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STOCHASTIC LOSS SYSTEMS: MODELS AND POLICIES* 
 
 

MOHAMMAD BATAINEH 
 
 
 

ABSTARCT 
In a multi-server system, probability distributions and loss probabilities for customers 

arriving with k different priority categories are studied. Customers arrive in independent Poisson 

streams and their service times are exponentially distributed, with different rate for different 

priority. The non-queuing customers or the loss customers will be lost if the capacity is fully 

occupied. In these systems, particularly for higher priority customer the reduction of the loss 

probabilities is very essential to guarantee the quality of the service. Four different policies for 

k=2, high (emergency) and low (ordinary), were introduced utilising the fixed capacity of the 

system, producing different loss probabilities, by which the minimum can be selected. An 

example illustrating these results is also given. 

 
INTRODUCTION 

There are many real-life priority serving systems in which it is impractical, or 

even impossible, to pre-empt a low priority service in order to serve an arrival of high 

priority. When there are multiple servers, there is a probability that a high priority arrival 

may have to wait or lost because all the servers are busy. The wait or lost can be 

reduced by using a drop service (transfer) or reservation. In general, for a non-queuing 

system, when all the servers are busy, the low priority arrival is lost, while the high 

priority arrival will be served by dropping a low priority customer. In the case when all 

servers are busy with high priority, the arrival of high priority customer is lost. 

A literature search showed that the concentration was on the multiple input 

streams, where it was first traced on the hospital application. Balintfy (1952) ”(See 

Gross & Harris (1998)) considers a census-predictor model by formulating the system 

as a Markov process. Three different categories of patients (good, fair, and poor) are 

used to classify the patient’s state. Blumberg (1961) considers only one patient type. 

Using the Poisson distribution for the demand process and deterministic service 

behaviour, he develops tables useful in studying the effects of various allocation 

policies under different conditions. Weckwerth (1966) employs a similar modelling 
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approach and assumes that the negative exponential distribution satisfactorily 

characterises a patient’s length of stay in the hospital (Esogbue and Singh 885). 

Young (1962) was the first to discuss the cut-off model (where low priority 

customers are kept waiting if the number of servers busy when he arrives is at or 

above a specified cut-off level) to discusses two models for admissions and 

discharges.  

Kolesar (1970), following the work of Young, developed a Markovian decision 

model for hospital admission scheduling. Describing the state of the system as the 

number of beds occupied at the start of a given period t, he introduced a linear 

programming model that exploits the Markovian structure to provide a basis for 

determining an optimal control policy for scheduling admissions (Esogbue and Singh 

885). The utility of Kolesar’s model to hospital administration has been severely 

questioned. The objection centres on the oversimplification of the system dynamics, 

the attempt to apply a Markovian decision model to a problem that is essentially non-

Markovian, and the inherent difficulties involved in gathering realistic data. 

It is argued by Taylor and Templeton (1980) that the cut-off model was 

formulated by Benn (1966) to solve a priority assignment problem in railroad 

transportation, and the results are published in Jaiswal (1968, pp. 204-214). The same 

model was later put forward by Shonick and Jackson (1973) to assist in finding how 

many hospital beds were needed to serve the emergency and regular patients. Cooper 

(1972) also considers the same model under the name priority reservation. McClain 

(1976) based on the model’s assumptions examined the sensitivity of the predicted 

hospital census to several of the model’s assumptions. Furthermore, Esogbue and 

Singh (1976) presented a version of the model based on the assumption that no 

customer wait but there are different service rates for the two priority classes. 

This paper is focused on the serving systems with fixed multi-servers capacity 

and non-queuing customers. Customers’ distribution and loss probabilities with k 

different priority categories and different serving rates are introduced in section 2. A 

particular system with two categories (k =2), high (emergency) and low (ordinary) 

priority, are also discussed and four different serving policies are introduced in 

section3. 

In section four, a numerical illustrative example is presented to show the 

differences and preferences in relation to these policies.  

 
2.  MULTI-CATEGORY SYSTEM MODEL 

 
Assume a system with C fixed capacities and k priority categories where k is the 

least important category. The customers with category j, (j = 1, 2, …, k), have a 

Poisson arrival rate of jλ  and exponential service time of rate jµ . 

