WEAKLY C-NORMAL AND Cs-NORMAL SUBGROUPS OF FINITE GROUPS *

MOHAMMAD TASHTOUSH

ABSTRACT

A subgroup H of a finite group G is weakly c - normal subgroup of G if there exists a subnormal subgroup N of G such that G = HN, and $H \cap N \leq core_G(H)$, where $core_G(H)$ denotes the core of H in G, which is the largest normal subgroup of G contained in H. If $H \cap N \leq core_{G..}(H)$, then H is c_S - normal subgroup of G, where $core_{G..}(H)$ denotes the higher core of H in G, which is the largest subnormal subgroup of G contained in G.

In this paper, we investigate some properties of weakly c -normal and $c_{\scriptscriptstyle S}$ -normal subgroups of finite groups, and using the weakly c -normality and $c_{\scriptscriptstyle S}$ -normality of some Sylow and maximal subgroups to determine the structure of finite groups.

1. INTRODUCTION

It is interesting to use some information on the subgroups of a finite group G to determine the structure of the group G. The normality of subgroups of a finite group plays an important role in the study of finite groups. Wang, 1996 initiated the concepts of c – normal subgroups and used the c – normality of maximal subgroups to give some conditions for solvability and supersolvability of a finite group. Lujin Zhu and et al, 2002 have introduced the concepts of weakly c – normal subgroups and they have used the weakly c – normality of some maximal and Sylow subgroups to determine the structure of a finite group.

Definition 1.1 [10]: Let $H \leq G$. We say that H is a subnormal subgroup of G if there is a series from H to G .

A subgroup H of a group G is called c – normal subgroup of G if there exists a normal subgroup N of G such that G=HN and $H\cap N \leq H_G$, where $H_G=core_G\left(H\right)$ is the largest normal subgroup of G contained in H.

2000 Mathematics Subject Classification: Primary: 20D35 , Secondary : 20E15; 20F22.

Keywords: Normality, Weakly ${\cal C}$ — normal, ${\cal C}_S$ — normal, Sylow and maximal subgroups.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received on: June 21, 2008 Accepted on: Dec. 28, 2008

Definition 1.2 [6]: Let G be a group. We call a subgroup H weakly c - normal subgroup of G if there exists a subnormal subgroup N of G such that G=HN and $H\cap N \leq H_G$, where $H_G=core_G\left(H\right)$ is the largest normal subgroup of G contained in H.

Example 1.3: Let H be a sylow 2- subgroup of the symmetric group S_3 . Then H is weakly c- normal subgroup of S_3 .

It is easy to see that, every c – normal subgroup of a group G is weakly c – normal in G , however, the converse is not true, see [6].

2. PRELIMINARIES

In this section, we give some definitions and basic results which are essential in the sequel. Let π be a nonempty set of primes, π' the complement set of π in the set of all prime numbers. Let G be a group, we denote the set of all prime divisors of the order the group G by $\pi(G)$; the maximal normal p – subgroup of G by $O_p(G)$ and the Fitting subgroup of G by F(G). We introduce the following concept which is closely related with the subnormal subgroups of a group.

Definition 2.1: Let G be a group. We call a subgroup H c_S - normal subgroup of G if there exists a subnormal subgroup N of G such that G=HN and $H\cap N\leq H_{G_{\dots}}$, where $H_{G_{\dots}}$ denotes of the higher core of H in G which is the maximal subnormal subgroup of G contained in H.

Example 2.2: Let H be a sylow 2- subgroup of the alternating group A_4 . Then H is c_s- normal subgroup of A_4 .

It is easy to see that, every normal (subnormal) subgroup of a group G, is c_S - normal subgroup of G, but the converse is not true. To see this, let $G=S_3$, then the subgroup $H=\left\langle \left(12\right)\right\rangle$ of G is c_S - normal in G, but H is not normal subgroup of G.

Clearly, every c – normal subgroup of a group G is $c_{\scriptscriptstyle S}$ – normal subgroup of G , also, every weakly c – normal subgroup of a group G is also $c_{\scriptscriptstyle S}$ – normal subgroup of G .

