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WEAKLY C-NORMAL AND Cs-NORMAL
SUBGROUPS OF FINITE GROUPS -

MOHAMMAD TASHTOUSH

ABSTRACT
A subgroup H of a finite group G is weakly ¢ —normal subgroup of G if there exists

a subnormal subgroup N of G suchthat G =HN ,and H NN <core, (H) where
coreg (H) denotes the core of H in G, which is the largest normal subgroup of G
contained in H . If H NN <core, (H) then H is ¢ — normal subgroup of G , where

core. (H) denotes the higher core of H in G , which is the largest subnormal subgroup of
G contained in H .
In this paper, we investigate some properties of weakly ¢ —normal and ¢ — normal

subgroups of finite groups, and using the weakly ¢ —normality and ¢, — normality of some

Sylow and maximal subgroups to determine the structure of finite groups.

1. INTRODUCTION

It is interesting to use some information on the subgroups of a finite group G to
determine the structure of the group G . The normality of subgroups of a finite group
plays an important role in the study of finite groups. Wang, 1996 initiated the concepts
of ¢ —normal subgroups and used the ¢ —normality of maximal subgroups to give
some conditions for solvability and supersolvability of a finite group. Lujin Zhu and et
al, 2002 have introduced the concepts of weakly ¢ —normal subgroups and they have
used the weakly ¢ —normality of some maximal and Sylow subgroups to determine the

structure of a finite group.

Definition 1.1 [10]: Let H <G . We say that H is a subnormal subgroup of G if
there is a series from H to G .
A subgroup H of a group G is called ¢ —normal subgroup of G if there exists

a normal subgroup N of G such that G =HN and H NN <H where

G

H, =coreg (H) is the largest normal subgroup of G contained in H .
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Definition 1.2 [6]: Let G be a group. We call a subgroup H weakly ¢ — normal
subgroup of G if there exists a subnormal subgroup N of G such that G = HN

and H "N <H_, where H, =core (H) is the largest normal subgroup of G
contained in H .

Example 1.3: Let H be a sylow 2 —subgroup of the symmetric group S,. Then H
is weakly ¢ —normal subgroup of S, .

It is easy to see that, every ¢ — normal subgroup of a group G is weakly

¢ —normal in G , however, the converse is not true, see [6].

2. PRELIMINARIES

In this section, we give some definitions and basic results which are essential in
the sequel. Let 7 be a nonempty set of primes, 7' the complement set of 7 in the

set of all prime numbers. Let G be a group, we denote the set of all prime divisors of

the order the group G by 7Z'(G); the maximal normal p — subgroup of G by

Op (G) and the Fitting subgroup of G by F(G). We introduce the following

concept which is closely related with the subnormal subgroups of a group.

Definition 2.1: Let G be a group. We call a subgroup A c¢g —normal subgroup of
G if there exists a subnormal subgroup N of G such that G =HN and
H NN <H_ , where H_ denotes of the higher core of H in G which is the

maximal subnormal subgroup of G contained in H .

Example 2.2: Let // be a sylow 2 —subgroup of the alternating group 4,. Then H
is ¢y — normal subgroup of 4.

It is easy to see that, every normal (subnormal) subgroup of a group G , is
cg —normal subgroup of G , but the converse is not true. To see this, let G =5,

then the subgroup H :<(12)> of G is ¢y —normal in G , but H is not normal

subgroup of G .
Clearly, every ¢ —normal subgroup of a group G is ¢; —normal subgroup of
G , also, every weakly ¢ — normal subgroup of a group G is also c¢g — normal

subgroup of G .
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Lemma 2.3 [10]: Let G be a group with subgroups 4 and B such that 4 is an

Abelian subgroup and G = AB . Then one of the following two conditions is satisfied:

(i) A contains a normal subgroup C of G such that C #1, or (i) B m(x Ax ) =1,

forall x eG .

The following example shows that the property of ¢ — normality cannot imply

weakly ¢ —normality.

Example 2.4: Let G =S5,x§, be the direct product of S, by itself, and
K :A(A3><A3):{1 , ((123),(123)) , ((132),(132))} be the diagonal subgroup

of H =A4,xA, with K. =1and K. =K .

Then K << G since K <H <G and hence K is ¢y —normal subgroup of

G . But there is no subnormal subgroup, say N of G , such that G = NK and
N MK <K . Suppose not, then there exists a subnormal subgroup N of G with

order having three cases:

Case (i): If | N| <12, then | NK | <36, and therefore there is no subnormal subgroup
N of G suchthat G = NK .

Case (i): If | N | >12, then by Lagrange theorem there are two situations; either, (a)
|N|=18, then |NK|>36, or (b) |N|:36, then we have G =N , and thus

NK =GK =G , but NNK =GNK =K ¢K_. =1. Therefore from the two

situations there is no subnormal subgroup N of G such that G = NK .

