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ABSTRACT 

The present paper is devoted to an analytical investigation of a two species prey- 
predator model. Predator is provided with a limited resource of food in addition to the prey and a 
cover to prey proportionate to its population to get protection from the predator. Both the prey 
and predator are harvested at a constant rate. The model is characterized by couple of first 
order non-linear ordinary differential equations. The lone equilibrium point of the model is 
identified and its stability criteria is discussed. The  Global stability of linearized equations is 
discussed by constructing a suitable Liapunov’s function. A threshold theorem is stated and 
results are discussed. 

 

1. INTRODUCTION 
 

In the classical Lotka - Volterra Prey - Predator model, there is no protection 

for Prey from the Predator and Predator sustains on the Prey alone. When the Prey 

population falls below a certain level, the predator would migrate to another region in 

search of food and return only when the Prey population rises to the required level. 

Olinck,[1] gave an introduction to Mathematical modeling in life sciences. Kapur, [2], 

Smith,[3], Colinvaux, [4],  Freedman, [5] discussed some of the prey-predator 

ecological models. May, [6] discussed stability and complexity of ecological models, 

Varma, [7] discussed about their exact solutions. Narayan & Ramacharyulu, [8], [9], 

[10], [11] and [12] discussed different prey-predator models. 

 

 2. Basic Equations 
The model equations for a two species prey-predator system is given by a 

coupled      non-linear ordinary differential equations employing the terminology given  

below. 

1N  and 2N are the populations of the prey and predator with the natural growth rates 

1a and 2a respectively, 

11α is rate of decrease of the prey due to insufficient food, 
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12α is rate of decrease of the prey due to inhibition by the predator, 

21α  is rate of increase of the predator due to successful attacks on the prey, 

22α  is rate of decrease of the predator due to insufficient food other than the prey,  

 1h   is rate of  harvest of the prey,  

 2h  is rate of harvest of the predator, 

      and  both 1h , 2h are assumed to be positive constants. 

(i)Equation for the growth rate of prey species ( 1N ): 

1dN
dt

   =  1 1a N − 2
11 1Nα − 12 1 2(1 )k N Nα − - 1h .                          (2.1) 

(ii)Equation for the growth rate of predator species ( 2N ): 

 22
2 2 22 2 21 1 2(1 )

dN
a N N k N N

dt
α α= − + − - 2h                   (2.2) 

3. Equilibrium states 
The equilibrium states for the system under investigation are given by 

1 0
dN
dt

= and 2 0
dN
dt

=  

i.e.     1 1 11 1 12 2 1{ (1 ) }N a N k N hα α− − − =       (3.1) 

      2 2 22 2 21 1 2{ (1 ) }N a N k N hα α− + − =       (3.2) 

(3.1) 21 1(1 )k Nα× −  + (3.2) 12 2(1 )k Nα× −  we get 

1 21 2 12(1 ) (1 )h k h kα α− + − =  

 
2 2

21 1 1 11 21 1 12 2 2 22 12 2(1 ) (1 ) (1 ) (1 )k a N k N k N a k Nα α α α α α− − − + − − −  (3.3) 

On rearranging, the above terms can brought to the form 

21
21 11 1

11

(1 )
2

( )a
k Nα α

α
− − 22

12 22 2
22

(1 )
2

( )a
k Nα α

α
− −+

2
2

12 2
22

(1 )
4

( )a
k hα

α
+ − −

       

 
2

1
21 1

11

(1 ) 0
4

( )a
k hα

α
− −+ =  ,              (3.4) 

which connects the harvesting rates and the normal steady state. 

