B(H)$ is a subnormal if there exists a normal operator N on a Hilbert space K such that H is a subspace of K, the subspace H is invariant under N and the restriction of N to H coincides with A, [7].

3. Main Results

If $A\in B(H)$ is subnormal and $N\in B(K)$ is a normal extension of A, then with respect to the decomposition $K=H\oplus H^\perp$, N can be written as

$$\mathbf{N} \ = \begin{pmatrix} \mathbf{A}^* & \mathbf{0} \\ R^* & S^* \end{pmatrix} \text{, so } \mathbf{N}^* = \begin{pmatrix} \mathbf{A} & R \\ \mathbf{0} & S \end{pmatrix}.$$

Since N is normal, it follows that

$$0 = N^*N - NN^* = \begin{pmatrix} AA^* + RR^* & RS^* \\ SR^* & SS^* \end{pmatrix} - \begin{pmatrix} A^*A & A^*R \\ R^*A & R^*R + S^*S \end{pmatrix}.$$

This implies that $AA^* - A^*A = -RR^*$ and hence $AA^* - A^*A \ge 0$.

To achieve the aim of this article, we need the following definition and lemma.

Definition 3.1. An operator $A \in B(H)$ is called co-subnormal if its dual is subnormal.

Definition 3.2. An operator $A \in B(H)$ is called co-hyponormal if $AA^* - A^*A \ge 0$.

It follows that every co-subnormal is co-hyponormal. The converse is not necessarily true. To see this, we need the following characterization of subnormal operator.

Lemma 3.3. Let $A \in B(H)$ then the following are equivalent:

- a) A is subnormal.
- b) There is a sequence $\{A_{\scriptscriptstyle n}\}$ of normal operators such that $\,A_{\scriptscriptstyle n}\to A\, {\rm strongly}.$
- c) For any integer $n \ge 0$ and every choice of vectors x_0, x_1, \dots, x_n in H, the matrix $[\langle \mathbf{A}^i x_i, \mathbf{A}^j x_i \rangle]$ is positive definite, [7].

Example 3.4. There exists a co-hyponormal operator that is not co-subnormal.

Let e_0,e_1,\cdots be the standard basis of $\ell_2(\mathbb{N}\cup\{0\})$ and $\{\alpha_n\}_{n=0}^\infty$ a bounded increasing sequence in $\ell_2(\mathbb{N}\cup\{0\})$. Now define the weighted shift operator S on $\ell_2(\mathbb{N}\cup\{0\})$ by : $Se_0=0$, $Se_1=\alpha e_{0-1}$, $Se_n=\overline{\alpha_{n-1}}e_{n-1}$, $n\geq 2$,

then
$$S^*e_n = \alpha_n e_{n+1}$$
.

So

$$SS^* = diag(|\alpha_0|^2, |\alpha_1|^2, \cdots),$$

$$S^*S = diag(0, |\alpha_0|^2, |\alpha_1|^2, \cdots)$$

Then

$$SS^* - S^*S = diag(|\alpha_0|^2, |\alpha_1|^2 - |\alpha_0|^2, \cdots) > 0$$
 . Hence S is co-hyponormal.

To prove that S is not co-subnormal, it suffices to show that S^* is not subnormal . Note that the matrix $[\langle S^{*i}e_j, S^{*j}e_i \rangle]$ i, j=0,1,2 is not positive definite. In fact the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \overline{\alpha_0} & \overline{\alpha_0 \alpha_1} \\ \alpha_0 & \left| \alpha_1 \right|^2 & \overline{\alpha_1} \left| \alpha_2 \right|^2 \\ \alpha_0 \alpha_1 & \alpha_1 \left| \alpha_2 \right|^2 & \left| \alpha_3 \right|^2 \end{bmatrix}.$$

