# NONLINEAR APPROXIMATION IN SOME SEQUENCE SPACES

### SALTI SAMARAH

ABSTRACT. We show that approximation of an element in  $\ell^p$  space by finite number of terms is arbitrary slow, but if we use  $\ell^q$  norm, with q>p, as a measure of the error, then the approximation is faster. Also, we use nonlinear approximation to characterize Lorentz spaces by the error of approximation of their elements.

#### 1. Introduction

Nonlinear approximation is utilized in many numerical algorithms, it occurs in several applications. In mathematics and applications it is very important to write a function in some function space in the form

$$f = \sum_{k \in \Lambda} c_k g_k$$

where  $\Lambda$  is an indexed set and  $\{g_k : k \in \Lambda\}$  is a set of functions. The case in which this set is obtained from a single function is very interesting. It is essential in both Gabor and wavelets decompositions. In the context of wavelet theory, let  $\psi$  be a fixed function in  $L_2(\mathbb{R})$ , and  $I = I_{kl} = \{x \in \mathbb{R} : 2^{-k}l \leq x \leq 2^{-k}(l+1), k, l \in \mathbb{Z}\}$ . The function  $\psi$  is called an orthonormal wavelet provided that the system  $\{\psi_I(x)\} = \{2^{k/2}\psi(2^kx - l)\}$  is an orthonormal basis for  $L_2(\mathbb{R})$ . The wavelet decomposition of a general function  $f \in L_2(\mathbb{R})$  is given by

$$f = \sum_{Idyadic} a_I \psi_I, \quad a_I = \langle f, \psi_I \rangle.$$

Wavelets allow us to characterize a large class of function spaces in terms of wavelet coefficients such as Lebesgue spaces  $L^p$  [6], Hardy spaces  $H^p$ ,  $(0 , Besov spaces <math>\mathcal{B}_p^{\alpha,q}$ ,  $\alpha \in \mathbb{R}$ , and  $0 < p, q \leq \infty$ 

 $<sup>2000\</sup> Mathematics\ Subject\ Classification.$  Primary: 40F05, Secondary: 40J05; 46A45.

Key words and phrases. : Sequence space, Lorentz space, Error of approximation, Nonlinear approximation.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

and others. For more details on these characterizations, see [6] and references there.

In the context of Gabor theory where dilation is replaced by modulation, Gabor coefficients are also used to characterize a class of functions called modulation spaces  $M_{p,q}^w$ ,  $0 < p, q < \infty$  and w some suitable weight function. If  $T_x f(t) = f(t-x)$  and  $M_y f(t) = e^{2\pi i t y} f(t)$  denote the translation and modulation operators then any function  $f \in M_{p,q}^w$  can be written as

$$f = \sum_{k \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \langle f, M_{n\beta} T_{k\alpha} g \rangle M_{n\beta} T_{k\alpha} \gamma$$

$$=\sum_{k\in\mathbb{Z}}\sum_{n\in\mathbb{Z}}\langle f,M_{n\beta}T_{k\alpha}\gamma\rangle M_{n\beta}T_{k\alpha}g$$

for all  $M_{p,q}^w$  if  $0 < p,q \le \infty$ , with unconditional convergence in  $M_{p,q}^w$  if  $p,q < \infty$ , and with weak-star convergence in  $M_{\infty,\infty}^{1/w}$  otherwise. Furthermore, there are constants A,B>0 such that for all  $f \in M_{p,q}^w$ 

$$A||f||_{M_{p,q}^w} \le \left(\sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} |\langle f, M_{n\beta} T_{k\alpha} g \rangle|^p w(k\alpha, n\beta)^p\right)^{q/p}\right)^{1/q} \le B||f||_{M_{p,q}^w}$$

Likewise, the quasi-norm equivalence

$$A'||f||_{M_{p,q}^w} \le \left(\sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} |\langle f, M_{n\beta} T_{k\alpha} \gamma \rangle|^p w(k\alpha, n\beta)^p\right)^{q/p}\right)^{1/q} \le B'||f||_{M_{p,q}^w}$$

holds on  $M_{p,q}^w$ . In all these characterizations the coefficients play a central role.

