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NONLINEAR APPROXIMATION IN SOME SEQUENCE
SPACES

SALTI SAMARAH

Abstract. We show that approximation of an element in `p space
by finite number of terms is arbitrary slow, but if we use `q norm,
with q > p, as a measure of the error, then the approximation
is faster. Also, we use nonlinear approximation to characterize
Lorentz spaces by the error of approximation of their elements.

1. Introduction

Nonlinear approximation is utilized in many numerical algorithms,
it occurs in several applications. In mathematics and applications it is
very important to write a function in some function space in the form

f =
∑
k∈Λ

ckgk

where Λ is an indexed set and {gk : k ∈ Λ} is a set of functions.
The case in which this set is obtained from a single function is very
interesting. It is essential in both Gabor and wavelets decompositions.
In the context of wavelet theory, let ψ be a fixed function in L2(R),
and I = Ikl = {x ∈ R : 2−kl ≤ x ≤ 2−k(l + 1), k, l ∈ Z}. The
function ψ is called an orthonormal wavelet provided that the system
{ψI(x)} = {2k/2ψ(2kx − l)} is an orthonormal basis for L2(R). The
wavelet decomposition of a general function f ∈ L2(R) is given by

f =
∑

Idyadic

aIψI , aI = 〈f, ψI〉.

Wavelets allow us to characterize a large class of function spaces in
terms of wavelet coefficients such as Lebesgue spaces Lp [6], Hardy
spaces Hp, (0 < p < 1), Besov spaces Bα,q

p , α ∈ R, and 0 < p, q ≤ ∞
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and others. For more details on these characterizations, see [6] and
references there.

In the context of Gabor theory where dilation is replaced by modu-
lation, Gabor coefficients are also used to characterize a class of func-
tions called modulation spaces Mw

p,q, 0 < p, q <∞ and w some suitable

weight function. If Txf(t) = f(t − x) and Myf(t) = e2πityf(t) denote
the translation and modulation operators then any function f ∈ Mw

p,q

can be written as

f =
∑
k∈Z

∑
n∈Z

〈f,MnβTkαg〉MnβTkαγ

=
∑
k∈Z

∑
n∈Z

〈f,MnβTkαγ〉MnβTkαg

for all Mw
p,q if 0 < p, q ≤ ∞, with unconditional convergence in Mw

p,q

if p, q < ∞, and with weak-star convergence in M
1/w
∞,∞ otherwise. Fur-

thermore, there are constants A,B > 0 such that for all f ∈Mw
p,q

A||f ||Mw
p,q
≤
(∑

n∈Z

(∑
k∈Z

|〈f,MnβTkαg〉|pw(kα, nβ)p
)q/p)1/q

≤ B||f ||Mw
p,q

Likewise, the quasi-norm equivalence

A′||f ||Mw
p,q
≤
(∑

n∈Z

(∑
k∈Z

|〈f,MnβTkαγ〉|pw(kα, nβ)p
)q/p)1/q

≤ B′||f ||Mw
p,q

holds on Mw
p,q. In all these characterizations the coefficients play a

central role.
Another important theme of the coefficient sequence appears in non-

linear approximations. If I is any countable index set and Ψ = {ϕk, k ∈
I} is an orthonormal basis for a separable Hilbert space H then any
f ∈ H has the orthogonal expansion f =

∑
k∈I〈f, ϕk〉ϕk. If Σn is the

subset of all finite linear combinations of n elements of Ψ and

(1) σn(f)H = inf
s∈Σn

‖f − s‖H

is the approximation error of f ∈ H. Stechkin results [11] and its
generalization by Devore and temlyakove [2] can be stated as:

(2)
∑
k∈I

|〈f, ϕk|p <∞, if and only if
∞∑
1

n−p/2σn(f)p
H

The proof of this result depends mainly on the corresponding sequence
space. These facts shed some light on the importance of the sequence
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spaces. Let `p, 1 ≤ p <∞ be the space of all functions x on {1, 2, . . .}
whose norm

‖x‖`p =

{
∞∑

n=1

|x(n)|p
}1/p

is finite and let Lp, 1 ≤ p <∞ be the space of all measurable functions
f such that

