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SOME INEQUALITIES OF HILBERT’S TYPE AND
APPLICATIONS

LAITH EMIL AZAR

ABSTRACT. By introducing some parameters we establish an extension of
Hardy-Hilbert’s integral inequality and the corresponding inequality for series.
As an application the reverses, some particular results and their equivalent
forms are given.

1. INTRODUCTION

If f(z),g(x) >0, 0<ff2 )dz < o0, and0<fg Jdz < oo, then (see[5])

(1.1) O]ojf x)fy dody < 7 /f 5 ZQQ(x)dx 5

where the constant factor 7 is the best possible in (1.1). Inequality (1.1) is
called Hilbert’s integral inequality Wthh has been extended by Hardy (see6]) as:
1fp>1,p q—l,f( x),g(z) >0, 0<ffp )dx < oo, and0<fgq Jdx < oo,
then

(1.2) ZZM drdy < o /fp 7 /gq(x)dx ,

0

hS]
8
Q|

™

P

where the constant factors ﬁ is the best possible in (1.2). Hardy-Hilbert’s

inequality is important in analysis and it’s applications (see[7]). Recently Yang
[2] gave some generalizations and the reverse form of (1.2) as: if p > 1, %%—% =1,
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7’>1,%+§=1,)\>0,f(x),g(x)>0 O<f13p ») fp( )dr < oo, and

0< fxq(l_%)_lgq(x)dx < 00, then
0

1
o q

// :L’>‘+y dxdy < M%(E) /xp(l_i)_lfp(x)dx ?]qu (1-2)- (x)dz b
' 00

0
where the constant factor #(E) is the best possible.

=)
n=0

[o.°] o

where the sequences {a, } and {b,} are such that 0 < > a? < 00,0 < > al < o0,
n=0 n=0

is the best possible. By introducing a parameter

The corresponding inequality for series of (1.2) is:

RS

(1.4) sz+n sin (g) {gaﬁ}

T

and the constant factor -

n(5)
0 < A < 2 an extension of (1.4) (p = ¢ = 2) was given by Yang [2,3] as:

o0 3 ( oo 3
3t TS b {5
n=1 m=1 n=0 n=0

Very recently, in [8] the following extensions were given

rr Fx)g(x)
[ | e B
0 0

1
oo P oo q

(1.5) < C\(A,B) /a:po_;)_lfp(m)da: /xq(l_;)_lgq(a:)dx

b
;; Amin {m* n*} + Bmax {m?*,n*}

q

(1.6) < C\(A,B) {Zn ~3)- ag}p {inq@%)lbg} ,
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where the constant factor Cy(A, B) (see[8, Lemma 2.1]) is the best possible in
both inequalities. Inequalities (1.5) and (1.6) are called Hilbert’s type inequalities.
For more information related to this subject see for example [4].

In this paper by introducing some parameters we give some new inequalities
of Hilbert’s type for both integral and discrete forms and we obtain the reverse
form for each of them. Some particular results and the equivalent form is also
considered.

2. MAIN RESULTS

Lemma 2.1. Suppose that A > 0, A > 0, B > 0,C > 0. Define the weight
coefficients wy(A, B,C,z) by

[e.9]

(2.1) wr(A,B,C,x) = /

0

A 142
T2y 2 d
Amin {a*, y*} + Ba* + Cy? v

then we have wy(A, B,C,x) = K)\(A, B,C) is a constant defined by

(2.2)

L PR E— A+C 2 A+B
3 [\/B(Tmarctan = + JoaTE) arctan /=% } ,for A,B,C >0

/\\/LB?, for A=0, and B,C > 0.