So

$$\begin{split} \det(\mathbf{A}) &= \left|\alpha_{0}\right|^{2} \left|\alpha_{1}\right|^{2} \left[\left|\alpha_{1}\right|^{2} - \left|\alpha_{3}\right|^{2}\right] + \left|\alpha_{0}\right|^{2} \left|\alpha_{1}\right|^{2} \left[\left|\alpha_{2}\right|^{2} - \left|\alpha_{1}\right|^{2}\right] + \left|\alpha_{1}\right|^{2} \left|\alpha_{2}\right|^{2} \left[\left|\alpha_{3}\right|^{2} - \left|\alpha_{2}\right|^{2}\right] \\ &< \left[\left|\alpha_{2}\right|^{2} - \left|\alpha_{3}\right|^{2} \left[\left|\alpha_{0}\right|^{2} \left|\alpha_{2}\right|^{2} + \left|\alpha_{1}\right|^{2} \left|\alpha_{2}\right|^{2}\right] < 0 \,. \end{split}$$

So S^* is not subnormal, hence S is not co-subnormal.

The following result gives some properties of co-hyponormal.

Theorem 3.5. Let $A \in B(H)$ be co-hyponormal, then

- a) If A is invertible then so is A^{-1} .
- b) If $\lambda \in C$ then A λ is co-hyponormal.
- c) For all $x \in H$, $||Ax||^2 \le ||A^*x||^2$.
- d) If $\lambda \in \sigma_p(A^*)$ and $x \in H$ such that $A^*x = \overline{\lambda}x$ then $Ax = \lambda x$.
- e) If $Ax = \lambda x$, $A^*y = \mu y$ and $\lambda \neq \mu$ then $\langle x, y \rangle = 0$.

Proof:

a) The proof uses the fact that if Q is positive invertible and $Q \ge I$, then $Q^{-1} \le I$.

Since
$$AA^* \ge A^*A \Rightarrow (A^*)^{-1}AA^*A^{-1} \ge I$$

 $\Rightarrow ((A^*)^{-1}AA^*A^{-1})^{-1} \le I$
 $\Rightarrow A(A^*)^{-1}A^{-1}A^* \le I$
 $\Rightarrow (A^*)^{-1}A^{-1} \le A^{-1}(A^*)^{-1}$.

That is, A^{-1} is co-hyponormal.

b)
$$(A^* - \overline{\lambda})(A - \lambda) = A^*A - \lambda A^* - \overline{\lambda}A + |\lambda|^2$$

 $\leq AA^* - \lambda A^* - \overline{\lambda}A + |\lambda|^2$
 $= (A - \lambda)(A^* - \overline{\lambda}).$

So A is co-hyponormal.

c) For all $x \in H$, we have $\langle (AA^* - A^*A)x, x \rangle \leq 0$ $\Rightarrow \langle AA^*x, x \rangle \leq \langle A^*Ax, x \rangle$

$$\Rightarrow \left\| \mathbf{A} x \right\|^2 \le \left\| \mathbf{A}^* x \right\|^2.$$

- d) Since $\|Ax \lambda x\| \le \|A^*x \overline{\lambda}x\| = 0$, $Ax = \lambda x$.
- e) Now $\lambda\langle x\,,y\,\rangle = \langle \lambda x\,,y\,\rangle = \langle Ax\,,y\,\rangle = \langle x\,,A^*y\,\rangle = \mu\langle x\,,y\,\rangle$. But $\lambda\neq\mu$ hence $\langle x\,,y\,\rangle = 0$.

Theorem 3.6. If $A \in B(H)$ is co-hyponormal, then $\|A^n\| = \|A\|^n$, and so $r(A) = \|A\|$.

Proof: If $x \in H$ and $n \ge 1$, then for B= A^* we have

$$\|B^n x\|^2 = \langle B^n x, B^n x \rangle = \langle B^* B^n x, B^{n-1} x \rangle$$

$$\leq \|B^* B^n x\| \|B^{n-1} x\|$$

$$\leq \|B^* B^{n} x\| \|B^{n-1} x\|.$$

Hence $\|B^n x\|^2 \le \|(B^*)^{n+1}\| \|B^{n-1}\|.$

Now, suppose $\|B^k\| = \|B\|^k$ for $1 \le k \le n$.

Then
$$\|B\|^{2n} = \|B^n\|^2 \le \|B^{*n+1}\| \|B^{n-1}\| \implies \|B\|^{n+1} \le \|B^{n+1}\|$$

But $\|B^{n+1}\| \le \|B\|^{n+1}$, therefore $\|B^n\| = \|B\|^n$, for all n.