Another important theme of the coefficient sequence appears in nonlinear approximations. If I is any countable index set and  $\Psi = \{\varphi_k, k \in I\}$  is an orthonormal basis for a separable Hilbert space  $\mathcal{H}$  then any  $f \in \mathcal{H}$  has the orthogonal expansion  $f = \sum_{k \in I} \langle f, \varphi_k \rangle \varphi_k$ . If  $\Sigma_n$  is the subset of all finite linear combinations of n elements of  $\Psi$  and

(1) 
$$\sigma_n(f)_{\mathcal{H}} = \inf_{s \in \Sigma_n} ||f - s||_{\mathcal{H}}$$

is the approximation error of  $f \in \mathcal{H}$ . Stechkin results [11] and its generalization by Devore and temlyakove [2] can be stated as:

(2) 
$$\sum_{k \in I} |\langle f, \varphi_k |^p < \infty, \text{ if and only if } \sum_{1}^{\infty} n^{-p/2} \sigma_n(f)_{\mathcal{H}}^p$$

The proof of this result depends mainly on the corresponding sequence space. These facts shed some light on the importance of the sequence spaces. Let  $\ell^p$ ,  $1 \le p < \infty$  be the space of all functions x on  $\{1, 2, \ldots\}$  whose norm

$$||x||_{\ell^p} = \left\{ \sum_{n=1}^{\infty} |x(n)|^p \right\}^{1/p}$$

is finite and let  $L_p$ ,  $1 \le p < \infty$  be the space of all measurable functions f such that

$$||f||_{L_p} = \left\{ \int_{\mathbb{R}} |f(t)|^p dt \right\}^{1/p} < \infty$$

The relation between the function spaces  $L_p$  and the sequence spaces  $\ell^p$  was considered first by Banach, Pelczynski and Hsiano et al. Banach [1] proved that  $L_p$  and  $\ell^p$  can only be isomorphic when p=2 or  $p=\infty$ . It is very easy to show, using Haar basis, that  $L_2$  is indeed isomorphic to  $\ell^2$ , and Pelczynski proved that  $L_\infty$  is isomorphic to  $\ell^\infty$ . For other values of p, Hsiano and others [5] proved that  $L_p$ , (1 is isomorphic to a sequence space <math>y, for which we have the continuous inclusions

(3) 
$$\ell^{p,min(p,2)} \subset y \subset \ell^{p,max(p,2)}.$$

where  $\ell^{p,q}$  denote the Lorentz spaces based on an infinite countable index set. In this paper we consider nonlinear approximation in  $\ell^p$  and in  $\ell^{p,q}$  then we use interpolation of Lorentz spaces to characterize  $L^p$  spaces by their best approximation.

## 2. Nonlinear approximation in $\ell^p$

In this section we give some results in approximating  $\ell^p$  spaces which show that approximating an element in  $\ell^p$  by n terms is arbitrary slow.

Approximation of an element in  $\ell^p$  by finitely many terms is slow in the sense: Let X be a Banach space,  $\{X_n, \{A_n\}_{n\in\mathbb{N}}\}$  be an approximation scheme, and denote by  $E(x, A_n)$  the error of best approximation of  $x \in X$  with elements of  $A_n, n \in \mathbb{N}$ .

Let us assume that there exists a certain constant c > 0 and an infinite set  $N_{\circ} \subseteq N$  such that for all  $n \in N_{\circ}$ , there exists some  $x_n \in X \setminus A_n$  which satisfies

$$E(x, A_n) \le cE(x, A_{K(n)}).$$

Then for all non-increasing sequence  $(\epsilon_n)_{n=0}^{\infty}$  which converges to zero for  $n \to \infty$  there exists some  $x \in X$  such that  $E(x, A_n) \neq O(\epsilon_n)$ .

We'll give simple proof in the case of  $\ell^p$  spaces

**Lemma 2.1.** If  $c^{(N)}$  consists of N real numbers, then there exists  $c = (c_n) \in \ell^p$  such that  $c^{(N)}$  consists of the N largest entries of c and

$$||c - c^{(N)}||_{\ell^p} \to 0$$

as  $N \to \infty$  arbitrarily slow.

*Proof.* It is clear that if  $c^{(N)} = (c_{n_j})_{j=1}^N$ ,  $n_j \in \mathbb{N}$ , then  $\|c - c^{(N)}\|_{\ell^p}^p \to 0$  as  $N \to \infty$ .