K)\(A7 B7 C) =

Proof. For a fixed z, setting t = (%))‘, we have

7 x%y_l""%
A B,C = d
w4, B, C,z) /Amin{x’\,y’\}—l—BI’\"'Cy’\ v
0
- 3
2.3 = — dt =1
(2:3) )\/Amin{l,t}+B+Ct

0

(i) for A, B,C > 0, we obtain
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1 1 o 1
1 t72 t 2
I = — _dt —dt
A(/B+M+Cﬂ +/A+B+a
0 1
( \/—
- 1 / n 2 dt
A \H3A+C / ﬁ+1 «KXA+B§() t2+1
\
= l arctan A+C arctan A+—B
A «/ A+ V \/ A+

(ii) for A =0, and B,C > 0, we find

100
I = =
v/ 55
o

K\J\»—'

A«BC'

Hence, wy(A, B,C,z) = K)\(A, B,C). The Lemma is proved.
]mmma22ﬂwp>uw0<p<Dé+%:LA>QAZQB>QC>Oam

0<e< p—’\, setting

[}

1-£ A1
:E2 py2
24 = dzd
(2:4) I () //Amin{x/\,y’\}+Bx’\—l—Cy>‘ e
11

then for e — 0%, we get

(2.5) éug@LB¢n+oun—oa)<J@)<éug@LB¢n+oun

A
Proof. Setting t = (%) , we find
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J o2y dzd
(€)= //Amln{x/\,y/\}+Ba7’\+C'y vy
1

1 1 t 2 ;p
N dtd
A/y /Amin{t,l}—l—Bt—i—C Y
1 y*>\

_1_ e

- i/ L v dtd
~ x) Amim{t. 13+ Bt 0"
0

—A
1 €

ra Y 275 i

t
/y /Amln{t + Bt+C 4
1 0

>/IH

A

= 1[K (A, B,C) + (1)]—1/ ‘1‘5/ i dtd

IR ¢ XY At+Bt+ oY
1 0

oo Yy 1 £
1 1 t 2 X
> LB o) - [yt [Ty
1 0

_ % [KA\(A, B,C) + o(1)] — O(1).

On the other hand

1-£ 21
o I‘Q pr
) = //Amm{:z:",y"}—l—B:z:’\—l—Cy drdy

23 de| yi~'"id
< LR
/ /Amin{x/\,y/\}+Bx/\+Cy)‘ oY 4
1 Lo

= é [K\(A,B,C) +o(1)].

Hence (2.5) is valid. The Lemma is proved.
Theorem 2.1. If p > 1,%—1— % =1L,A>0,A>0,B>0C>0,f(x),g9(x) >0

such that 0 < fxp<17%)71fp(x)dx < 00,0 < f:tq(k%)*lgq(x)dx < 00, then
0 0
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_ [T z)g(z)
—// mln{x’\,yk}—ka)‘—FC'y xdrdy
0
(26) < Kx(4,B,C) / (1)1 2(2)da / 23 g1 (aydn b
0 0

where the constant factor Ky(A, B,C) defined in (2.2) is the best possible. In
particular:

(i) for A =0, A= B =C =1 we get Ki(0,1,1) = 7w, and inequality (2.6)
reduces to Hardy-Hilbert’s inequality

S
Qe

Zj%ggf)dxdy < /xglfp(x)d:c Za:glgq ,

(i) for A= A= B =C =1, we get K(1,1,1) = 2y/2arctan /2 and (2.6)
reduces to the Hardy-Hilbert’s type inequality

B =

o0

// dzdy < 2v/2arctan v/2 /a:glfp(a:)dx /mglgq(m)dm
min {x y} —i— r+y
00 0

0

Proof. By the Holder inequality, taking into account (2.1), we get

Qe
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o

1

7 1 % x(l_%)/q
// {A min {2}, y*} + Bx* + C'y/\} 2 f(z)

0
{A min {z*, y*} + Ba +

i [y(1=3)77
ol [

1
1 P

: 7 7 P
- Amin {z*, y*} + Bax* + Cy? SIS
00

Q=

7 7 e UL
X
Amin {2, y*} + Ba? + Cy/\g Ly
00

0

o0

/wA(A, B,C, x)a:p(k%)*lfp(x)dx

1
p e.¢]

< (K3(A, B,C) / 2 (72)71 f(2)da / y =2 ga(yydy b

0

If (2.7 ) takes the form of equality,
are not all zero such that

21

x(l_%)(p‘l)yf )
Amin {z*, y*} + Ba? + C’y>‘f (=)

Ma#(172) fr(2)

Hence, there exists a constant ¢ such that

then there exists constants M and N which

(1-2) @1 31
Y 9*(y)
Amin {z*, y*} + Ba* + Cy?
Nyq(l_%>gq(y), a.e. in (0,00) x (0, 00).