‖f‖Lp =

{∫
R
|f(t)|pdt

}1/p

<∞

The relation between the function spaces Lp and the sequence spaces
`p was considered first by Banach, Pelczynski and Hsiano et al. Banach
[1] proved that Lp and `p can only be isomorphic when p = 2 or p = ∞.
It is very easy to show, using Haar basis, that L2 is indeed isomorphic
to `2, and Pelczynski proved that L∞ is isomorphic to `∞. For other
values of p, Hsiano and others [5] proved that Lp, (1 < p < ∞) is
isomorphic to a sequence space y, for which we have the continuous
inclusions

(3) `p,min(p,2) ⊂ y ⊂ `p,max(p,2).

where `p,q denote the Lorentz spaces based on an infinite countable
index set. In this paper we consider nonlinear approximation in `p and
in `p,q then we use interpolation of Lorentz spaces to characterize Lp

spaces by their best approximation.

2. Nonlinear approximation in `p

In this section we give some results in approximating `p spaces which
show that approximating an element in `p by n terms is arbitrary slow.

Approximation of an element in `p by finitely many terms is slow in
the sense: Let X be a Banach space, {Xn, {An}n∈N} be an approxima-
tion scheme, and denote by E(x,An) the error of best approximation
of x ∈ X with elements of An, n ∈ N.

Let us assume that there exists a certain constant c > 0 and an
infinite set N◦ ⊆ N such that for all n ∈ N◦, there exists some xn ∈
X \ An which satisfies

E(x,An) ≤ cE(x,AK(n)).

Then for all non-increasing sequence (εn)∞n=0 which converges to zero
for n→∞ there exists some x ∈ X such that E(x,An) 6= O(εn).

We’ll give simple proof in the case of `p spaces
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Lemma 2.1. If c(N) consists of N real numbers, then there exists c =
(cn) ∈ `p such that c(N) consists of the N largest entries of c and

‖c− c(N)‖`p → 0

as N →∞ arbitrarily slow.

Proof. It is clear that if c(N) = (cnj
)N
j=1, nj ∈ N, then

‖c− c(N)‖p
`p → 0 as N →∞.

To show that the convergence is arbitrarily slow, we may assume
(εN) and c are decreasing sequences (by decreasing rearrangement of
their entries). Let

∞∑
n=N+k+1

|cn|p = εN+k

for k ∈ N then εN − εN+1 = |cN+1|p and

ε0 − εk+1 =
N=k∑
N=0

εN − εN+1 =
N=k∑
N=0

|cN+1|p

so, if we let k →∞ , then we get
∑∞

N=0 |cN+1|p = ε0, therefore (cn) ∈ `p
and

‖c− c(N)‖p =
∑
n>N

|cn|p =
∞∑

n=N+1

|cn|p = εN

for all N. �

If we measure the error of approximation of an element in `p by the
`q norm with p < q, then we get better estimation.

Theorem 2.2. If c ∈ `p, and c(N) as in lemma 2.1, then,

‖c− c(N)‖`q = O(N
1
q
− 1

p )(→ 0),

for 0 < p ≤ q.

Proof. We prove this theorem for sequences c ∈ `1 first and use it to
prove the theorem for sequences in c ∈ `p.

If c ∈ `1 , then
∞∑

n=1

|cn| <
∞∑

n=1

1

n
= ∞

By rearrangement of (cn), we assume that (|cn|) is non increasing, so
we have

|cn| ≥ 0, |cn| ↘ 0 and
∞∑

n=1

|cn| <∞
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this implies

n

2
|cn| ≤

n∑
n
2

|ck|

Since |cn| is decreasing, we have

n|c2n−1| ≤
2n−1∑
k=n

|ck| and (n+ 1)|c2n| ≤
2n−1∑
k=n

|ck| for all n.

Now the condition c ∈ `1 implies that (
∑n

k=1 |ck|)n is a Cauchy sequence
and ncn → 0. Hence,

|cn| = O(n−1).

Now, if c ∈ `p , then, by applying the previous idea, we have

n

2
|cn|p ≤

n∑
n
2

|ck|p → 0 as n→∞),

which implies

|cn| = O(n
−1
p ).

Now, |cn| ≤ k
1
q

n
1
p

for some constant k, which implies |cn|q ≤ kn
−q
p . To

approximate the tail of {cn}, we set

||c− c(N)||`q =
∑
n>N

|cn|q ≤ k
∑
n>N

n
−q
p ≤ k

∫ ∞

N

t
−q
p dt = k1N

1− q
p

Therefore, (∑
n>N

|cn|q
) 1

q

≤ CN
1
q
− 1

p

which implies

‖c− c(N)‖`q = O(N
1
q
− 1

p )(N →∞).