From this equation two cases can be drawn. They are 

(i) Case of exclusive harvesting (i.e. the harvesting rates of prey and predator are 

independent of each other) is given as 

 
2

1
1

114
a

h
α

=  and 
2

2
2

224
a

h
α

=        (3.5) 
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(ii) Case of mixed or gross harvesting is characterized by 
2 2

2 1
12 2 21 1

22 11

(1 ) (1 ) 0
4 4

( ) ( )a a
k h k hα α

α α
− − − −+ =                          (3.6) 

In either of the cases, the equilibrium values of 1N  and 2N  are related by 

2 21 2
21 11 1 12 22 2

11 22

(1 ) (1 ) 0
2 2

( ) ( )a a
k N k Nα α α α

α α
− − − − =+    (3.7) 

∴The lone equilibrium point is 

 1
1

112
a

N
α

=   (Half of the carrying capacity of 1N )  and              (3.8) 

 2
2

222
a

N
α

=  (Half of the carrying capacity of 2N )     (3.9) 

 
4. Stability of Equilibrium State  

Let N = (N1, N2)   =  N U+    = 1 1 2 2( , )N u N u+ +                                  (4.1) 

where U = 1 2( ,  )u u  is a small perturbation over the equilibrium state 

,1 2( )N N N= .The basic equations (2.1), (2.2) are quasi-linearized to obtain the 

equations for the perturbed state   
dU AU
dt

=   where  

121 21 11 12 1

221 2 12 22 21

(1 )2 (1 )

(1 ) 2 (1 )

k Na N k N
A

k N a N k N

αα α

α α α

⎤⎡ − −− − −
= ⎥⎢

− − + − ⎥⎢⎣ ⎦
   (4.2)        

 

The characteristic equation for the system is    [ ] 0det A Iλ− =          (4.3) 

The equilibrium state is stable only when the roots of the equation (4.3) are negative, 

in case they are real or have negative real parts, in case they are complex. 

Put 1 1 1N u N= +  and 2 2 2N u N= + in  (2.1) & (2.2), where 1u  and 2u  are small 

perturbations from the equilibrium state. 

1
1 1 1 11 1 1 12 2 2 1( ){ ( ) (1 )( )}

du
u N a u N k u N h

dt
α α= + − + − − + −    (4.1) 

2
2 2 2 22 2 2 21 1 1 2( ){ ( ) (1 )( )}

du
u N a u N k u N h

dt
α α= + − + − − + −   (4.2) 

By neglecting products, higher powers of 1u , 2u , and constant terms we get 

                 1
111 1 12 21(1 )

du
N u k N u

dt
α α= − − −       (4.3) 
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 and           2
222 2 12 12 (1 )

du
N u k u N

dt
α α= − + −                           (4.4) 

The characteristic equation is 
2λ + 1 211 22( )N Nα α λ+ +  2

11 22 12 21[ (1 ) ]kα α α α+ −  1 2N N  0=   (4.5) 

The roots of which can be noted to be negative. 

∴The co-existent equilibrium state is stable.  

The trajectories are 

1u = 2 110 1 22 20 12

1 2

( )- (1 )u N u N kλ α α
λ λ

⎡ ⎤+ −
⎢ ⎥−⎣ ⎦

 1 teλ  

+ 2 110 2 22 20 12

2 1

( )- (1 )u N u N kλ α α
λ λ

⎡ ⎤+ −
⎢ ⎥−⎣ ⎦

 2 teλ      (4.6) 

 

2 =u 1 220 1 11 10 21

1 2

( )- (1 )u N u N kλ α α
λ λ

⎡ ⎤+ −
⎢ ⎥−⎣ ⎦

1 teλ  +  

1 220 2 11 10 21

2 1

( )- (1 )u N u N kλ α α
λ λ

⎡ ⎤+ −
⎢ ⎥−⎣ ⎦

 
 2 teλ       (4.7) 

The curves are illustrated in Figures 1& 2. 
 
CASE 1: Initially the prey dominates the predator and it continues through out its 

growth i.e. 10 20< u u . In this case the predator always outnumbers the prey. It is 

evident that both the species are asymptotic to the equilibrium point. Hence this state 

is stable.   

