
 
Jordan Journal of Mathematics and Statisticscs (JJMS) l(2), 2008, pp. 97-103 

 

97 

STRONGLY REAL ELEMENTS IN 

SPORADIC GROUPS AND ALTERNATING GROUPS* 
 
 

IBRAHIM SULEIMAN 
 
 
 

ABSTRACT 
We determine the elements in the Sporadic and the Alternating Groups which are strongly 

real. In the Alternating Groups every real element is strongly real, but this is not true in all 

Sporadic Groups. Main results for the Alternating groups are given in proposition 6 while the 

results for the Sporadic Groups are computed manually or by using GAP[5].  The Alternating and 

the Sporadic Groups in which every element is strongly real are An for (n = 5, 6, 10, 14), and J1 

and J2. 

1. INTRODUCTION 
An element x is conjugate to an element y if there exists an element g in a 

group G such that x=g-1 x g , and any element of order 2 is called an involution . An 

element z in a group G is called real if z  is conjugate to z -1, and is called strongly real 

if it is the product of two involutions. Similarly the conjugacy class zG is called real or 

strongly real if z is real or strongly real respectively. Clearly every strongly real element 

is real, but the converse is not true. For example, the quaternion group Q8 has the 

property that all its elements are real, but its only involution is central, which means 

that we cannot conjugate an element of order 4 to its inverse. In a recent paper [2], 

Tiep and Zalesski determine which finite simple groups have the property that every 

element is real. In particular, they show that the only Sporadic Groups  or Alternating 

Groups with this property are J1, J2, A5, A6, A10 and A14 where  J1 and J2 are the Yanko 

Sporadic Groups of orders 175560 and 604800 respectively [1].  A much more difficult 

question, raised in problem 14.82 of the Kourovka notebook [6], is which finite simple 

groups have the property that every element is strongly real. This problem is still open 

in general (but see [3], [4], for some cases, and related questions). In this paper we 

show that in fact all elements in the six groups J1, J2, A5, A6, A10 and A14 are strongly 

real. Moreover, we completely classify the strongly real elements in all the Alternating 

Groups and the Sporadic Groups. A well known software in Computing Algebra GAP 

[5] had been used to find all elements in the other 24 Sporadic Groups which are real 

but not strongly real. 
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2. SPORADIC GROUPS 
 

It is easy to check from the Atlas [1] that the only Sporadic Simple Groups in 

which every element is real are the Yanko Sporadic groups  J1 and  J2. The question 

then arises, is every element in these groups is strongly real? Now an element is 

strongly real if it is a product of two involutions, or equivalently, if it is in a subgroup of 

index 2 in a dihedral group. Thus we look for suitable dihedral groups inside the 

maximal subgroups of  J1 and  J2 .These are as follows;   the two cases. 

J1 Case:    
We need only to consider the maximal cyclic subgroups of the Yanko Sporadic 

groups  J1 of order 175560  with  standard generators  a and b given in [1]  where a 

has order 2, b has order 3, ab has order 7 and ababb has order 19. Hence we are 

going to  look for the elements  6A, 7A, 10A, 11A, 15A, and 19A. All notation are used 

from [1] , [8] as A<B means that A is a subgroup of B and 11:10 means F110 ; while : 

D10 × A5 > D10 × 2 = D20 means that the direct product of the dihedral group  D20 which 

is the direct product of  D10 and the cyclic group C2  is a subgroup of the direct product 

of the dihedral group D10 and the Alternating group  A5 . These notation are widely 

used in [8] especially with the new versions of this electronic Atlas of Finite Group 

Representations.   Using [5], [8] and other computational techniques such as looking 

closely to the powers of some elements, commutator, centralizer and other elements 

and orders that can be computed; One can determine the data given in Tables 1 & 2 .  

 
Table 1 will give the maximal dihedral subgroup of J1 

 

 

 

 

 

 

 

 
J2 Case:  

The Yanko Sporadic groups  J2 of order 604800  with  standard generators  a 

and b given in [1]  where  a is in class 2B, b is in class 3B, ab has order 7 and ababb 

has order 12.  Using the same procedure J1 Case ; we need only to consider the 

maximal cyclic subgroups of  J2  and hence we are going to look for  the elements   6B, 

7A, 8A, 10AB, 10CD, 12A, and 15AB in J2  . Using same notation which are used in [1] 

and [8] . As an example G:2 is the automorphism group of G , hence L3(2):2 > D12  

means that the Dihedral group D12 is a subgroup of the automorphism group L3(2):2  .    

 

6A: D6 × D10 >  D6 × 2 = D12. 

7A: 7 : 6 > 7 : 2 = D14. 

10A: D6 × D10 > 2 × D10 = D20. 

11A: 11 : 10 > 11 : 2 = D22. 

15A: D6 × D10 > 15 : 2 = D30. 

11A: 19 : 6 > 19 : 2 = D38. 