 



 
 STOCHASTIC LOSS SYSTEMS: MODELS AND POLICIES 107 

  

Let 
j

j
j µ

λ
ρ =  be the workload parameter for category j, and 1 2( , , ..., )kP n n n be the 

probability of jn customers in the system from categories j, j=1, 2, …, k,  where 

1
0,

k

j j
j

n n C
=

≥ ≤∑  and = 0 otherwise .  For simplicity we write P (0, 0, …, 0)= 0P  and 

1 2( , , ..., )kP n n n = uP , where u is a vector with  jth   component jn  (j =1, 2, …, k). The 

steady state equations for this model are  

 

( ) ( )j j j j j j
j 1 j 1 j 1

n P n 1 P P .
k k k

λ µ µ λ+ −
= = =

+ = + +∑ ∑ ∑u u v u v   (2.1) 

 

Where v is a vector with all zero components except for a one at position j 

corresponding to priority j. 

 
Theorem 2.1 
When categories 1, 2, …, k have different service times, the probability distribution of 

the customers in the system is 

jn
j

0
j 1 j

 
P
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Proof: 

To prove the theorem we need to show that  (2.2) satisfies (2.1). Let
jn

j

j 1 j

P D
n !

k ρ

=

= ∏u  

then we show that D should be  
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j 1
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 
 
 
 
 
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∑ ∏  

in order to satisfy the summability – to – one criterion. Let 
jn

j

j 1 j

( ) ,
n !

k ρ

=

ℜ =∏u then 

substituting )(DP uu ℜ= into (2.1) gives 

 



 
108 MOHAMMAD BATAINEH 

  

j j j j j j
j 1 j 1 j 1

D ( ) ( n ) D ( ) D ( ) n
k k k

λ µ λ µ
= = =

ℜ + = ℜ + ℜ∑ ∑ ∑u u u . 

Since the left-hand side is the same as the right hand-side, i.e.
jn

j

j 1 j

P D
n !

k ρ

=

= ∏u . Now to 

evaluate D, we have: 

1 2

j
j 1

(n ,n ,...,n )

n C

P 1
k

k
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≤

=

∑

∑ u . 

Thus, 
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Corollary 2.1 

The probability of dropping a customer from priority category j out of the system 
is given by 

1 j 1 j 1
j j 1

i i
i 1 i 1

(n ,...,n ,0,....,0) (n ,....,n ,0,....,0)

n C n C

P P
−

−

= =

= =

−

∑ ∑

∑ ∑u u . 

Proof: 

Let jT  be the probability that a customer of category j is dropped out of the system, 

then 

 jT  = Pr {The system is full by categories 1, 2, …, j and j n 0> } 

  = Pr {The system is full by categories 1, 2, …, j } 

   × Pr { j n 0> | system is full by categories 1, 2, …, j} 

  = Pr {The system is full by categories 1, 2, …,j - 1}  

   × 







…

…
−
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1}- , 2, 1, categoriesby  full is system  Pr{The1

j
j

 

  = Pr {The system is full by categories 1, 2, …, j}− 

   Pr {The system is full by categories 1, 2, …, j  -  1} 

  = 
1 j 1 j 1

j j 1

i i
i 1 i 1
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Further, the proportion of customers of category j that are dropped from the system is 

given by 

∑ ∑

∑
∑ ∑
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Corollary 2.2 

If µµµµ ==== l...21  then 

 
1) The probability distribution of the customers in the system is given 

by
j

j 1
n 0nP P
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∑

, 

      where 
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2) The probability of dropping a customer from category j out of the system is given by 
1

1 1
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Proofs: 
1) Apply mathematical induction on k,  

When k =2  
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Now suppose (2.3) is true for k.  We need to prove it for k +1, we have 
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2) Let jT be the probability that a customer in category j is dropped out of the system 

then, 
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Further, the proportion of dropping a customer from category j out of the system is 

given by 

i1
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3. TWO CATEGORY MODEL SYSTEM 
 

In this section only two priority categories (high and low) are considered, each 

arriving according to a Poisson process with rates 1λ  and 2λ  for high and low 

respectively. The total arrival rate is 21 λλλ += . Service times are exponentially 

distributed, with mean service times 1/1 µ  and 2/1 µ  for high and low priority 

respectively. The workload parameters ( 1,2)j
j

j

j
λ

ρ
µ

= =  and 21 ρρρ += . 