Mxp(k%)fp(x) = Nyq(k%)gq(y) =ca. ein (0,00).

We claim that M = 0. In fact if M #

[Ep(l_%)_lfp(l’) =

0, then

ML$ a.e. in (0,00),

which contradicts the fact that 0 < [ xp(k%)*lfp(x)dx < oo. Hence by (2.7) we
0

get (2.6).
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If the constant factor K (A, B, () is not the best possible, then there exists a

positive constant L ( with L < K,(A, B, C)), thus (2.6) is still valid if we replace
K\(A,B,C) by L. For 0 < ¢ < ”7’\, setting f and g as f(z) = g(x) = 0 for

€ (0,1), f(z) = x%_l_ﬁ;ﬁ(m) =220 fora € [1,00), then we have

3=
Q=

L /xp(l_é)_lfp(x)dx /xq(l_é)_lﬁq(x)dx
0 0
0 ) [e%} q L
= L /xlgdx /xlgdx ==
0 0
By using (2.5), we find
707 g(x)dzdy / rdx 2
Amin {x’\,gﬁ‘} + Bx* + Cy? Amin {z* y*} + Bz* + Cy? Y
00 1
1
> B [K\(A, B,C)+o(1)] — O(1).
Therefore, we get
1 L
g [K/\<A7 Ba C) + O<1)] - O(l) < g

or

[K\(A,B,C) +0(1)] —0(1) < L,

For ¢ — 07, it follows that K,(A, B,C) < L which contradicts the fact that
L < K,)(A, B,C). Hence the constant factor K)(A, B,C) in (2.6) is the best
possible. The Theorem is proved.

Theorem 2.2. If 0 <p < 1, %—i—% =1L,A>0,A>0,B>0,C>0,f(x),g9(z) >

0 such that 0 < f:ch(k%)*lfp(x)dx < 00,0 < fxq(k%)*lgq(x)dx < 00, then
0 0
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[ f(@)g(z)
// Amin {z*, y*} + Ba* + Cy? dady
0 0

3=

(2.8) > K\(A, B,C) /xp(l_é)_lfp(x)dx /xq(l_é)_lgq(x)dx ,

where the constant factor K\(A, B,C) defined in (2.2) is the best possible. In
particular:

(i) for A =0,A =B =C =1 we get K1(0,1,1) = 7, and inequality (2.8)
reduces to Hardy-Hilbert’s inequality

q

Frtwew, T AT T
// iy > { [ a5 / gi(@)dey

Tr+y
0

(i) for A= A= B =C =1, we get K(1,1,1) = 2y/2arctan /2 and (2.8)
reduces to the Hardy-Hilbert’s type inequality

hSA

[elelee) f(f]:)g(l’) 7 g—l D 7 %_1 q
// min {z,y} + Bz + Cydxdy > 2v/2 arctan v/2 x2 " fP(z)dx r2 gl (x)dx
0 0 , )

Proof. By the reverse Holder’s inequality, and the same way, we have (2.8).
If the constant factor K)(A, B,C) in (2.8) is not the best possible, then there
exists a positive constant H (with H > K, (A, B, () such that (2.8) is still valid
if we replace K(A,B,C) by H. For 0 < ¢ < ”7)‘, setting f and ¢ as in Theorem
2.1, then we have

Q=

o0

S =

[e.o]

H / 2P(172) "1 () da / 21073) 7150 (2) doe

0 0

1
o q

P oo H
= H /x_l_ad:ﬁ /x_l_ada: = —
€
0

0

By using (2.5), we find

Q=
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[c ol e o)

// g(x)dxdy B / / x2 rdr 3-1-f 4
Amin {:ﬁ‘ )‘} + Bz + Cy Amin {z* y*} + Bz* 4+ Cy? Y Y
1 L1
1

Therefore, we get

B [K\(A,B,C) +o(1)] > A

or

Ky(A,B,C)+o(1) > H.
For ¢ — 07, it follows that K,(A, B,C) > H which contradicts the fact that

H > K,\(A,B,C). Hence the constant factor K,(A, B,C) in (2.8) is the best
possible. The Theorem is proved.