Now $r(\mathbf{B}) = \lim_{n \to \infty} \left\| B^n \right\|^{\frac{1}{n}}$, so we have $r(B) = \left\| B \right\|$. But $\left\| \mathbf{A} \right\| = \left\| \mathbf{A}^* \right\|$, and so $r(\mathbf{A}) = r(\mathbf{A}^*)$.

Theorem 3.7. Let T = A + iB be the Cartesian decomposition of T with AB cohyponormal. If A or B is positive, then T is normal.

Proof: First assume that $A \ge 0$ and let Q = AB, then $QA = AQ^*$. Now by Fuglede-Putnam Theorem for co-hyponormal, we have $Q^*A = AQ$, i.e., $BA^2 = A^2B$.

But A is positive, so AB = BA (i.e., T is normal).

Now, if B is positive, then apply the same arguments to -iT = B - iA.

Theorem 3.8. Let $A, B, X \in B(H)$ such that A, B^* are co-hyponormal and X is invertible. If AX = XB, then there exists a unitary U such that AU = UB and hence A, B are normal.

Proof: Since AX = XB, it follows by Fuglede-Putnam Theorem that $A^*X = XB^*$, and so $X^*A = BX^*$. Hence $BX^*X = X^*AX = X^*XB$.

Let X=UP be the polar decomposition of X . Since X is invertible, it follows that P is invertible and U is unitary.

Since $BP^2 = P^2B$ and $P \ge 0$, it follows that BP = PB. Thus AUP = UPB implies AUP = UBP, since P is invertible, we have AU = UB.

Now, A and B are unitarily equivalent. So A^*, B are co-hyponormal. Hence A, B are normal.

Theorem 3.9. Let T = A + iB be the Cartesian decomposition of T with AB cohyponormal. If T is co-hyponormal, then T is normal.

Proof: If Q = AB then $QA = AQ^*$, so by Fuglede-Putnam Theorem for cohyponormal we have $Q^*A = AQ$ (*i.e.* $BA^2 = A^2B$).

Now $TT^*-T^*T=2i(AB-BA)\geq 0. \qquad \text{Let} \qquad Y=2i(AB-BA). \qquad \text{Then}$ $YA=2i(A^2B-ABA)=-AY \text{ . Thus, } YA^2=\text{ (YA) A=-AYA=A}^2 \text{ Y. But Y is positive}$ so YA=AY=0, and so A (AB-BA)=(AB-BA)A=0 .

Hence

$$\sigma(AB-BA)=0.$$

 $\label{eq:BA} \mbox{But } AB-BA \mbox{ is skew-Hermitian, so it is normal.}$ Thus,

$$AB = BA$$
 (i.e., T is normal).

Theorem 3.10. Let $T = A + iB \in B(H)$ be the Cartesian decomposition of T. If T is co-hyponormal and Re T or Im T is compact, then T is normal. Consequently, a compact co-hyponormal operator must be normal.

Proof: Assume $\operatorname{Re} T = A$ is compact. Since A is compact and self-adjoint then there exists an orthonormal basis $\{\varphi_j\}_{j=1}^{\infty}$ for H consisting of eigen-vectors of B, say

 $\mathrm{B} \varphi_i = b_i \varphi_i$, where $b_{j's}$ are the eigen-values of B.

Now,
$$TT^* - T^*T = 2i(BA - AB) \ge 0$$
.

$$\begin{split} \sum_{n=1}^{\infty} \left\langle (\mathbf{T}\mathbf{T}^* - \mathbf{T}^*\mathbf{T})\varphi_n, \varphi_n \right\rangle &= 2i\sum_{n=1}^{\infty} \left\langle (\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B})\varphi_n, \varphi_n \right\rangle \\ &= 2i\sum_{n=1}^{\infty} \left[\left\langle \mathbf{B}\mathbf{A}\varphi_n, \varphi_n \right\rangle - \left\langle \mathbf{A}\mathbf{B}\varphi_n, \varphi_n \right\rangle \right] \\ &= 2i\sum_{n=1}^{\infty} \left[b_n \left\langle \mathbf{A}\varphi_n, \varphi_n \right\rangle - b_n \left\langle \varphi_n, \mathbf{A}\varphi_n \right\rangle \right] = 0 \; . \end{split}$$