Suppose there are C servers and the service rate for the two priorities are different. No 

customers of either priority are allowed to queue. The loss probabilities and customer’s 

probability distributions are defined in relation to the following four different policies. 

 

3.1 Policy one 

Both priorities will have the same chance of being served providing the capacity 

C is not full. In the case of all servers in use (fully occupied capacity), the low priority 

arrival is always lost, while the high priority arrival will be served by dropping the low 

priority already being served in the system. When all C servers are occupied by high 

priority customers, arrivals from either category are lost.  Using the same method in 

theorem 2.1 we have the following theorem. 
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Theorem 3.1.1 

The probability distribution of the customers (high and low priorities) in the 

system is given by 

1 2
1 2

1 2
1 2

( , ) (0,0)
! !

n n

P n n P
n n
ρ ρ

= ,  

Where  
1 2

1 2

1 2

11 2

( , ) 1 2

(0,0) ( ) .
! !

n n

n n

n n C

P
n n
ρ ρ −

+ ≤

= ∑  

From the above theorem we have the following observations: 

 1. The probability of losing a low priority customer is given by 

1 2
1 2

1 2
( , )

( , )
n n

n n C

P n n
+ =

∑ . 

2. The probability of dropping a low priority customer out of the system is given  by 

1 2
1 2

1 2
( , )

( , ) ( ,0)
n n

n n C

P n n P C
+ =

−∑ . 

3. The probability of losing a high priority customer is given by 

1( ,0) (0,0)
!

C

P C P
C
ρ

= . 

3.2 Policy two 

In this policy we divide the capacity C into two subsystems 1C  and 2C  for high 

and low priority respectively, the division can follow any desirable (optimal) proportion. 

A low priority customer is lost when 2C  is full, and it is dropped when a high priority 

customer arrives while 1C  is full. A high priority customer is lost when 1C  and 2C  are 

fully occupied by high priority customers. Using the same method in theorem 2.1 we 

have the following theorem. 

 

Theorem 3.2.1 

1. The probability distribution of the high priority customers in the high priority 

subsystem is given by  

1
0 1( ) ( ) , 0,1, 2, ...,
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2. The probability distribution of the customers, low and high priorities, in the low 

priority subsystem is given by 

  

1 2
1 2

1 2
1 2

( , ) (0,0)
! !

n n

P n n P
n n
ρ ρ
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Corollary 3.2.1 

The probability of dropping a low priority customer out of the low priority subsystem is 

given by 

1

1 2 2

1 2
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1 1 2

( ,0)( )(1 )
! ( , )

C

n n C

P CP
C P n n
ρ

+ =

−
∑

 

Where, 
1

0

1
0

1
−

=








= ∑

C

n

n

!n
P ρ

. 

Proof: 

Pr {dropping a low priority customer} = Pr {The high priority subsystem is full} × 

Pr{there is at least one low priority customer in the low priority subsystem | low priority 

subsystem is full} )
!

( 0
1

1
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p
C

Cρ
= [1-Pr {low priority subsystem is full by high priority 

customers} / Pr {low priority subsystem is full}] 
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∑
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Further, the probability of losing a high priority customer is given by 

1
1

0 2
1

( ,0).
!

C

P P C
C
ρ

 

3.3 Policy three 

Having 1C and 2C  defined as in policy two, we consider a cutoff level k for a 

high priority in the low priority subsystem ( 2C ). Since the serving times for high and 

low priorities are different, and the arrival at and prior to the cutoff level k could be high 

or low priority, we need to ensure that the total serving time in the low priority 

subsystem ( 2C ) remains constant. This situation arises only when the recently exited 
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customer's priority differs to the arriving one. In this case we always give the exited 

customer's priority service time to the arriving one. Here, there is no serving beyond 

the cutoff level k. In the case of serving after k level the exited customer's serving time 

will be allocated to the replaced (or transferred) customer being served after cutoff 

level k. 