Lemma 2.3 [10]: Let G be a group with subgroups A and B such that A is an Abelian subgroup and G=AB. Then one of the following two conditions is satisfied: (i) A contains a normal subgroup C of G such that $C\neq 1$, or (ii) $B\cap \left(x^{-1}Ax\right)=1$, for all $x\in G$.

The following example shows that the property of $c_{\scriptscriptstyle S}$ – normality cannot imply weakly c – normality.

Example 2.4: Let $G=S_3\times S_3$ be the direct product of S_3 by itself, and $K=\Delta\big(A_3\times A_3\big)=\left\{1\;,\;\left((123),(123)\right)\;,\;\left((132),(132)\right)\right\}$ be the diagonal subgroup of $H=A_3\times A_3$ with $K_G=1$ and $K_{G_3}=K$.

Then $K \lhd G$ since $K \lhd H \lhd G$ and hence K is c_S - normal subgroup of G. But there is no subnormal subgroup, say N of G, such that G = NK and $N \cap K \leq K_G$. Suppose not, then there exists a subnormal subgroup N of G with order having three cases:

Case (i): If |N| < 12, then |NK| < 36, and therefore there is no subnormal subgroup N of G such that G = NK.

Case (ii): If |N| > 12, then by Lagrange theorem there are two situations; either, (a) |N| = 18, then |NK| > 36, or (b) |N| = 36, then we have G = N, and thus NK = GK = G, but $N \cap K = G \cap K = K \not\subset K_G = 1$. Therefore from the two situations there is no subnormal subgroup N of G such that G = NK.

Case (iii): Assume that $\mid N \mid$ = 12, and suppose that G = NK. Since K is an Abelian subgroup, then either N is a normal subgroup of G, or one cannot find any normal subgroup K such that G = NK. In this case N is normal in G if it is the maximal subgroup of G.

Assume that N is normal in G, then (ii) of lemma 2.3 cannot be satisfied here, and hence we have $K\cap \left(x^{-1}Nx\right)=K\cap N\neq 1$, for all $x\in G$, hence $K\subset N$. Therefore $G\neq NK$. If N is not normal of G then K cannot found any subnormal subgroup such that G=NK. Thus K is not weakly c-normal subgroup of G.

3. ELEMENTARY PROPERTIES

Lemma 3.1: Let G be a group with subgroup H. Then (i) $H_{G_-} \lhd \lhd H$, and (ii) If $H \leq L_1 \cap L_2$ where L_1 and L_2 are two maximal subgroups of G with $L_1 \neq L_2$, then $H_G \lhd H$.

Proof: (i) We know that $H_{G_-} \leq H$ and $H_{G_-} \lhd G$ (by definition), then $H_{G_-} \lhd G$ (by definition), then $H_{G_-} \lhd G$ (by definition), then the result is obvious, so it is enough to show the case when H is not subnormal of G. By the definition of the higher core and (i), there is a series of minimal length n>1 that has the form $H_{G_-} = M_n \lhd \ldots \lhd M_1 \lhd M_0 = H$, where M_i is not subnormal of G for all $i=1,2,\ldots,n$. Then there exists a unique maximal subgroup of G, say M, such that $M_i \leq M$ for all $i=1,2,\ldots,n$ which is a contradiction with $H \leq L_1 \cap L_2$. This impels that n=1. Hence $H_G \lhd H$.

Lemma 3.2: Let G be a group with a subgroup H . Then $H_G \leq H_G$.

Lemma 3.3 [6]: Let G be a group. Then the following statements hold.

- (i) If H is weakly c normal subgroup of G with $H \leq K \leq G$, then H is weakly c normal subgroup of K .
- (ii) Let K be a normal subgroup of G with $K \leq H$. Then H is weakly c normal of G iff H/K is weakly c normal of G/K.

Lemma 3.4: Let G be a group. Then the following statements hold.

- (i) If H is c_S normal subgroup of G with $H \leq K \leq G$, then H is c_S normal subgroup of K .
- (ii) Let K be a normal subgroup of G with $K \leq H$. Then H is c_S normal subgroup of G iff H/K is C_S normal subgroup of G/K .