 
CASE 2: The prey dominates the predator in natural growth rate but its initial strength 

is less than that of predator. i.e. 10 20> u u . In this case, initially the prey outnumber the 

predator and this continues the time instant t = t* given by equation (4.8),  after which 

the predator out number the prey. 

 = * =t t  
2 1

1
λ λ+

 ln  3 5 10 3 1 20
 2 6 10 4 1 20

( ) ( )
( ) ( )

b a u a b u
b a u a b u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− + +
− + +

     (4.8) 

where  3 1 11 1a Nλ α= + ; 4 2 11 1a Nλ α= + ; 25 1 22a Nλ α= + ;  

 26 2 22a Nλ α= +  11 12 (1 )b k Nα= − ; 22 21 (1 )b k Nα= − .      (4.9)

  

As t →∞ both 1 2&u u  approaches the equilibrium point. Hence the state is stable. 
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4.2. Trajectories of perturbed species 

The trajectories in the 1 2-u u plane are given by 

 

13
1 2 11 2

2
13

1 2 2

( - )
( )( )

( )
( - )1[ ]

( )
p

p av
u u va v vu d av

u v u

+ +
−=

−
                (4.10) 

where,  2 223
p N α=   (4.11)  

and 1v , 2v  are roots of quadratic equation 2
4+ + =0av bv c with                     

  

221= (1 )a N kα − ; 111 22 2=b N Nα α− ;     14 12= (1 )c N kα −            (4.12)

  

and d , an arbitrary constant. 

When   2 2
1 2 1 211 22 12 21( ) 4 (1 )N N k N Nα α α α− < − ,               (4.13) 

the roots are complex with negative real part. Hence the equilibrium state is stable. 
The solution curves are illustrated in Figure .3. 

When   2 2
1 2 1 211 22 12 21( ) 4 (1 )N N k N Nα α α α− > − ,               (4.14) 

the roots are real and negative. Hence the equilibrium state is stable. 
The solution curves are illustrated in Figure .4. 
 

5. Liapunov’s Function for Global Stability 
The Linearized Basic Equations for the model under investigation are 

1
1 211 1 12 2(1 )

du
N u k N u

dt
αα= − − −      (5.1)

  2
2 221 1 22 2(1 )

du
k N u N u

dt
α α= − − −      (5.2) 

The characteristic equation is 
2

1 2 1 211 22 12 21( )( ) (1 ) 0N N k N Nλ α λ α α α+ + + − =  2 0p qλ λ⇒ + + =   (5.3) 

where 1 211 22 0p N Nα α= + > and 2
1 211 22 12 21{ (1 ) } 0q k N Nα α α α= + − >                                      

Hence the conditions for Liapunov’s function are satisfied. 

Now we define 2
1 2 2 1 2 2

1( , ) ( 2 )
2

E u u au bu u cu= + +                         (5.4) 

where  
2 2 2

2 1 221 22 2 11 22 12 21( (1 ) ) ( ) { (1 ) }k N N k N N
a

D
α α α α α α− + + + −

=  (5.5)
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2 1 211 21 12 221(1 ) (1 )k N N k N N
b

D
α α α α−− −

=         (5.6) 

2 2 2
1 1 211 12 11 22 12 211( ) ( (1 ) ) { (1 ) }N k N k N N

c and
D

α α α α α α+ − + + −
=     (5.7) 

2
1 1 211 22 2 11 22 12 21{ }{ (1 ) }D pq N N k N Nαα α α α α= = + + −               (5.8) 

From equations (5.5) & (5.8) it is clear that 0D >  and 0a > .  Also 
2 2( )D ac b− =

 
2 2 2

2 2 1 221 22 2 11 22 12 21( (1 ) ) ( ) { (1 ) }{ k N N k N N
D

D
α α α α α α− + + + −

 

   ×  
2 2 2

1 1 211 12 11 22 12 211( ) ( (1 ) ) { (1 ) }N k N k N N
D

α α α α α α+ − + + −
−

2 2 2 2 2 22 2 2 2 2 2 2
1 2 1 2 1 211 21 12 22 11 12 21 22

2

(1 ) (1 ) 2 (1 )
0}k N N k N N k N N

D
α α α α α α α α− + − − −

>  

                                                                                       (5.9) 

Since 2 0D > , 2ac b−  is also greater than zero.                (5.10)

  

 ∴The function E(x, y) is positive definite.   