To show that the convergence is arbitrarily slow, we may assume  $(\epsilon_N)$  and c are decreasing sequences (by decreasing rearrangement of their entries). Let

$$\sum_{n=N+k+1}^{\infty} |c_n|^p = \epsilon_{N+k}$$

for  $k \in \mathbb{N}$  then  $\epsilon_N - \epsilon_{N+1} = |c_{N+1}|^p$  and

$$\epsilon_0 - \epsilon_{k+1} = \sum_{N=0}^{N=k} \epsilon_N - \epsilon_{N+1} = \sum_{N=0}^{N=k} |c_{N+1}|^p$$

so, if we let  $k\to\infty$  , then we get  $\sum_{N=0}^\infty |c_{N+1}|^p=\epsilon_0$ , therefore  $(c_n)\in\ell^p$  and

$$||c - c^{(N)}||_p = \sum_{n>N} |c_n|^p = \sum_{n=N+1}^{\infty} |c_n|^p = \epsilon_N$$

for all N.

If we measure the error of approximation of an element in  $\ell^p$  by the  $\ell^q$  norm with p < q, then we get better estimation.

**Theorem 2.2.** If  $c \in \ell^p$ , and  $c^{(N)}$  as in lemma 2.1, then,

$$||c - c^{(N)}||_{\ell^q} = \mathcal{O}(N^{\frac{1}{q} - \frac{1}{p}}) (\to 0),$$

for 0 .

*Proof.* We prove this theorem for sequences  $c \in \ell^1$  first and use it to prove the theorem for sequences in  $c \in \ell^p$ .

If  $c \in \ell^1$ , then

$$\sum_{n=1}^{\infty} |c_n| < \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

By rearrangement of  $(c_n)$ , we assume that  $(|c_n|)$  is non increasing, so we have

$$|c_n| \ge 0, |c_n| \searrow 0$$
 and  $\sum_{n=1}^{\infty} |c_n| < \infty$ 

this implies

$$\frac{n}{2}|c_n| \le \sum_{\frac{n}{2}}^n |c_k|$$

Since  $|c_n|$  is decreasing, we have

$$n|c_{2n-1}| \le \sum_{k=n}^{2n-1} |c_k|$$
 and  $(n+1)|c_{2n}| \le \sum_{k=n}^{2n-1} |c_k|$  for all  $n$ .

Now the condition  $c \in \ell^1$  implies that  $(\sum_{k=1}^n |c_k|)_n$  is a Cauchy sequence and  $nc_n \to 0$ . Hence,

$$|c_n| = \mathcal{O}(n^{-1}).$$

Now, if  $c \in \ell^p$  , then, by applying the previous idea, we have

$$\frac{n}{2}|c_n|^p \le \sum_{\frac{n}{2}}^n |c_k|^p \to 0 \text{ as } n \to \infty),$$

which implies

$$|c_n| = \mathcal{O}(n^{\frac{-1}{p}}).$$

Now,  $|c_n| \leq \frac{k^{\frac{1}{q}}}{n^{\frac{1}{p}}}$  for some constant k, which implies  $|c_n|^q \leq kn^{\frac{-q}{p}}$ . To approximate the tail of  $\{c_n\}$ , we set

$$||c - c^{(N)}||_{\ell^q} = \sum_{n>N} |c_n|^q \le k \sum_{n>N} n^{\frac{-q}{p}} \le k \int_N^\infty t^{\frac{-q}{p}} dt = k_1 N^{1-\frac{q}{p}}$$

Therefore,

$$\left(\sum_{n>N} |c_n|^q\right)^{\frac{1}{q}} \le CN^{\frac{1}{q} - \frac{1}{p}}$$

which implies

$$||c - c^{(N)}||_{\ell^q} = \mathcal{O}(N^{\frac{1}{q} - \frac{1}{p}})(N \to \infty).$$

#### 3. Lorentz Spaces

In this section, we recall the definition of Lorentz spaces and give some well-known results which will be used later,

Definition 3.1. [9] Let 0 and <math>w be a weight. The Lorentz space is defined by

$$\Lambda^{p}(w) = \{ f : R^{+} \to R^{+}; ||f||_{\Lambda^{p}(w)} < \infty \},$$

where

(4) 
$$||f||_{\Lambda^p(w)} = \left( \int_0^\infty (f^*(t))^p w(t) dt \right)^{1/p}$$

and  $f^*$  is the decreasing rearrangement of the function f.

In general (4) does not define a norm. In fact, Lorentz [8] proved that (4) is a norm if and only if  $p \ge 1$  and w is a decreasing function. For more information on Lorentz spaces see [8, 9] and references there.