Suppose 1n  and 2n are the number of high and low priority customers in the low 

priority subsystem and assume =),( 21 nnP Pr { 1n  high priority and 2n  low priority in 

the low priority subsystem}, ( 1 2 ; 0n n k+ < = otherwise), and =mP Pr { m  servers are 

busy in the low priority subsystem | 1n servers are serving high priority customer in the 

low priority subsystem}( 2C,...,km = ; 0;,...,1,01 == kn otherwise).  Then the steady 

state equations become: 

 

1 2 1 1 2 2 1 1 2 2 1 2 1 1

1 2 2 2 1 2 1 2

( , )( ) ( 1, ) ( , 1) ( 1)
( 1, ) ( 1) ( , 1), if

P n n n n P n n P n n n
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λ µ µ λ λλ µ
µ

′+ + = − + − + +
× + + + + + <
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For given 1n  ),...,1,0( 1 kn =  

 1112 ++− +=+ kkkkk PNP)N(P λλ  km =if  (2.5) 

 11122 )( ++− +=+ mmmmm PNPNP λλ  if 2k m C< <   (2.6) 

 12 222 −= CCC PPN λ  2if Cm =    (2.7) 
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221 ′=′

′
=′=+′= λλ
µ
λρ

µ
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2
11 µ
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The solution of equation (2.4) is given by 

 
1 2

1 2
1 2 0

1 2

( , )
! !

n n

P n n P
n n
ρ ρ′

=  if 1 20 n n k≤ + <  (2.8) 

Now, equations (2.5), (2.6), and (2.7) become: 

 

 2 1 1 1( )k k k k kN P P N Pρ ρ − + +′ ′+ = +  mk =if  

 

 2 2 1 1 1( )m m m m mN P P N Pρ ρ − + +′ ′+ = +   if 2k m C< <  
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2 2 2C C 2 C 1N P P −′ = ρ   2if C=m  

The above set of equation is true for any given 1n , this can be written in a matrix form 

as follows, 
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21[ , ,..., ].k k CP P P∗
+=P  Hence 

































′′−

′−+′−

′−+′−

′−+′−

′−′+

=

−

++

++

+

2

22

2

212

3222

2212

12

000000

00000
00000
00000
00000
00000
00000
000000

C

CC

kk

kk

kk

N

NN
...

...
...

NN
NN

NN

ρ

ρρ

ρρ
ρρ

ρ

A  

                    

It follows that: 
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Substituting 1+kP from (2.9) into (2.10) we obtain 
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ρ
+

−− −

′ ′
′+ − =  

 

Hence, if we apply equation (2.8) on kP  and 1−kP  we obtain 
 

1 2 1 2
2

22
1 2 1 2

1 2 1 2

11 2 1 2
2 0 01

( , ) ( , )1 2 2 1 2
1

...
( )

! ! ! !

n n n n
C k

k CC k
n n n n

n n k n n k

N N
N P P P

n n n n
ρ ρ ρ ρρ ρ

ρ
+

− −

+ = + = −

′ ′′ ′
′+ − =∑ ∑  
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Hence 

2CP =
2 1 2 1 2

1 2 1 22
1 2 1 2

1
2 1 2 1 2

2 0 0
( , ) ( , )1 1 2 1 2

1

[( ) ]
... ! ! ! !

C k n n n n

k
n n n nC k

n n k n n k

N P P
N N n n n n
ρ ρ ρ ρ ρρ ρ

− −

+
+ = + = −

′
′+ −

′ ′ ∑ ∑  

And 

22

2

1

1
CmC

mC
m P

N...N
P −

+′′
=

ρ
, 11 2 −+= C,...,km . 

Now we have the following theorem. 

 

Theorem 3.3.1 

The probability distribution of the customers in the low priority subsystem is given by 

 

 
1 2

1 2
1 2 0

1 2

( , )
! !

n n

P n n P
n n
ρ ρ′

=  if knn <+ 21  

 

 
1

2

22
1

1 1
0

0 2 1

....
( ) ( )

!

nk
C m

CC m
n

N N
P m P P

n
ρ

ρ
+

−
=

′ ′
′= ∑  if 2,...,Ckm =  

Where 

11
0

0
( )

!

nk

n
P

n
ρ −

=

′ = ∑ ,  and 0P  given by
1 2 2

1 2
1 2

1 2

( , ) 1 2

( ) 1
! !