Case (iii): Assume that | N | =12, and suppose that G = NK . Since K is an Abelian

subgroup, then either N is a normal subgroup of G , or one cannot find any normal
subgroup K such that G = NK . In this case N is normal in G if it is the maximal

subgroup of G .

Assume that N is normal in G , then (ii) of lemma 2.3 cannot be satisfied here,

and hence we have K m(x’le):K NN #1, forall x €G , hence K N .

Therefore G # NK . If N is not normal of G then K cannot found any subnormal
subgroup such that G = NK . Thus K is not weakly ¢ —normal subgroup of G .
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3. ELEMENTARY PROPERTIES

Lemma 3.1: Let G be a group with subgroup H . Then (i) H, <<H , and (i) If
H <L NL, where L, and L, are two maximal subgroups of G with L, # L, , then

H. <H .

Proof: () We know that H, <H and H,; <<G (by definition), then
H, <<« (H NG ) Thus H, <<H . (ii) If H is subnormal of G , then the result

is obvious, so it is enough to show the case when H is not subnormal of G . By the
definition of the higher core and (i), there is a series of minimal length n >1 that has

the form H, =M, < ... <M <M =H , where M, is not subnormal of G for
all i =1,2, ... ,n . Then there exists a unique maximal subgroup of G , say M , such
that M, <M forall i =1,2, ... ,n which is a contradiction with <L, "L, . This

impels that n =1.Hence H, <H .
Lemma 3.2: Let G be a group with a subgroup H . Then H, <H .

Lemma 3.3 [6]: Let G be a group. Then the following statements hold.

(i) If H is weakly ¢ —normal subgroup of G with H <K <G, then H is weakly

¢ —normal subgroup of K .

(i) Let K be a normal subgroup of G with K <H . Then H is weakly ¢ —normal

of G iff H%{ is weakly ¢ —normal of % )

Lemma 3.4: Let G be a group. Then the following statements hold.

(i) If H is cg — normal subgroup of G with H <K <G, then H is c¢g — normal

subgroup of K .
(i) Let K be a normal subgroup of G with K <H . Then H is ¢; — normal

subgroup of G iff H%{ is ¢, —normal subgroup of % :

Proof: (i) Suppose that H is ¢, — normal in G , then there exists a subnormal

subgroup N of G such that G=HN and H NN <H, . Then
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K=KnG=KnHN =H(K mN), and hence (K mN) is subnormal of K

and Hﬁ(N mK):(H mN)mK <H, NnK <K, .Thus H is ¢g —normal in

K .

(i) Suppose that H& is ¢g — normal subgroup in % , then there exists a

subnormal subgroup N%{ of % such that %:(H%{)(N%{) , and

(H&)m(N%{)S (H%{)(%) Then we have G =HN and H "N <H .

Hence H is ¢, —normalin G .

Conversely, assume that / is ¢, —normal subgroup in G , then there exists a

subnormal subgroup N of G such that G =HN and H "N <H_ . Then we

have that % = (H%{ )(NK%{ ) , and then NK is a subnormal of G , and

A 7 e e e A

Hence H%{ is ¢y —normal subgroup of % .

Definition 3.5 [10]: For any set 7 of prime numbers, we denote by 7’ the set of all

primes which do not belong to 7. If H <G, then H is said to be a Hall

7 —subgroup of G if | H| isa 7 —number and [G :H] isa 7' — number.

Definition 3.6 [2]: A group G is called 7 —solvable if it has a subnormal series

whose factors are 7 — groups or 7' — groups and the 7 — factors are solvable.

Lemma 3.7 [9]: Let G be a 7 —solvable group. Then G has at least one solvable

Hall 7 —subgroup G, and for any 7 —subgroup A of G, there is an element

x €G suchthat 4™ <G _ . In particular, any two Hall 7 —subgroups are conjugate in

G.

For the proof of this lemma, the reader can see [2] and [9].
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Definition 3.8: Let G be a group. We call a group G weakly p —nilpotent if G has
a subnormal p —complement in G . i.e., if H is a subnormal subgroup of G and P

is a sylow p —subgroup of G such that G =HP and H NP =1 then G is called
weakly p — nilpotent.

Clearly, if G is p — nilpotent, then G is weakly p — nilpotent, however, the

converse is not true. The following example shows that the property of weakly

P — nilpotent cannot imply p — nilpotent.

4. THEOREMS

Theorem 4.1: If H is weakly ¢ —normal subgroup of a group G , then % has a
G
subnormal complement in % , L.e., there exists a subnormal subgroup % of
G G

G G i idi K H
/L[G such that /L[G is the semidirect product of AG and ﬁ'lc; . Conversely,

if H is a subgroup of G such that % has a subnormal complement in % ,
G G

then H is weakly ¢ —normal of G .