Proof: (i) Suppose that H is c_S - normal in G , then there exists a subnormal subgroup N of G such that G=HN and $H\cap N \leq H_G$. Then

 $K=K\cap G=K\cap HN=H\left(K\cap N\right), \text{ and hence }\left(K\cap N\right) \text{ is subnormal of }K\ ,$ and $H\cap \left(N\cap K\right)=\left(H\cap N\right)\cap K\leq H_{G_{\cdots}}\cap K\leq K_{G_{\cdots}}. \text{ Thus }H\ \text{ is }c_S-\text{normal in }K\ .$

(ii) Suppose that H/K is c_S - normal subgroup in G/K, then there exists a subnormal subgroup N/K of G/K such that G/K = (H/K)(N/K), and $(H/K) \cap (N/K) \leq (H/K)_{(G/K)}$. Then we have G = HN and $H \cap N \leq H_{G...}$. Hence H is c_S - normal in G.

Conversely, assume that H is $c_{\scriptscriptstyle S}$ – normal subgroup in G , then there exists a subnormal subgroup N of G such that G=HN and $H\cap N\leq H_{\scriptscriptstyle G}$. Then we have that $G/_{K}=\left(H/_{K}\right)\left(NK/_{K}\right)$, and then NK is a subnormal of G, and

$$\left(\frac{H}{K} \right) \cap \left(\frac{NK}{K} \right) = \frac{\left(H \cap NK \right)}{K} = \frac{K \left(H \cap N \right)}{K} \leq \frac{KH_{G...}}{K} \leq \left(\frac{H}{K} \right)_{\left(\frac{G}{K} \right)...}$$

Hence H/K is $c_{\scriptscriptstyle S}$ – normal subgroup of G/K .

Definition 3.5 [10]: For any set π of prime numbers, we denote by π' the set of all primes which do not belong to π . If $H \leq G$, then H is said to be a Hall π -subgroup of G if |H| is a π -number and [G:H] is a π' -number.

Definition 3.6 [2]: A group G is called π -solvable if it has a subnormal series whose factors are π -groups or π' -groups and the π -factors are solvable.

Lemma 3.7 [9]: Let G be a $\pi-$ solvable group. Then G has at least one solvable Hall $\pi-$ subgroup G_π , and for any $\pi-$ subgroup A of G, there is an element $x\in G$ such that $A^x\leq G_\pi$. In particular, any two Hall $\pi-$ subgroups are conjugate in G.

For the proof of this lemma, the reader can see [2] and [9].

Definition 3.8: Let G be a group. We call a group G weakly p – nilpotent if G has a subnormal p – complement in G . i.e., if H is a subnormal subgroup of G and P is a sylow p – subgroup of G such that G = HP and $H \cap P = 1$ then G is called weakly p – nilpotent.

Clearly, if G is p – nilpotent, then G is weakly p – nilpotent, however, the converse is not true. The following example shows that the property of weakly p – nilpotent cannot imply p – nilpotent.

4. THEOREMS

Theorem 4.1: If H is weakly c -normal subgroup of a group G, then H/H_G has a subnormal complement in G/H_G , i.e., there exists a subnormal subgroup K/H_G of G/H_G such that G/H_G is the semidirect product of K/H_G and H/H_G . Conversely, if H is a subgroup of G such that H/H_G has a subnormal complement in G/H_G , then H is weakly c -normal of G.

Proof: Let H be a weakly c -normal subgroup of G, then there exists a subnormal subgroup K of G such that G=HK and $H\cap K \leq H_G$. If $H_G=1$, then $H\cap K=1$. Hence K is a subnormal complement of H in G. Assume that $H_G\neq 1$, then we can construct the factor groups H/H_G and KH_G/H_G and by Dedekind's Identity, we have

$$\begin{pmatrix} H_{/H_G} \end{pmatrix} \cap \begin{pmatrix} KH_G/H_G \end{pmatrix} = \begin{pmatrix} H \cap KH_G \end{pmatrix}/H_G = \begin{pmatrix} H_G (H \cap K)/H_G \leq H_G/H_G = 1 \end{pmatrix}.$$

Hence ${^{K\!H_G}\!/_{\!\!H_G}}$ is a subnormal complement of ${^H\!/_{\!\!H_G}}$ in ${^G\!/_{\!\!H_G}}$.