Further,  

  1 2

1 2

du duE E
u dt u dt
∂ ∂

+
∂ ∂

 =      1 11 2 11 1 12 2

21 2 21 1 22 22

( )[ (1 ) ]

( )[ (1 ) ]

au bu N u k N u

bu cu k N u N u

α α

α α

+ − − − +

+ − −
  

= 
2 2

2 1 1 221 11 1 12 22 2

211 12 22 21 1 21

( (1 ) ) ( (1 ) )

{[ (1 )] [ (1 ) }

b k N a N u b k N c N u

b a k N b c k N u u

α α α α

α α α α

−− − − + −

+ − + − −
     (5.11)  

             By substituting the values of a, b and c from equations (5.5),( 5.6) &(5.7) and 

on simplification, we get 

1 2

1 2

du duE E
u dt u dt
∂ ∂

+
∂ ∂

=                                   

                    
2 2 22 2 2 2

1 2 1 2 2 111 21 12 22 21 11 21[ (1 ) (1 ) (1 ){ k N N k N N k N N
D

α α α α α α α− −− − −
−  

2 2 22 2 2
2 2 211 22 11 22 12 11 21 21 1 1

1

(1 ) ]}N N N N k N N
u

D
α α α α α α α− + −

−  

2 2 22 2 2 2 2
2 2 212 11 21 12 22 11 221 1 1[ (1 ) (1 ){ k N N k N N N N

D
α α α α α α α− − − +

+  
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2 2 22 2 2
2 2 1 2 112 22 11 22 12 22 21 21

2

(1 ) ]}k N N N N N N
u

D
α α α α α α α− + +

−  

2 2 22 2 2 2 3
2 2 2 111 21 12 11 22 12 211 1(1 ) (1 ) (1 ){ k N N k N N k N N

D
α α α α α α α− − − + −

+

    
2 2 22 2 3

1 2 2 212 22 11 12 22 12 211 1(1 ) (1 ) (1 )k N N k N N k N N
D

α α α α α α α− + − + −
−

2 2 22 2
1 2 1 2 212 22 11 12 22 11 21 1(1 ) (1 ) (1 )k N N k N N k N N

D
α α α α α α α− + − − −

−

22 22 3 2 3
2 1 2 2 112 21 11 21 22 12 211

1 2

(1 ) (1 ) (1 ) }k N N k N N k N N
u u

D
α α α α α α α− − − − −

=   

2 2
1 2

D Du u
D D

− −  

⇒      2 21 2
1 2

1 2

( )
du duE E u u

u dt u dt
∂ ∂

+ = − +
∂ ∂

,                (5.12)

  

which is clearly negative definite. So E(x, y) is a Lyapunov’s function for the linear 

system. 

Further we prove that E ( 1u , 2u ) is also a Lyapunov’s function for the non linear 

system. 

If, 1F  and 2F are defined by  

,1 1 2( )F N N = 1 1 11 1 12 2 1{ (1 ) }N a N k N hα α− − − −                   (5.13) 

            ,2 1 2( )F N N = 2 2 22 2 21 1 2{ (1 ) }N a N k N hα α− − − − ,               (5.14) 

we have to prove that 1 2
1 2

E EF F
u u
∂ ∂

+
∂ ∂

 is negative definite. 