Classical Lorentz spaces are obtained when power weights are considered. If  $w(t) = t^{(p/q)-1}$  then  $\Lambda^p(w) = L^{q,p}$ , which is the Lebsegue space and actually we need the following well known definition

Definition 3.2. Let  $(X, \mu)$  be a totally  $\sigma$ -finite measure space and suppose that  $0 < p, q \le \infty$ . The Lorenz space  $L^{p,q} = L^{p,q}(X, \mu)$  consists of all  $\mu$ -measurable functions f for which the quantity

$$||f||_{L^{p,q}} = \begin{cases} \left( \int_0^\infty [t^{1/p} f^*(t)]^q \frac{dt}{t} \right)^{1/q}, & (0 < q < \infty) \\ \sup_{0 < t < \infty} (t^{1/p} f^*(t)), & (q = \infty), \end{cases}$$

is finite.

The Lorentz space  $L^{p,p}$ ,  $(0 , coincide with the Lebseque space <math>L^p$ . Also it is known that if  $0 , and <math>0 < q \le r \le \infty$ . Then  $L^{p,q} \subseteq L^{p,r}$  and  $\|f\|_{L^{p,r}} \le C\|f\|_{L^{p,q}}$ , for some constant C and all  $\mu$ -measurable functions f. In the case of a measure space of all dyadic cubes equipped with counting measure, we define the descrete Lorentz spaces as follows: For  $0 < p, q < \infty$ , the Lorentz pace  $\ell^{p,q}$  is the set of all sequences  $\{c_k\}$  such that the following norm is finite

$$\|\{c_k\}\|_{\ell^{p,q}} = \begin{cases} \left(\sum_{k=1}^{\infty} \left[k^{\frac{1}{p} - \frac{1}{q}} |c_k^*|\right]^q\right)^{1/q} &, 0 < q < \infty \\ \sup_{k \in \mathbb{N}} k^{1/p} |c_k^*| &, q = \infty \end{cases}$$

where  $\{c_k^*\}$  denotes the decreasing rearrangement of  $\{c_k\}$ . Let  $a=\{a_m,\ m\in\mathbb{N}\}$  be the non-increasing rearrangement of the sequence  $\{k^{\frac{1}{p}-\frac{1}{q}}c_k\ k\in\mathbb{N}\}$  and let  $\sigma_n=(\sum_{m=n}^\infty a_m^2)^{1/2}$ , then the following theorem characterizes Lorentz spaces  $\ell^{p,q}$  by the order of  $\sigma_m$ .

**Theorem 3.3.** If  $0 and <math>\alpha = \frac{1}{p} - \frac{1}{2}$ , then

$$\sum_{n\in\mathbb{N}} (\sigma_n n^{\alpha})^p \frac{1}{n} < \infty$$

if and only if a is in Lorenz space  $\ell^{p,q}$ 

*Proof.* Suppose that  $\sum_{n\in\mathbb{N}} (\sigma_n n^{\alpha})^p \frac{1}{n} < \infty$ . Since  $a_{2m-1}^2 \leq a_k^2$ ,  $k=m,m+1,\ldots,2m-1$ , we have  $ma_{2m-1}^2 \leq \sum_{k=m}^{2m-1} a_k^2$  which implies

$$a_{2m-1} \le m^{-\frac{1}{2}} (\sum_{k=m}^{2m-1} a_k^2)^{\frac{1}{2}} \le m^{-\frac{1}{2}} \sigma_m$$

Also, we have,  $a_{2m} \leq a_{2m-1} \leq m^{-\frac{1}{2}} \sigma_m$ . From these two inequalities, we get

(5) 
$$a_{2m-1}^q \le m^{-q/2} \sigma_m^q \text{ and } a_{2m}^q \le m^{-q/2} \sigma_m^q$$

so,

$$(2m)^{q/p-1}a_{2m}^q \le (2m)^{q/p-1}m^{-q/2}\sigma_m^q = 2^{q/p-1}(m^{q/p-q/2}\sigma_m^q)\frac{1}{m},$$

taking sums, we get

(6) 
$$\sum_{m=1}^{\infty} (2m)^{q/p-1} a_{2m}^q \le 2^{q/p-1} \sum_{m=1}^{\infty} (m^{1/p-1/2} \sigma_m)^q \frac{1}{m}.$$

Also, if  $\frac{q}{p} \geq 1$ , then we have

$$(2m-1)^{q/p-1}a_{2m-1}^q \le (2m)^{q/p-1}a_{2m-1}^q \le (2m)^{q/p-1}(m^{-q/2}\sigma_m^q)$$

taking sums for the last inequality, we get

(7) 
$$\sum_{m=1}^{\infty} (2m-1)^{q/p-1} a_{2m-1}^q \le 2^{q/p-1} \sum_{m=1}^{\infty} (m^{1/p-1/2} \sigma_m)^q \frac{1}{m}.$$