n n C

n n m k
n n k

P m
n n
ρ ρ

=
+ <

′
+ =∑ ∑  

Proof:  

For km ≥ , we have 

 Pr { 2n  servers busy in low priority subsystem}=∑
=

k

n

m
01

Pr{  servers busy in low priority 

subsystem \ 1n  busy by high priority in low priority subsystem}× Pr { 1n  high priority in 

low priority subsystem} 

 
1

2

22
1

1 1
0

0 2 1

....
( )

!

nk
C m

CC m
n

N N
P P

n
ρ

ρ
+

−
=

′ ′
′= ∑  if 2C,...,km = . 

From the above theorem we have the following observations: 

 

1. The probability of losing a high priority customer is given by 

2

1
( ) ( )

C

C
m k

P P m
=

′ ∑  

Where ″=′ 0
1

1
1

1
P

!C
P

C

C
ρ

 and 
1

11
0

0
( )

!

C n

n
P

n
ρ −

=

″ = ∑ . 
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2. The probability of losing a low priority customer is given by 

1

2

1

1
0

0 1

( )
!

nk

C
n

N P
n
ρ

=

′ ′∑
2 1 2 1 2

1 2 1 22
1 2 1 2

1
2 1 2 1 2

2 0 0
( , ) ( , )1 1 2 1 2

1

[( ) ]
... ! ! ! !

C k n n n n

k
n n n nC k

n n k n n k

N P P
N N n n n n
ρ ρ ρ ρ ρρ ρ

− −

+
+ = + = −

 
′ ′+ − ′ ′ 

 
∑ ∑ .       

                 

3.4 Policy four 

This policy is similar to policy one except we consider a cutoff level k for low 

priority customers. In other words, both high and low priorities are treated equally when 

number of occupied servers are less than k. A low priority is always lost beyond the 

cutoff level k.  

As we mentioned in policy three, the total serving time prior to cutoff level k 

should remain constant. Here too, we maintain this condition, but instead of having a 

cutoff level for high priority we have it for low priority.  Suppose 1n  and 2n are the 

number high and low priority customers in the system and assume =),( 21 nnP Pr { 1n  

high priority in system, 2n  low priority in the system}( 1 2 , 0n n k+ < = otherwise), and 

=mP Pr { m  servers are busy in system | 1n  servers are serving low priority customer 

in system}( C,...,km = ; 0101 == ;k,...,,n otherwise).           

 
Theorem 3.4.1  

The probability distribution of the customers in the system is given by 
 

 P(m)  = 
1 2

1 2
1 2

1 1 2 2
0

( , ) 1 2

( / ) ( / )
! !

n n

n n
n n m

P
n n

λ µ λ µ
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  =  ∑
=

−
+′′k

n
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0 1

1

1 ρ 0
1

2
1
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!n C

n

′






 ρ
,  if m = k,….,C 

Where 0P  is given from 
0

( ) 1
C

m
p m

=

=∑  and 

 

And  1
1 1

2

( ) ,mN n m n µ ρ
µ

′ = + − = and,,
1

1
1

1

21

µ
λρ

µ
λλ

=
+

 
1

2
2 µ

λρ = . 

 

Proof: See Theorem (3.3.1). 

1 2 1 2

1 2 1 2
1 2 1 2

1
1 1 1 2 2 1 1 2 2

1 0
( , ) ( , )1 2 1 21 1

( ) ( ) ( ) ( )( )
! ! ! !...

n n n nc k

C k
n n n nC k n n k n n k

P N P
n n n nN N

ρ λ µ λ µ λ µ λ µρ ρ
− −

+ + = + = −

 
′ = + −′  ′   
∑ ∑
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From the above theorem we have the following observations: 

 

1. The probability of losing a low priority customer is given by 

∑
=

−
+′′k

n
mc

kC N....N
0 1

1

ρ 0
2 PP
!n C

n

′






 ρ
. 

2. The probability of losing a high priority customer is given by 

∑
=

′
k

n
CN

0
0

2 PP
!n C

n

′






 ρ
. 