Conversely, if F is a subgroup of G such that F/H_G is a subnormal complement of H/H_G in G/H_G , then we have that

$$G/H_G = \left(H/H_G\right)\left(F/H_G\right)$$
, and $\left(H/H_G\right) \cap \left(F/H_G\right) = 1$.

Then G=HF , where F is a subnormal subgroup in G , and $H\cap F\leq H_G$. Therefore H is weakly c -normal subgroup in G .

Corollary 4.2: Let H be a subgroup of a group G such that H/H_G has a subnormal complement in G/H_G . Then H is C_S — normal in G .

The following example shows that the converse of the above corollary is not necessarily true.

Example 4.3: Let $G=H\propto Z_p$ be the semidirect product of a subgroup H and the cyclic group Z_p with; (i) Z_p is a maximal subgroup in G, (ii) H is not normal in G with $H_G\neq 1$, (iii) $\Big(\Big|H\Big|,\Big|Z_p\Big|\Big)=1$.

Then $Z_p \lhd G$ since p dose not divide $\big|H\big|$ (by Sylow theorem), and hence Z_p is c_S - normal in G , also H is c_S - normal in G . We claim that H/H_G has no subnormal complement in G/H_G , suppose not, i.e., H/H_G has a subnormal complement in G/H_G , say K/H_G . Then $G/H_G = \Big(H/H_G\Big)\Big(K/H_G\Big)$, and $\Big(H/H_G\Big) \cap \Big(K/H_G\Big) = \Big(H\cap K\Big)/H_G = 1$. Then G = HK , and $H\cap K = H_G$. But we know that $|G| = \Big|H| \ |K| \ |H| = \Big|H| \ |K| \ |H| = \Big|G| \ |G| \ |G| \ |G| \ |H| \ |G| \ |G| = \Big|H| \ |G| \ |G| \ |G| \ |G| = \Big|H| \ |G| \ |G|$

If $\mid K \mid = p$, we get a contradiction with $1 < H_G \le K$. By using Cauchy Theorem we have K contains a subgroup of order p , say L , since $K \le G$, then L

will be a sylow p – subgroup of G since $\left(\left| H \right|, \left| Z_p \right| \right) = 1$. Since Z_p is the unique sylow p – subgroup of G, and its normal in G, then $L = Z_p$. Then $Z_p < K \neq G$. This contradicts the maximality of Z_p in G.

Theorem 4.4: A group G has a weakly c – normal sylow p – subgroup if and only if the factor group $G/O_p(G)$ is weakly p – nilpotent.

Proof: Assume that G has a weakly c -normal sylow p - subgroup, say P. Then by lemma 3.3 we have P/P_G has a subnormal complement in G/P_G (notice that $P_G = O_p(G)$). Hence $G/O_p(G)$ is weakly p - nilpotent.

Conversely, assume that $G/O_p(G)$ is weakly p – nilpotent. Then there exists a subnormal subgroup $K/O_p(G)$ of $G/O_p(G)$ such that

$$G/O_p(G) = \left(K/O_p(G)\right)\left(P/O_p(G)\right), \text{ and } \left(K/O_p(G)\right) \cap \left(P/O_p(G)\right) = 1.$$

Then we have G=KP such that K is a subnormal subgroup in G, and $K\cap P=O_{_{\cal P}}(G)=P_{_{\cal G}}$. Therefore P is weakly c -normal subgroup in a group G.

Corollary 4.5: If a factor group $G/O_p(G)$ is weakly p – nilpotent, then G has a c_S – normal sylow p – subgroup.