From the two sums (6) and (7), we get

(8) 
$$\sum_{m=1}^{\infty} (m^{1/p-1/q} a_m)^q \le 2^{q/p} \sum_{m=1}^{\infty} (m^{1/p-1/2} \sigma_m)^q \frac{1}{m}$$

Hence,

$$\|\{a_m\}\|_{\ell^{p,q}} \le 2^{1/p} \left(\sum_{m=1}^{\infty} (m^{\alpha} \sigma_m)^q \frac{1}{m}\right)^{1/q}$$

for  $\alpha = 1/p - 1/2$ . For the other direction see [7, 10] and references therein.

This theorem shows that if the error  $\sigma_m$  of approximating the sequence  $a=(a_m)$  is of order  $m^{-\alpha}$ , then  $a=(a_m)\in \ell^{p,q}$ .

On the other hand, if  $0 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$ , we can show that if a sequence  $(a_m) \in \ell^{p,q}$ , then the error of approximating this sequence will be of order  $m^{-\alpha}$ , but before proving this result, we need to use the following lemma about numerical sequences.

**Lemma 3.4.** [2, 4] Let  $a = \{a_k : k \in \mathbb{N}\}$  be a decreasing sequence of positive numbers. Set  $\sigma_{N,q} = (\sum_{k=N}^{\infty} a_k^q)^{1/q}$ . Then, for  $0 , <math>\alpha = \frac{1}{p} - \frac{1}{q}$ , we have

$$2^{-1/p} \left( \sum_{m=1}^{\infty} a_m^p \right)^{1/p} \le \left( \sum_{m=1}^{\infty} [m^{\alpha} \sigma_{m,q}]^p \frac{1}{m} \right)^{1/p} \le c \left( \sum_{m=1}^{\infty} a_m^p \right)^{1/p}$$

with a constant c > 0 depending only on p.

Let  $\mathcal{E} = \{e_k : k \in \mathbb{N}\}$  be the canonical basis for  $\mathbb{C}^{\infty}$ , and  $\Sigma_n$  be the subset of all finite linear combinations of n elements of  $\mathcal{E}$ , more precisely,

$$\Sigma_n = \left\{ \sum_{k \in F} d_k e_k : d_k \in \mathbb{C}, |F| \le n \right\}.$$

If  $\sigma_n$  is defined as in (1), then we have the following theorem:

**Theorem 3.5.** For  $0 and <math>\alpha = \frac{1}{p} - \frac{1}{q}$ , if the sequence  $c = (c_k)_{k \in \mathbb{N}} \in \ell^{p,q}$ , then

$$\sum_{n=1}^{\infty} \left( n^{\alpha} \sigma_n(c) \right)^p \frac{1}{n} < \infty.$$

*Proof.* Given any sequence  $c = (c_k)_{k \in \mathbb{N}} \in \ell^{p,q}$ , the error of approximating  $(c_k)_{k \in \mathbb{N}}$  measured by the  $\ell^{p,q}$ -norm is

$$\sigma_{n}(c)_{\ell^{p,q}} = \inf_{s \in \Sigma_{n}} \|c - s\|_{\ell^{p,q}} 
= \inf_{\substack{d_{k} \\ F:|F| \leq n}} \left\| \sum_{k \in \mathbb{N}} c_{k} e_{k} - \sum_{k \in F} d_{k} e_{k} \right\|_{\ell^{p,q}} 
= \inf_{\substack{d_{k} \\ F:|F| \leq n}} \left\| \sum_{k \in F} (c_{k} - d_{k}) e_{k} + \sum_{k \notin F} c_{k} e_{k} \right\|_{\ell^{p,q}} 
\leq \left\| \sum_{k \notin F} c_{k} e_{k} \right\|_{\ell^{p,q}} 
\equiv \left\| \sum_{i=n+1}^{\infty} c_{k_{i}} e_{k_{i}} \right\|_{\ell^{p,q}} 
= \left\| (c_{k_{n+1}}, c_{k_{n+2}}, c_{k_{n+3}}, \dots) \right\|_{\ell^{p,q}} 
= \left( \sum_{i=n+1}^{\infty} \left( k_{i}^{\frac{1}{p} - \frac{1}{q}} |c_{k_{i}}^{*}| \right)^{q} \right)^{1/q}$$

where  $\{c_{k_i}^*\}$  denotes the non-increasing rearrangement of  $\{c_{k_i}\}$ . Again, let  $a = \{a_i\}$  be the non-increasing rearrangement of  $\{k_i^{\alpha}|c_{k_i}^*|\}_{i=n+1}^{\infty}$ ,