�

3. Lorentz Spaces

In this section, we recall the definition of Lorentz spaces and give
some well-known results which will be used later,

Definition 3.1. [9] Let 0 < p <∞ and w be a weight. The Lorentz space
is defined by

Λp(w) = {f : R+ → R+; ‖f‖Λp(w) <∞},
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where

(4) ‖f‖Λp(w) =

(∫ ∞

0

(f ∗(t))pw(t)dt

)1/p

and f ∗ is the decreasing rearrangement of the function f .

In general (4) does not define a norm. In fact, Lorentz [8] proved
that (4) is a norm if and only if p ≥ 1 and w is a decreasing function.
For more information on Lorentz spaces see [8, 9] and references there.

Classical Lorentz spaces are obtained when power weights are con-
sidered. If w(t) = t(p/q)−1 then Λp(w) = Lq,p, which is the Lebsegue
space and actually we need the following well known definition

Definition 3.2. Let (X,µ) be a totally σ−finite measure space and sup-
pose that 0 < p, q ≤ ∞. The Lorenz space Lp,q = Lp,q(X,µ) consists of
all µ−measurable functions f for which the quantity

‖f‖Lp,q =

{(∫∞
0

[t1/pf ∗(t)]q dt
t

)1/q
, (0 < q <∞)

sup0<t<∞(t1/pf ∗(t)), (q = ∞),

is finite.

The Lorentz space Lp,p, (0 < p ≤ ∞), coincide with the Lebseque
space Lp. Also it is known that if 0 < p ≤ ∞, and 0 < q ≤ r ≤ ∞.
Then Lp,q ⊆ Lp,r and ‖f‖Lp,r ≤ C‖f‖Lp,q , for some constant C and all
µ−measurable functions f . In the case of a measure space of all dyadic
cubes equipped with counting measure, we define the descrete Lorentz
spaces as follows: For 0 < p, q <∞, the Lorentz pace `p,q is the set of
all sequences {ck} such that the following norm is finite

‖{ck}‖`p,q =

{ (∑∞
k=1[k

1
p
− 1

q |c∗k|]q
)1/q

, 0 < q <∞
supk∈N k

1/p|c∗k| , q = ∞

where {c∗k} denotes the decreasing rearrangement of {ck}. Let a =
{am, m ∈ N} be the non-increasing rearrangement of the sequence

{k
1
p
− 1

q ck k ∈ N} and let σn = (
∑∞

m=n a
2
m)1/2, then the following theorem

characterizes Lorentz spaces `p,q by the order of σm.

Theorem 3.3. If 0 < p ≤ q <∞ and α = 1
p
− 1

2
, then∑

n∈N

(σnn
α)p 1

n
<∞

if and only if a is in Lorenz space `p,q



NONLINEAR APPROXIMATION IN SOME SEQUENCE SPACES 139

Proof. Suppose that
∑

n∈N(σnn
α)p 1

n
<∞.

Since a2
2m−1 ≤ a2

k, k = m,m+ 1, . . . , 2m− 1, we have

ma2
2m−1 ≤

∑2m−1
k=m a2

k which implies

a2m−1 ≤ m− 1
2 (

2m−1∑
k=m

a2
k)

1
2 ≤ m− 1

2σm

Also, we have, a2m ≤ a2m−1 ≤ m− 1
2σm. From these two inequalities,

we get

(5) aq
2m−1 ≤ m−q/2σq

m and aq
2m ≤ m−q/2σq

m

so,

(2m)q/p−1aq
2m ≤ (2m)q/p−1m−q/2σq

m = 2q/p−1(mq/p−q/2σq
m)

1

m
,

taking sums, we get

(6)
∞∑

m=1

(2m)q/p−1aq
2m ≤ 2q/p−1

∞∑
m=1

(m1/p−1/2σm)q 1

m
.

Also, if q
p
≥ 1, then we have

(2m− 1)q/p−1aq
2m−1 ≤ (2m)q/p−1aq

2m−1 ≤ (2m)q/p−1(m−q/2σq
m)

taking sums for the last inequality, we get

(7)
∞∑

m=1

(2m− 1)q/p−1aq
2m−1 ≤ 2q/p−1

∞∑
m=1

(m1/p−1/2σm)q 1

m
.