Theorem 2.3. Under the assumption of Theorem 2.1, we have

p

2

; wa | [ () 7 p
/ /Amin{xA,yA}+BmA+CyAdx dy < [KA(A B, C T f ( )
0 0 J

where the constant factor [Kx(A, B,C)]" is the best possible. Inequalities (2.6)
and (2.9) are equivalent.
Proof. Setting

oo p—1
Ap_q f(x)
=y d
9y) =y /Amin{a:)‘,yA}+Bl‘)‘+C'y)‘ v ’
0

then by (2.6) we have
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a(1-3)-1 ¢ _ 2p_1 / f(x)
/y 9'(y)dy /y A (g0 + B s o (W

0 0 0

Amin {z* y*} + Bx* 4+ Cy?
0

0

Xp_l

A f(z)
2 d d
“1Y /Amin{x*,y/\}—l—Bx*—I—C'y)‘ v Y
0

7 I@)g(y)
N //Amin{:c&gﬂ}%—B:UA+Cy’\dxdy
0 0

< K\(A,B,C) /xpo_;)_lfp(m)da:

0

Q=

(2.10) X /yq<1‘3>‘lgq(y)dy

Hence, we obtain

(2.11) /w@ﬁ*ﬂw@smancw/ﬂ“%*ﬂwm.

Thus, by (2.6), both (2.10) and (2.11) keep the form of strict inequalities, then
we have (2.9).
By Holder’s inequality, we find
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I (2)9()
d d
[ | e
0 0
D f(@)
a / ve /Amin{:cA,yA}—|—Bx>\+Cy/\d$ {3/ 29(?/)}6@
0 0
o0 00 ) P %
- fla
< d
B /y2 Amin {z*,y*} + Ba* + Cy? z
0 0

Q=

(2.12) X /yq(l‘é)‘lgq(y)dy

Therefore, by (2.9) we have (2.6), and inequalities (2.9) and (2.6) are equivalent.
If the constant factor in (2.9) is not the best possible, then by (2.12) we can get
a contradiction that the constant factor in (2.6) is not the best possible. The
Theorem is proved.

Theorem 2.4. Under the assumption of Theorem 2.2, we have

p 0o

(2.1
72” 7 : /1) dv| dy > [K\(A B,C)P / 202371 () o

Amin {z*, y*} + Ba* + Cy?
0

where the constant factor [Kx(A, B,C)|" is the best possible. Inequalities (2.8)

and (2.13) are equivalent.
The proof of Theorem 2.4 is similar to that of Theorem 2.3, so we omit it.

3. DISCRETE ANALOGOUS

Lemma 3.1. Suppose that 0 < A <2, A >0, B> 0,C > 0. Then the weight
coefficients wy(A, B,C,m) is defined by

A 143

mzn
(3-1) @4, B, € m) Z Amin {m?* n*} + Bm* + Cn? (m & N)

satisfies the following mequalzty

(32)  Ka(A,B,C)[1 - 65(A, B,C,m)] < wr(A, B,C,m) < Kx(A,B,C),
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-

dt =0(5) € (0,1) (reN)

r

where 05(A, B,C,r) := ABC) f A+C)t+B

(r — 00), and Kx\(A, B,C) is deﬁned by (2.2).
Proof. Since 0 <A <2, A>0, B>0,C >0, by Lemma 2.1 we get

[e.e]

A,B,C iy d
@4 B,Cm) - < /Amin{mA,y)‘} + Bm* + Cy* Y
0
(33) = w)\(A,B,C’,m) :K)\(A,B,C)