By substituting  11 1N N u= +  and 22 2N N u= +  in (5.1) & (5.2) equations, we get 

 1du
dt

=  1 1( )N u+ 1 21 11 11 1 12 12 2{ (1 ) (1 ) }a N u k N k uα α α α− − − − − − - 1h  

From (5.13), ,1 1 2( )F u u = 1du
dt

=   1 111 1 12 2(1 )N u k N uα α− − − + ,1 21 ( )u uf        (5.15)

  

where ,1 21 ( )u uf  = 2
11 1 12 1 2(1 )u k u uα α− − − - 1h                             (5.16)
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Similarly ,2 1 2( )F u u = 2du
dt

=    2 222 2 21 1(1 )N u k N uα α− − − + ,2 1 2( )u uf             (5.17)

    

where ,2 1 2( )u uf =            2
22 2 21 1 2(1 )u k u uα α− + − - 2h                                        (5.18) 

And we have 1 2
1

E au bu
u
∂

= +
∂

 and 1 2
2

E bu cu
u
∂

= +
∂

     (5.19) 

 

By considering the equations (5.15),(5.17) and (5.19),  

1 2
1 2

E EF F
u u
∂ ∂

+
∂ ∂

= 2 2
1 2( )u u− + ,1 2 1 21( ) ( )au bu u uf+ + ,1 2 2 1 2( ) ( )bu cu u uf+ +  (5.20)

  

By introducing polar co-ordinates we get, 

1 2
1 2

E EF F
u u
∂ ∂

+
∂ ∂

=

2
, ,1 2 2 1 21[( cos sin ) ( cos sin ) ]( ) ( )r r a b u u b c u uf fθ θ θ θ− + + + +    (5.21) 

By denoting  largest of the numbers , ,a b c  by M,  

our assumptions become ,1 21 ( )
6

ru uf
M

<  and ,2 1 2( )
6

ru uf
M

<      (5.22)         

  for all sufficiently small  r 0> , 

 so  1 2
1 2

E EF F
u u
∂ ∂

+
∂ ∂

2 2
2 4 0

6 3
Kr rr
M

< − + = − <          

 Thus E ( 1u , 2u ) is a positive definite function with the property that 1 2
1 2

E EF F
u u
∂ ∂

+
∂ ∂

 

is negative definite. 

∴The equilibrium point is an asymptotically “stable”. 

 

6. Threshold Theorem  

In consonance with the principle of competitive exclusion [Gauss (1934)], 

we deduce a Threshold Theorems for the lone equilibrium point. 

The basic equations for the model under consideration can be re-written as  

 
{ }

{ }

1 1 1
1 1 1 2 1

1

2 2 2
2 2 2 1 2

2

dN a N
k N N h

dt k
dN a N

k N N h
dt k

β

β

= − − −

= − − −
   (6.1) 

where 1
1

11

a
k

α
= ; 2

2
22

a
k

α
= ; 12

1
1

(1 )k
a

α
β

−
=  and 21

2
2

(1 )k
a

α
β

−
= − . 
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Theorem 1.  Principle of Competitive Exclusion.  

When 1
2

1

k
k

β
>  and 2

1
2

k
k

β
> , then every solution of 1 2( ), ( )N t N t of (6.1) approaches 

the equilibrium solution 11 ( )N t N= ( 0≠ ) and 22 ( )N t N= ( 0≠ ) as t approaches 

infinity. In other words, if prey and predator species are nearly identical and the 

microcosm can support both the members of prey and predator species depending up 

on the initial conditions. 

Proof: The first step in our proof is to show that 1 ( )N t  and 2 ( )N t can never become 

negative. To this end, observe that  

  1
11

11

( )
2
a

N t N
α

= =       and  2
22

22

( )
2
a

N t N
α

= =  

is a solution of (6.1) for any choice of 1 (0)N . The orbit of this solution in the 

1 2N N− plane is the point (0, 0) for 1 (0) 0N = ; the line 1 10 N k< < , 2 0N =  

for 1 10 (0)N k< < ; the point 1( ,0)k  for 1 1(0)N k= ; and the line 1 1k N< < ∞ , 

2 0N =  for 1 1(0)N k> . Thus the 1N axis, for 1 0N ≥  is the union of four distinct orbits 

of (6.1). Similarly the 2N axis, for 2 0N ≥ , is the union of four distinct orbits of (6.1). 