Proof: Let H be a weakly ¢ —normal subgroup of G , then there exists a subnormal

subgroup K of G such that G=HK and HNK <H_, . If H; =1, then

H NK =1. Hence K is a subnormal complement of H in G . Assume that
H_ #1, then we can construct the factor groups % and KH%I and by
G G

Dedekind's Identity, we have

KH, i H i G
Hence %Ic is a subnormal complement of %]G in %_IG.

Conversely, if ' is a subgroup of G such that % is a subnormal
G

complement of % in % , then we have that
G G
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(4. e (o,

Then G = HF , where F is a subnormal subgroup in G, and H NF <H ;.

Therefore H is weakly ¢ —normal subgroup in G .

Corollary 4.2: Let H be a subgroup of a group G such that % has a subnormal
G

complement in % .Then H is ¢g —normalin G .
G

The following example shows that the converse of the above corollary is not

necessarily true.

Example 4.3: Let G = H « Zp be the semidirect product of a subgroup H and the

cyclic group Z , with; (i) Z ,is a maximal subgroup in G, (i) H is not normal in G

3

with H . # 1, (ii (| H

z,))=1.

Then Zp <G since p dose not divide |H| (by Sylow theorem), and hence

Z, is cg —normal in G , also H is ¢y —normal in G . We claim that % has no
G

subnormal complement in % , Suppose not, ie., % has a subnormal
G G

complement in G/ , sa Iy . Then (7 =(f7 )(’V ) and
p H,. Y /H, H, H, H,
HnNK

A k| _[H] K]
| H K| | H|

we know that |G| Since |G|:|H|‘Zp‘ =

G G
P P LI G IR 0 R PR PP

If |[K|=p . we get a contradiction with 1<H, <K . By using Cauchy

Theorem we have K contains a subgroup of order p , say L , since K <G, then L
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9

will be a sylow p —subgroup of G since (| H Zp‘)zl. Since Z , is the unique

sylow p —subgroup of G , and its normal in G , then L =Z,. Then Z,<K=#G .

This contradicts the maximality of Z, in G .

Theorem 4.4: A group G has a weakly ¢ —normal sylow p — subgroup if and only if

the factor group %p (G) is weakly p — nilpotent.

Proof: Assume that G has a weakly ¢ —normal sylow p — subgroup, say P . Then

by lemma 3.3 we have % has a subnormal complement in % (notice that
G

G
P =Op (G)). Hence %p (G) is weakly p — nilpotent.

Conversely, assume that % (G) is weakly p — nilpotent. Then there exists
P

a subnormal subgroup Iy of C/ such that
0,(G) = /0,(G)

.0 (56,0 6,0 (5,01 6,0)

Then we have G =KP such that K is a subnormal subgroup in G, and

KnP=0, (G) =P, . Therefore P is weakly ¢ —normal subgroup in a group G .

Corollary 4.5: If a factor group % (G) is weakly p — nilpotent, then G has a
V4

¢g —normal sylow p — subgroup.

This corollary is obvious and we omit the proof. The converse of the Corollary

4.5 is not necessarily true; regarded with Example 4.3, we have seen that Zp is

¢y —normal sylow p —subgroup of G such that O, (G)zZp. Hence

G - —
/O,, (G) H has no subnormal p — complement.
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Theorem 4.6: A group G is metanilpotent if and only if every sylow subgroup of G is

weakly ¢ —normalin G .
Proof: Suppose that G is metanilpotent. Let p € 7Z'(G) and P be a sylow
p —subgroup of G . Since %(G) and F(G) are solvable. Then G is solvable.

Moreover G is p'—solvable. By lemma 3.5, we can replace G_ by K ,and A" by
0, (F (G )) to conclude that G has a solvable Hall p'—subgroup K . Since

Op, (F(G )) is normal in G . Op'(F(G))SK and hence Op (G)K :F(G)K )
Since %(G) is nilpotent, then we have KF(G%(G) is a normal Hall

p' —subgroup of %(G) .Hence H =OP (G)K =KF (G) is normal subgroup in

G, and consequently, we deduce that G =PH and
PNnH =PnO,(G)K =0,(G)(PnK)=0,(G)=P,. Therefore P s

weakly ¢ —normalin G .

Conversely, Suppose that every sylow subgroup of G is weakly ¢ —normal in

G . Then, by the third isomorphism theorem and Theorem 4.4 and the fact that

F(G)=0,(G),
G

is p —nilpotent for all p e 7Z'(G ) Therefore %(G) is nilpotent, and hence G is

I

50,(6)

metanilpotent.

Corollary 4.7: A group G is metanilpotent if and only if every sylow subgroup of G is
¢g —normalin G .

This corollary is obvious and we omit the proof.
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