On the other hand, we have

m2y 1*2

d
@A B.Com) > /Amin{mA Y} + Bm* + Cy? Y

o0 _1
2

1
X Amln{l t}+B—|—Ct

= I(1—6,\(A,B,C,m)),

where I = + K;(A, B,C) and
m—A 1
0 < 0y(A B,Com) = — / LI
K(A, B, C) (A+C)t+ B
Since i
A Y

then 0,(A, B,C,m) = O (—) Therefore, (3.2) is valid. The lemma is proved.

m2
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Lemma 3.2 If p>0(p#1),
0<e<?® 7, setting

1
P q

A—l

A €
2 q

_&
rn

(3.4) Z Z Amin {m*, n*} + Bm* + Cn?’

then for e — 0%, we get

(35) [Ki(A,B,C)—o(1)] Y niE < L(e) < [K(A, B,C) +o(1)] Y nie-

n=1 n=1

Proof. Setting t = (%))\ in the following, by (3.2) we have

pn2 q
L
() < Z/Amln{x’\ n’\}—i—Bx’\—i—Cn/\d

o0

¥ 1 1/ 2% Y
B “n't 1A Amin{t, 1} + Bt +C

n=

[e.9]

= [K\(A,B,C)+6(1)] >

n=1

5—>0Jr

n1+5

+1=10<)2<2,A>0,B>0,C >0 and
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A
pn2 —1-3

L) > Z/Amm{x’\ n’\}—i—Bx)‘—i—Cn’\d

=
Ap

N [ T
B n'*te { A ) Amin{t, 1} + Bt+C

= ESY

[NIES

3
—_

L n

- 7’17>‘

1 1 27
= K\(A,B 51) — — | "
21"”5 AAB ol )\/(A+B)t+0dt
"~ - 0
n=A .
1 - 1N 1 1727
n=1 — /

Thus, inequality (3.5) holds. The Lemma is proved.
Theorem 3.1. If p > 1, 1—|—l:1 0<A<2,A>0,B>0,C>0,a,,b,>0

such that 0 < Enp(l_) la? < 00,0 < an( 2)- 'be < oo, then

n=1 n=1

SIS amb
D : =
; Z Amin {m* n*} + Bm* + Cn*

(3.6) < K\(A,B,C) {inp( } {Zn 1bff}q,

where the constant factor Ky (A, B,C) defined in (2.2) is the best possible. In
particular:

(i) for A=0,A=B=C =1 we get K(0,1,1) = 7, and inequality (3.6)
reduces to Hardy-Hilbert’s inequality
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3=

1
0 q
q_
{E nz 1b$l} ,
n=1

(ii) for N\ = A= B = C =1, we get K,(1,1,1) = 2y/2arctan/2 and (3.6)
reduces to the Hardy-Hilbert’s type inequality
- 1
{3
n=1

Proof. By the Hélder inequality, taking into account (3.1), we get

Tt

n=1m=1

3=

<2 2 arct 2 51gp
S5 s catuma{Saa)

n=1m=1

3=
1
=
T
b BN
SN—
N
_Q
S
3
| I |

o o0 1
b= ZZ:{Amm{m)‘ n/\}—l—Bm’\—i—Cn’\}

n=1m=1

1 1 n 1_%)/17
bn,
% Amin {m* n*} + Bm* + Cn? } m(1-3)/a

Sy 1 m(1=3)e-1) v
= P
S \L X i B On
iy 1 n(1=3) @1 a
ba
ALY gt e
00 1 - .
— {Zw)\ (A,B,m) mp(l—g)—lafn} {Zw)\ (A,B,n) nq(l—Q)—1bgl}
m=1 p—t

Then, by (3.2) we obtain (3.6).
It remains to show that the constant factor K,(A, B, C) 1S the best possible,
—1-

to do that we set for 0 < ¢ < 2, G =m2 " Piby =n 7, by (3.4) we have

N\y

>y - - L.