Since $\left\langle (\mathbf{T}\mathbf{T}^* - \mathbf{T}^*\mathbf{T})\varphi_n, \varphi_n \right\rangle \geq 0, \quad \forall n$, it follows that $\left\langle (\mathbf{T}\mathbf{T}^* - \mathbf{T}^*\mathbf{T})\varphi_n, \varphi_n \right\rangle = 0$.

Let
$$Q=\mathrm{TT}^*-\mathrm{T}^*\mathrm{T}$$
. Then $\left\langle Q\,\varphi_n,\varphi_n\right\rangle=0 \Rightarrow \left\langle Q^{\frac{1}{2}}\,\varphi_n,Q^{\frac{1}{2}}\varphi_n\right\rangle=0 \Rightarrow Q^{\frac{1}{2}}\varphi_n=0$ $\Rightarrow Q\,\varphi_n=0, \ \forall n.$

But

n.

$$\left|\left\langle Q \; \varphi_j, \varphi_i \right\rangle\right|^2 \leq \left\langle Q \; \varphi_i, \varphi_i \right\rangle \left\langle Q \; \varphi_j, \varphi_j \right\rangle = 0 \; . \; \text{Hence} \; \left\langle (\mathsf{TT}^* - \mathsf{T}^*\mathsf{T}) \varphi_n, \varphi_n \right\rangle = 0 \; \; \text{for all} \; .$$

So $T^*T = TT^*$ as required.

Note that every power of a normal operator is normal. For co-hyponormal operators the fact is different. The following theorem shows that if A is co-hyponormal then A^2 may be not.

Theorem 3.11. If U is the unilateral shift and $A = U + 3U^*$, then A is cohyponormal but A^2 is not.

Proof: The proof that A is co-hyponormal can be done in (at least) two ways, each of which is illuminating. Algebraically:

$$AA^* = (U + 3U^*)(U^* + 3U) = UU^* + 3U^2 + 3U^{*2} + 9I$$

$$A^*A = (U^* + 3U)(U + 3U^*) = I + 3U^{*2} + 3U^2 + 9UU^*.$$

Therefore

$$AA^* - A^*A = 9(I - UU^*) \ge 0$$
.

Numerically: since

$$\mathbf{A} = \begin{bmatrix} 0 & 3 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{A}^* = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

it follows that if $x = (\alpha_0, \alpha_1, \alpha_2, \cdots)$

$$Ax = (3\alpha_1, \alpha_0 + 3\alpha_2, \alpha_1 + 3\alpha_3, \cdots)$$

and

$$A^*x = (\alpha_1, 3\alpha_0 + \alpha_2, 3\alpha_1 + \alpha_3, \cdots).$$

Then $||Ax|| \le ||A^*x||$. Hence A is co-hyponormal.

Next, we show that A^2 is not co-hyponormal. If $x = e_0 - 3e_2 = (1, 0, -3, 0, \cdots)$,

$$\Rightarrow$$
 Ax = $(U + 3U^*)(e_0 - 3e_2) = -8e_1 - 3e_3$

$$\Rightarrow \qquad \|\mathbf{A}x\|^2 = 73$$

$$A^{2}x = (U + 3U^{*})(-8e_{2} - 3e_{4}) = -24e_{0} - 17e_{2} - 3e_{4}$$
$$\Rightarrow ||A^{2}x||^{2} = 874$$

$$A^*x = -9e_3$$

$$\Rightarrow \|\mathbf{A}^* x\|^2 = 81$$

$$A^{*2}x = -9e_2 - 27e_4$$

$$\Rightarrow \qquad \left\| \mathbf{A}^{*2} \mathbf{x} \right\|^2 = 810 \,.$$

But $\left\|A^2x\right\|^2 \geq \left\|A^{*2}x\right\|^2$. Therefore, A^2 is not co-hyponormal.