 $\alpha = \frac{1}{p} - \frac{1}{q}$ . Moreover, set  $\sigma_{n,q} = \left(\sum_{i=n}^{\infty} a_i^q\right)^{1/q}$ , then we have

$$\sigma_n(c)_{\ell^{p,q}} \le \left(\sum_{i=n}^{\infty} a_i^q\right)^{1/q} = \sigma_{n,q}$$

and

$$\left(n^{\alpha}\sigma_{n}(c)_{\ell^{p,q}}\right)^{p}\frac{1}{n} \leq \left(n^{\alpha}\sigma_{n,q}\right)^{p}\frac{1}{n}, \text{ for all } n \in \mathbb{N}$$

so,

$$\sum_{n=1}^{\infty} \left( n^{\alpha} \sigma_n(c)_{\ell^{p,q}} \right)^p \frac{1}{n} \leq \sum_{n=1}^{\infty} \left( n^{\alpha} \sigma_{n,q} \right)^p \frac{1}{n}$$

$$\leq C. \|a\|_{\ell^p}^p.$$

using the previous lemma. Therefore, if  $c \in \ell^{p,q}$ , then we have

$$\sum_{n=1}^{\infty} \left( n^{\alpha} \sigma_n(c)_{\ell^{p,q}} \right)^p \frac{1}{n} < \infty$$

.  $\Box$ 

The following theorem indicates the relation between a sequence space that is isomorphic to  $L^p$  and the Lorentz spaces  $\ell^{p,q}$ .

**Theorem 3.6.** [5] Let  $1 . Suppose <math>y_p$  is a rearrangement invariant space based on a countably infinite measure space, normalized so that the mass of each point is one. If  $L^p$  is isomorphic to  $y_p$ , then

$$\ell^{p,min(p,2)} \subset y_p \subset \ell^{p,max(p,2)}$$
.

By interpolation we characterize the space  $L^p$ , using the isomorphic space  $y_p$  and theorem 3.3. This will appear in other articles.

## References

- [1] S. Banach, Theorie des Operations Llineaires, Warsaw, 1932.
- [2] R. A. DeVore, and V. N. Temlyakov, Some Remarks on Greedy Algorithms, Advances in Comp. Math., Vol. 5 (1996) 173-187.
- [3] H. G. Feichtinger, On a New Segal Algebra, Monatsh. Math. 92 (1981), 269-289.
- [4] K. Gröchenig and S. Samarah, Nonlinear Approximation with Local Fourier Basis, Constructive Approximation, Vol. 16(3), (2000) 317-341.
- [5] C.-c Hsiano, B. Jawerth, B. J. Lucier, and X. M. Yu, Near Optimal Compression of Orthonormal Wavelet Expansions. In J. J. Benedetto and M. W. Frazier, editors, Wavelets: Mathematics and Aplications, pages 425 446. CRC Press, Boca Raton, FL, 1994.
- [6] E. Hernández and Guido Weiss, A First Course On Wavelets, CRC Press, New York, 1996

- [7] Jones, L. K., A Simple Lemma on Greedy Approximation in Hilbert Spaces and Convergence Rate for Projection Pursuit Regression and Neural Network Training. Ann. Statist. **20**(1) (1992), 608-613.
- [8] G. G. Lorentz, On The Theory of Spaces  $\Lambda$ , Pacific J. Math. 1 (1951) 411 429.
- [9] Joaquim Martin and Javier Soria, New Lorentz Spaces for The Restricted Weak-Type Hardy's Inequalities, J. Math. Anal. Appl. 281, (2003) 138 152.
- [10] Rémi Gribonval and Morten Nielson, Nonlinear Approximation with Dictionaries I. Direct Estimates, J. Fourier anal. Appl., 10 (1) (2004),51-71.
- [11] S. B. Stechkin, On Absolute Convergence of Orthogonal Series, Doc. Akad. Nauk SSSR 102 (1955), 37-40.

DEPARTMENT OF MATHEMATICS AND STATISTICS, JORDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, P.O. BOX 3030, IRBID, JORDAN

E-mail address: samarah@just.edu.jo