From the two sums (6) and (7), we get

(8)
∞∑

m=1

(m1/p−1/qam)q ≤ 2q/p

∞∑
m=1

(m1/p−1/2σm)q 1

m

Hence,

‖{am}‖`p,q ≤ 21/p

(
∞∑

m=1

(mασm)q 1

m

)1/q

for α = 1/p − 1/2. For the other direction see [7, 10] and references
therein. �

This theorem shows that if the error σm of approximating the se-
quence a = (am) is of order m−α, then a = (am) ∈ `p,q.

On the other hand, if 0 < p ≤ q < ∞ and α = 1
p
− 1

q
, we can show

that if a sequence (am) ∈ `p,q, then the error of approximating this
sequence will be of order m−α, but before proving this result, we need
to use the following lemma about numerical sequences.
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Lemma 3.4. [2, 4] Let a = {ak : k ∈ N} be a decreasing sequence of

positive numbers. Set σN,q = (
∑∞

k=N a
q
k)

1/q
. Then, for 0 < p ≤ q <∞,

α = 1
p
− 1

q
, we have

2−1/p

(
∞∑

m=1

ap
m

)1/p

≤

(
∞∑

m=1

[mασm,q]
p 1

m

)1/p

≤ c

(
∞∑

m=1

ap
m

)1/p

with a constant c > 0 depending only on p.

Let E = {ek : k ∈ N} be the canonical basis for C∞, and Σn be
the subset of all finite linear combinations of n elements of E , more
precisely,

Σn =

{∑
k∈F

dkek : dk ∈ C, |F | ≤ n

}
.

If σn is defined as in (1), then we have the following theorem:

Theorem 3.5. For 0 < p ≤ q < ∞ and α = 1
p
− 1

q
, if the sequence

c = (ck)k∈N ∈ `p,q, then
∞∑

n=1

(
nασn(c)

)p 1

n
<∞.

Proof. Given any sequence c = (ck)k∈N ∈ `p,q, the error of approximat-
ing (ck)k∈N measured by the `p,q-norm is

σn(c)`p,q = inf
s∈Σn

‖c− s‖`p,q

= inf
dk

F :|F |≤n

∥∥∥∑
k∈N

ckek −
∑
k∈F

dkek

∥∥∥
`p,q

= inf
dk

F :|F |≤n

∥∥∥∑
k∈F

(ck − dk)ek +
∑
k/∈F

ckek

∥∥∥
`p,q

≤
∥∥∥∑

k/∈F

ckek

∥∥∥
`p,q

≡
∥∥∥ ∞∑

i=n+1

cki
eki

∥∥∥
`p,q

= ‖(ckn+1 , ckn+2 , ckn+3 , ....)‖`p,q

=

(
∞∑

i=n+1

(
k

1
p
− 1

q

i |c∗ki
|
)q
)1/q

where {c∗ki
} denotes the non-increasing rearrangement of {cki

}. Again,
let a = {ai} be the non-increasing rearrangement of {kα

i |c∗ki
|}∞i=n+1,
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α = 1
p
− 1

q
. Moreover, set σn,q =

(∑∞
i=n a

q
i

)1/q

, then we have

σn(c)`p,q ≤
( ∞∑

i=n

aq
i

)1/q

= σn,q

and (
nασn(c)`p,q

)p 1

n
≤
(
nασn,q

)p 1

n
, for all n ∈ N

so,
∞∑

n=1

(
nασn(c)`p,q

)p 1

n
≤

∞∑
n=1

(
nασn,q

)p 1

n

≤ C. ‖a‖p
`p .

using the previous lemma. Therefore, if c ∈ `p,q, then we have
∞∑

n=1

(
nασn(c)`p,q

)p 1

n
<∞

. �

The following theorem indicates the relation between a sequence
space that is isomorphic to Lp and the Lorentz spaces `p,q.

Theorem 3.6. [5] Let 1 < p < ∞. Suppose yp is a rearrangement
invariant space based on a countably infinite measure space, normalized
so that the mass of each point is one. If Lp is isomorphic to yp, then

`p,min(p,2) ⊂ yp ⊂ `p,max(p,2).

By interpolation we characterize the space Lp, using the isomorphic
space yp and theorem 3.3. This will appear in other articles.
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