Theorem 3.12. If A is co-hyponormal and right invertible, and then A need not be invertible. Moreover, if A is left invertible, then its invertible.

Proof: Consider A = S_l , where S_l is the left shift operator then A is co-hyponormal and $AA^{-1} = I$ but $AA^{-1} \neq I$.

Now, assume A is co-hyponormal and BA=I for some $B\in B(H)$ then $A^*B^*A^*=A^*\quad\text{so}\quad A^*(B^*A^*-I)=0\,.$ Since A is co-hyponormal, we have $A(B^*A^*-I)=0\,.$

So
$$AB-I = BA(A^*B^*-I)$$

= $B(A(A^*B^*-I))$
= $B0 = 0$.

Hence AB = I.

Theorem 3.13. If $A \in B(H)$ is co-hyponormal, then $\sigma_{ap}(A) = \sigma(A)$.

Proof: If $\lambda \notin \sigma(A)$, then $A - \lambda I$ is invertible, so $\mathit{ran}(A - \lambda I)$ is dense in H. Hence $A - \lambda I$ is bounded below, i.e. there exists an α such that $\|(A - \lambda I)x\| \ge \alpha \|x\|$ for all $x \in H$. Therefore, $\lambda \notin \sigma_{ap}(A)$ i.e. $\sigma_{ap}(A) \subset \sigma(A)$.

Conversely, assume that $\lambda \notin \sigma_{ap}(A)$, then there is an $\alpha>0$ such that $\|(A-\lambda I)x\| \geq \alpha \|x\|$ for all $x\in H$.

Since $A - \lambda$ is co-hyponormal, we also have

$$\left\|\left(\mathbf{A}-\lambda I\right)^*x\right\| = \left\|\left(\mathbf{A}^*-\overline{\lambda}I\right)x\right\| \geq \left\|\left(\mathbf{A}-\lambda I\right)x\right\| \geq \alpha \left\|x\right\| \quad \text{for all} \quad x \in H \,, \quad \text{and} \quad \text{hence}$$

$$\ker(\mathbf{A}^*-\overline{\lambda}) = \{0\}.$$

Consequently,

$$cl(ran(A - \lambda I)) = \left[\ker(A^* - \overline{\lambda}I)\right]^{\perp} = \{0\}^{\perp} = H.$$

Thus $A-\lambda I$ is bounded below, hence $A-\lambda I$ is invertible, i.e. $\lambda \notin \sigma(A)$. Therefore, $\sigma(A) \subset \sigma_{ap}(A)$. This completes the proof.

Acknowledgement: The authors would like to express their sincere thanks to the referee for kind suggestions.

REFERENCES

- [1] T.Ando, On Hyponormal Operators, *Proc.A.M.S.***14** (1963), 290-291.
- [2] T.Ando and X.Zhan, Norm Inequalities Related to Operator Monotone functions, *Math. Ann.*, **315**(1999), 771-780.
- [3] S.K.Berberian, A note on Hyponormal Operators, *Pac.J.Math.***12** (1962), 1171-1175.
- [4] R.Bhatia and F.Kittaneh, Norm Inequalities for Partitioned and an Application, *Math. Ann.*, **287**(1990), 719-726.
- [5] S.Brown, Hyponormal Operators With Thick Spectra have Invariant Subspaces, Math. Ann., 125(1987), 93-103.
- [6] John B. Conway, *A course in Functional Analysis*, Springer-Verlag, New York 1990.
- [7] P.R.Halmos, A Hilbert Space Problem Book, Springer, New York, 1982
- [8] J.G.Stampfli, Hyponormal Operators, *Pac.J.Math.***12** (1962), 1453-1458.
- [9] J.G.Stampfli, Hyponormal Operators and Spectral Density, *Trans.Math.Soc.***117** (1965), 709-718.
- [10] R.J.Whitley, Note on Hyponormal Operators, Proc.A.M.S.49 (1975), 399-400.

Department of Mathematics, Mu'tah University, Al-Karak, Jordan.

E-mail address: mohammadokasha@yahoo.com , bmasaedeh@yahoo.com