Table 1: Maximal dihedral subgroups of J1
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Table 2 will give the maximal dihedral Subgroups of J2. 
 

 

 

 

 

 

 

           

               

Alternatively, we can check using the character table whether each element is a 

product of two involutions. For an element z in a conjugacy class Z  is a product of 

elements x and y in classes X and Y respectively if and only if the structure constant: 
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is non zero. Indeed ),,( ZYXξ is well-known to be equal to the number of ways 

that z can be expressed as a product of xy with x in X and y in Y . Thus to determine if 

z is a product of two involutions, we only need to add up the structure constants 

),,( ZYXξ over classes X, Y of involutions, and we see whether the resulting integer 

is positive or zero. In the cases J1 and J2 they all are positive. We can use the same 

method in the other Sporadic Groups to determine which of the real classes are 

strongly real. We find that most of the real classes are strongly real, but there are 

some exceptions, listed in Table 3. 

 
Table 3 will give the real classes which are not strongly real in Sporadic Groups 

M11  all real elements are strongly real. 
M12 all real elements are strongly real. 

M22 8A. 

M23 8A 

HS  all real elements are strongly real. 

J3  all real elements are strongly real. 

M24  all real elements are strongly real. 

McL  3A, 5A, 6A. 

He  all real elements are strongly real. 

Ru all real elements are strongly real. 

6B: L3(2):2 > D12. 

7A: L3(2) : 2 > 7 : 6 > 7 : 2 = D14. 

8A: L3(2) : 2 > D16. 

10AB: D10 × A5 > D10 × 2 = D20. 

10CD: D10 × A5 > 2 ×  A5 > D20. 

12A: 3.PGL2(9) = 3.A6 : 2 > (3 × D8):2 > D24.

15AB: D10 × A5 > D10 × D6× D30. 

Table 2: Maximal dihedral subgroups of J2 
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Suz  all real elements are strongly real. 

ON  all real elements are strongly real. 

Co3  all real elements are strongly real. 

Co2  16B. 

Fi22  all real elements are strongly real. 

HN 8A . 

Ly  all real elements are strongly real. 

Th 8B.  

Fi23  16AB, 22BC, 23AB. 

Co1 all real elements are strongly real. 
J4  all real elements are strongly real. 

Fi_24  all real elements are strongly real. 

BM all real elements are strongly real. 

  M   8C, 8F, 24F, 24G, 24H, 24J, 32A, 32B, 40A, 48A. 

Table 3: Real classes which are not strongly real in Sporadic Groups 

 

The most surprising result is finding elements of small order like 8C and 8F in 

such a large group like the Monster which is real but not strongly real. . For 

completeness, we also list all the non real elements in the 26- Sporadic Groups. 
 

Table 4 will give  the complete list for all  non real elements in the Sporadic Groups 

M11 8AB, 11AB. 

M12 11AB. 

J1 None 

M22 7AB. 

J2 None 

M23 7AB, 11AB, 14AB, 15AB, 23AB. 

HS 14AB. 

J3  19AB. 

M24 7AB, 14AB, 15AB, 21AB, 23AB. 

McL 7AB, 9AB, 11AB, 14AB, 15AB, 30AB. 

He 7AB, 7DE, 14AB, 14CD, 21CD, 28AB. 

Ru 16AB. 

ON 31AB. 

Co3 11AB, 22AB, 20AB, 23AB. 

Co2 14AB, 15BC, 23BC, 30BC. 

Fi22 11AB, 16AB, 18AB, 22AB. 

HN 19AB, 35AB, 40AB. 

Ly 11AB, 22AB, 33AB. 
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Fi23 16AB, 22BC, 23AB. 

Co1 23AB, 39AB. 

J4  7AB, 14AB, 14CD, 21AB, 28AB, 35AB, 42AB.

Fi_24 18GH, 23AB. 

BM 23AB, 30GH, 31AB, 32CD, 46AB, 47AB. 

  M 23AB, 31AB, 39CD, 40CD, 44AB, 46AB, 46CD, 47AB, 56BC, 59AB, 
62AB, 69AB, 71AB, 78BC, 87AB, 88AB, 92AB, 93AB, 94AB, 95AB, 
104AB, 119AB. 

Table 4: Non-real classes in Sporadic Groups 
 

3. ALTERNATING GROUPS 
Next we consider the Alternating groups An, which are simple for all n > 4. We 

can use the same method as above to prove that all elements in An for n = 5, 6, 10 

and 14 are strongly real. However, by using a different method we can prove much 

more. Indeed, we prove that if n > 4, then every real element in An is strongly real. 

Recall that a conjugacy class C in Sn splits into two conjugacy classes in An if and 

only if its elements are a product of disjoint cycles of distinct odd lengths (including 

cycles of length 1). 

Lemma 1  :  If x is in a conjugacy class C, which is an An- class and an Sn-class, 

then x is a product of two involutions in An. 