This corollary is obvious and we omit the proof. The converse of the Corollary 4.5 is not necessarily true; regarded with Example 4.3, we have seen that Z_p is c_S - normal sylow p - subgroup of G such that $O_p(G) = Z_p$. Hence $G/O_p(G) = H$ has no subnormal p - complement.

Theorem 4.6: A group G is metanilpotent if and only if every sylow subgroup of G is weakly c – normal in G .

Proof: Suppose that G is metanilpotent. Let $p \in \pi(G)$ and P be a sylow p – subgroup of G . Since G/F(G) and F(G) are solvable. Then G is solvable. Moreover G is p' – solvable. By lemma 3.5, we can replace G_π by K , and A^x by $O_{p'}(F(G))$ to conclude that G has a solvable Hall p' – subgroup K . Since $O_{p'}(F(G))$ is normal in G . $O_{p'}(F(G)) \le K$ and hence $O_p(G)K = F(G)K$. Since G/F(G) is nilpotent, then we have KF(G)/F(G) is a normal Hall P' – subgroup of G/F(G). Hence $H = O_p(G)K = KF(G)$ is normal subgroup in G , and consequently, we deduce that G = PH and $P \cap H = P \cap O_p(G)K = O_p(G)(P \cap K) = O_p(G) = O_p(G) = O_p(G)$. Therefore P is weakly c – normal in G .

Conversely, Suppose that every sylow subgroup of G is weakly c -normal in G . Then, by the third isomorphism theorem and Theorem 4.4 and the fact that $F\left(G\right)\!=\!O_{p}\left(G\right)$,

$$\frac{G}{O_p(G)} \cong \frac{\left(\frac{G}{O_p(G)}\right)}{\left(\frac{F(G)}{O_p(G)}\right)} \cong \frac{G}{F(G)}$$

is p - nilpotent for all $p \in \pi(G)$. Therefore G/F(G) is nilpotent, and hence G is metanilpotent.

Corollary 4.7: A group G is metanilpotent if and only if every sylow subgroup of G is $c_{\scriptscriptstyle S}$ — normal in G .

This corollary is obvious and we omit the proof.

REFERENCES

- J. Dixon, Problems in Group Theory, Blaisdell Publishing and Company, U. S. A., 1967.
- [2] K. Doerk and T. O. Hawakes, **Finite Soluble Groups**, Walter de Gruyter, Berlin, 1992.
- [3] D. Dummit and R. Foote, **Abstract Algebra**, 2nd Edition, John Wiley and Sons, Inc., New York, 1999.
- [4] B. G. Henry, **Between Nilpotent and Solvable**, Polygonal Publishing House, New Jersey, 1982.
- [5] T. Hungerford, **Algebra**, Springer- Verlag, New York, 1974.
- [6] Lujin Zhu, Weubin Guo and K. P. Shum, Weakly C- Normal Subgroups of Finite Groups and Their Properties, Communications in Algebra, Vol. 30, PP 5505-5512 (2002), Article No. 11.
- [7] I. D. MacDonald, **Theory of Groups**, Clarendon Press, Oxford 1986.
- [8] Miao Long, Chen Xiaoli and Guo Wenbin, On C- Normal Subgroups of Finite Groups, Southeast Asian Bulletin of Mathematics, Vol. 25, PP 479-483 (2001).
- [9] D. J. S. Robinson, **A Course in the Theory of Groups**, 2nd Edition, Springer-Verlag, New York-Heidelberg-Berlin, 1996.
- [10] J. Rose, **A Course on Group Theory**, Cambridge University Press, London, 1978.
- [11] J. Rotman, **An Introduction to the Theory of Groups**, Bacon: Allyn & Bacon, Inc., London 1973.
- [12] M. Suzoki, Group Theory (i) & (ii), Springer, Verlag, New York, 1982.
- [13] Wang, Yanming, **C- Normality of Groups and its Properties**, Journal of Algebra, Vol. 180, PP 954-965 (1996), Article No. 0103.

Department of Mathematics and Statistics, Al-Hussein Bin Talal University, P.O.Box 20, Ma'an, 71110, Jordan

E-mail address: mhmdtashtoush@ahu.edu.jo (Corresponing author)