This implies that all solutions 1 2( ), ( )N t N t of (6.1) which start in the first quadrant 

( )1 2( ) 0, 0N t N> >  of the 1 2N N− plane must remain there for all future time. 

The second step in our proof is to split the first quadrant into regions in which both 

1dN
dt

and 2dN
dt

 have fixed signs. This is accomplished in the following manner. 

Let 1l and 2l be the lines 1 1 1 2 1k N N hβ− − =  and 2 2 2 1 2k N N hβ− − = respectively 

and the point of their intersection, is 1 2( , )N N . Observe that 1dN
dt

is negative if 

1 2( , )N N  lies above the line 1l  and positive if 1 2( , )N N  lies below 1l . Similarly, 2dN
dt

 

is negative if 1 2( , )N N lies above 2l  and positive if 1 2( , )N N lies below 2l . Thus the 

two lines 1l  and 2l  split the first quadrant of the 1 2N N− plane into four regions in 

which both 1dN
dt

 and 2dN
dt

 have fixed signs. 

1 2( ), ( )N t N t  both increase with time in region I; 

1 ( )N t  increases and 2 ( )N t decreases with time in region II;  
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1 ( )N t  decreases and 2 ( )N t increases with time in region III  

and both 1 ( )N t and 2 ( )N t  decrease with time in region IV.  In this region both the 

prey predator compete with each other but do not flourish and at the same time do not 

get extinct. 

Finally we require the following four lemmas. 

 

Lemma 1.  Any solution of 1 2( ), ( )N t N t of (6.1) which starts in region I at time 0t t=  

will remain in this region for all future time 0t t≥ , and ultimately approach the 

equilibrium solution 1 1( )N t N= , 2 2( )N t N= .(Figure 5) 

 

Lemma 2. Any solution of 1 2( ), ( )N t N t of (6.1) which starts in region II at time 0t t=  

will remain in this region for all future time 0t t≥ , and ultimately approach the 

equilibrium solution 1 1( )N t N= , 2 2( )N t N= .(Figure 5) 

 

Lemma 3.  Any solution of 1 2( ), ( )N t N t of (6.1) which starts in region III at time 0t t=  

will remain in this region for all future time 0t t≥ , and ultimately approach the 

equilibrium solution 1 1( )N t N= , 2 2( )N t N= .(Figure 5) 

 

Lemma 4.  Any solution of 1 2( ), ( )N t N t of (6.1) which starts in region VI at time 0t t=  

will remain in this region for all future time 0t t≥ , and ultimately approach the 

equilibrium solution 1 1( )N t N= , 2 2( )N t N= .(Figure 5) 

Lemmas 1, 2, 3 and 4 state that every solution 1 2( ), ( )N t N t  of (6.1) which 

starts in region I, II, III or VI at time 0t t=  and remains there for all future time must 

also approach equilibrium solution 11 ( )N t N= , 22 ( )N t N=  as t approaches infinity. 

Next, observe that any solution 1 2( ), ( )N t N t  of (1) which starts on 1l  or 2l  must 

immediately afterwards enter regions I, II, III or VI. Finally the solution approaches the 

equilibrium solution 1 1( )N t N= , 2 2( )N t N= . This is illustrated in Figure 6                                         
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7. Trajectories 

 
 

     
 

 

 
 

 

 

 
 

 
8. Future Work 

In the present paper it is investigated that a Prey-Predator model with constant 

harvesting  of both species, a cover for prey and a limited alternate food is supplied to 

the predator. There is a scope to study the model with constant harvesting of the prey 

species, or constant harvesting of the predator species. Further cover can be removed 

to the Prey and without an alternate food to the predator. 
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