Proof   : If x is in C, where C is an An - class and an Sn -class, then the cycle type of x 

includes either a cycle of even length, or, two cycles of the same odd length. 

Case 1 :  a cycle (x1, x2, . . . , x2k) of even length or a product of even cycles . For each 

even cycle of the form (x1, x2, . . . , x2k)  ;  We choose the involution a which inverts x to 

be either 

(x2, x2k) (x3, x2k-1) . . . (xk-1, xk+1)                                                       

which is a product of k − 2 transpositions, or 

(x1, x2k)(x2, x2k−1) . . . (xk−2, xk+1)(xk−1, xk) 

which is equal to the product of (k−1) transpositions. We can make sure that a  

is an even permutation by choosing the correct one of these two cases. Hence the 

product of even permutations is an even permutation .  

Case 2  : Two cycles  

(x1, x2, . . . , x2k-1) and (y1, y2, . . . , y2k-1) 

 We can choose 

(x2, x2k−1)(y2, y2k−1)(x3, x2k−2)(y3, y2k−2) . . . , (xk−1, xk)(yk−1, yk) 

 Or                            (x1, y1)(x2, y2k−1)(y2, x2k−1) . . . (xk−1, yk)(yk−1, xk). 

After we have fixed the action of all the other cycles, we can choose its action 

on these cycles, so that it is an even permutation. 
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Lemma 2  : If x in a conjugacy class C, and C is an An - class but not an Sn -class, 

then the following are equivalent 

1. x is a product of two involutions in An . 

2. x is real. 

3. number of cycles in x is n mod 4. 

Proof 

1  ⇒  2   : If x = ab where both a and b are involutions then x−1 = (ab)−1 = 

b−1a−1 = ba; this implies that x−1a = b; therefore ax−1a = ab = x. Hence x is real. 

2 ⇒  3  : We know that the cycle type of x is cycles of distinct odd lengths; therefore to 

conjugate x to x−1, we need to reverse each cycle; to do this we must fix exactly one 

point in each cycle; therefore if the number of cycles in x is k; then a which is our 

element to conjugate x to x−1 has exactly k fixed points and is an involution. This 

implies that a has n − k moved points; which implies (n − k)/2 transpositions. Hence a 

is in An if and only if (n−k)/2 is even if and only if n−k is divisible by 4 if and only if n is 

congruent to k mod 4. 

3 ⇒  1 : If n is congruent to k mod 4 where k is the number of cycles in x then let a be 

an involution in Sn conjugating x to x−1. By the above argument a is a product of (n − 

k)/2 transpositions, so is in An. Now a−1xa = x−1 and a2 = 1 implies axa = x−1 and 

therefore xaxa = 1; i.e. xa is an involution and x−1 = axa = ab where b = xa is an 

involution in An. Hence x =ab which is a product of two involutions. 
 

Corollary 3 :  If n > 4, every real element of An is strongly real. 

Proof   Immediate from Lemma 1, and the equivalence of 1 and 2 in Lemma 2. 
 

Corollary 4  : If n > 4, an element of An  is non real if and only if it is the product of k 

disjoint cycles of distinct odd lengths where n≡ (k + 2) mod 4. 

Proof : Immediate from Lemma 1 and the equivalence of 2 and 3 in Lemma 2. 
 

Lemma 5  :  If n > 6 and n  ≠ 10, 14, then there exists C an An class not an Sn class 

where x is in C but is not real in An. 

Proof: 
If n is congruent to 0 mod 4 and n > 3 then take x to be an element of cycle type 

(n−1).1. This has cycles of distinct odd lengths. By Lemma 2, x is not real since n is not 

congruent to 2 mod 4.  Similarly, if n is congruent to 1 mod 4 and n > 8 ; take x of cycle 

type (n − 4).3.1, which implies that n is not congruent to k mod 4 as k = 3.  If n ≡  2 

mod 4 and n > 14, take x of cycle type (n − 9).5.3.1.  If n≡ 3 mod 4 and n > 3, take x 

of cycle type n.     These cases together deal with all n > 4 except for n = 5, 6, 10, 14. 

Proposition 6 : If n=5, 6, 10, 14 then every element of An  is a product of two 

involutions; i.e. every element is strongly real. 
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Proof :  By Lemma 1, we need only to consider elements whose cycles have distinct  

odd lengths. By Lemma 2, we need only to show that the number k of cycles is 

congruent to n mod4. 

1.   If n = 5, the only possibility for a cycle type is 5, so k = 1, and 1 is congruent to 5 

mod 4. 

2.  If n = 6, the only possibility for a cycle type is 5.1, so k = 2, and 2 is congruent to 6 

mod 4. 

3.  If n = 10, the only possible cycle types are 9.1 or 7.3, so k = 2, and 2 is congruent 

to 10 mod 4.      

4.  If n = 14,  the only possible cycle types are 9.5, 11.3 or 13.1, so k = 2, and 2 is 

congruent 14 mod 4. 
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