Corollary 3.4.1 

The probability distribution of the customers in the system when µ1 = µ2 is 

Pr{m customers in the system} = 
1 2

1 2

1 1 2 2
0

1 2

( / ) ( / )
! !

n n

n n m
P

n n
λ µ λ µ

+ =
∑ 0P

!m

mρ
= , if m k<  

 = 0
1 P

!m
k

km

ρρ −

. if km ≥  

Proof:  

The proof for km ≥  is given below, while the proof for m< k can be easily followed 

from Corollary (2.3). 

Pr{m customers in the system} 1 2
0

0 1

... ( )
!

nk
C m

CC m
n

N N P P
n
ρ

ρ
+

−
=

′ ′
′= ∑  if km ≥  

Since mNm =′  when 21 µµ = , then 

Pr {m customers in the system} = 

1
2 1

0 1 0
0 1

...( 1)( ) [( ) ]
! ...( 1) ! ( 1)!

n C k k kk

C m
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C mP k P
n C k k k
ρ ρ ρ ρρ
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−
=
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4.  EXAMPLE 
 

This section gives an example of a particular case, in which we compare, 

illustrate and summarise the models and policies discussed in the previous 

sections. 

Consider a system for which the arrival rates of high and low priorities are 

Poisson distributed with rates 2 and 4 respectively. Let the service time for the high 

and low priorities be exponentially distributed with a mean of 4. Assume that the 

number of servers in the system is 10. This data is not real it is just assumed data. 

Further, suppose that in policy two four servers are allocated to high priority 

customers and six to the low priority customers. 

Table 1 shows the probability distribution of the number of customers (high 

and low priorities) in the system when policy one applied. Here the system is full 

61% of the time and this indicates that the probability of losing any low priority 

customer is 61%, with dropping probability of 49%, while the probability of losing a 

customer of high priority is 12%. 

In policy two the probability distribution of the customers in the low priority 

subsystem is given in 

Table 2 and the probability distribution of the customers in the high priority 

subsystem is given in  

Table 3. From those tables the probability of dropping a low priority customer 

is 40%, while the probability of losing a high priority customer is 9%. In policy three, 

assume the cutoff level is 3. The probability distribution of the customers in low 

priority subsystem is shown in Table 4, and the probability of losing a high priority 

customer is 57% and losing a low priority customer is 65%.  

In policy four, we chose the cutoff level to be 8. This is the closest 

comparable partition to the other policies. Table 5 shows the probability distribution 

of the customers, where the probability of losing a high priority customer is 95% and 

losing a low priority customer is 100%. 

Four policies are summarised in Table 6. This table shows that the when 

there is no division into two subsystems policy one give us a lower loss probability 

for both high and low priority customers. The probabilities of losing a low and high 

priority customer, using policy one, are 61% and 12% respectively. Further, when 

division is allowed policy two give us a lower loss probability for both high and low 

priority customers. The probabilities of losing a low and high priority customer, 

using policy two, are 73% and 9% respectively. 
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Table 1: Probability distribution (%) of customers using policy one 

Priority Number of customers in the system 

   0 1 2 3 4 5 6 7 8 9 10 

High & Low 0 0 0 0 0 0 1 3 10 25 61 

High 0 0 1 4 7 12 15 17 17 15 12 
 

Table 2: Probability distribution (%) of customers using policy two 

Priority Number of customers in the system  

  0 1 2 3 4 5 6 

High & Low 0 0 0 1 5 21 73 

High 1 6 13 20 22 21 17 
 

Table 3:  Probability distribution (%) of customers using policy two 

Priority           Number of customers in the system  

  0 1 2 3 4   

        

High 0 3 11 29 57   

 
Table 4:  Probability distribution (%) of customers using policy three 

Priority Number of customers in the system  

  0 1 2 3 4 5 6 

High & Low 0 0 0 2 8 25 65 
 

Table 5: Probability distribution (%) of customers using policy four 

Priority Number of customers in the system 

   0 1 2 3 4 5 6 7 8 9 10 

High & Low 0 0 0 0 0 0 0 0 0 5 95 
 

Table 6: Summary 

 Dropping a low 
priority customer 

probability of 
losing a low 

priority customer 

probability of losing a 
high priority 
customer 

Policy one 49% 61% 12% 

Policy two 40% 73% 9% 

Policy three  65% 57% 

Policy four  100% 95% 
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