— £~ Amin {m?*,n*} + Bm* + Cn?
If there exists a constant 0 < L < K, (A, B, () such that (3.6) is still valid if we
replace K(A, B,C) by L, then in particular by (3.5) we find
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[K)\(A B C —O f:
o {5

it follows that Ky(A, B,C) — o(1) < L and then K,(A,B,C) < L(s — 0%).
Therefore, L = K,(A, B,C) is the best constant factor in (3.6). The Theorem is
proved.

Theorem 3.2. If 0 < p < 1,%%—5 =1,0<A<2A>0B>00C >

< L {i np(1_5
n=1

1
= LZF,

n=1

0, ap, by, > 0 such that 0 < > np(k%)*laf’l < 00,0 < > nq(k%)*lb?Z < 00, then

n=1 n=1

mb
; mzzl Amin {m* n*} + Bm* + Cn*

(3%) KA(A,B,C){i[l—HA(A B,C,n)|n?(- } {Z" 1bq} 7

n=1

Q=

where the constant factor K (A, B,C) defined in (2.2) is the best possible. In
particular:
(i) for A=0, \=B=C =1 we get K(0,1,1) ==, and

1 1
e} oo ambn o0 2 1 P [e.9] q
Z Z > Z 1 — = arctan — | n>'a? Z nd e s

n=1m=1 mn n=1 g n2 n=1

(i) for \= A= B =C =1, we get K(1,1,1) = 2y/2arctan /2 and

> arctan \/_n 2 P
> 2v/2 arctan v/2 _ 5_1aﬁ
szm{m n}+m+n {Z[ 2 arctan v/2 ]

n=1 m=1 n=1

Proof. By the reverse Holder’s inequality, we get

:
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Umbn
min {m?, n’\} + Bm* + Cn?

>
M8

3
Il
M 11

A
1 m1 %/q
1{Am1n{m/\ n’\}—l—Bm)‘—i—Cn’\} (1= (=30

M8

1

3
I
3
I

X

1 i [n(=2) /p
min {m*,n*} + Bm* + Cn? } (173)/q

{4
> Z (D) (A7 B7 C’7 m) mp(1;>1a’zb} {Z WA (A7 B7 Ca n) nq(lé)lbg}
m=1

n=1

q

Then by (3.2) , in view of ¢ < 0, we have (3.7). For 0 < & < 2, setting @y, =
A
n?2

m? 15, b, = n2 "4 (m,n € N), If there exists a constant L > K,(A, B,C)
such that (3.7) is still valid if we replace K,(A, B,C) by L, then in particular by
(3.5

(3.4) and ) we find

[C\(A, B,C) +5(1 i > L)

n=1

nl—i—a

> L {i [1— 60,\(A, B,C,n)] np<1—é)—1ag}

it follows that

1
p

2lo(r)

n=1

K\(A,B,C)+05(1) > L{1—

(0.9]
1
Z n1+€
n=1

Hence, if ¢ — 07, we get K)(A, B,C) > L. Thus, L = K,(A, B,C) is the best
constant factor in (3.7).
Theorem 3.3. Under the assumption of Theorem 3.1, we have

S =
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(3.8)
[e%¢) p
Qm

nt Z
Amin {m* n*} + Bm* + Cn*

< [Kx(A, B, 0)] pZm ~2)
m=1

n=1

where the constant factor [Kx(A, B,C)]" is the best possible. Inequalities (3.6)
and (3.8) are equivalent.

Proof. Setting

p—1
Ap (07
b. =nz2 "~
" {ZArnm{m)‘ n’\}—i—Bm)‘—i—C’n’\} ’

we get

Qb
an lbq _ZZ < Amin {m* n*} + Bm* + Cn*

By (3.6) and using the same method of Theorem (2.3), we obtain (3.8). We may
show that the constant factor in (3.8) is the best possible and inequality (3.6) is
equivalent to (3.8).

Theorem 3.4. Under the assumption of Theorem 3.2, we have

p

(3.9)

nt Z
Amin {m* n*} + Bm* + Cn*

> [KA(A,B,C)]”imp(1_3>_la5’n.

n=1 m=1

where the constant factor [Kx(A, B,C)]" is the best possible. Inequalities (3.7)
and (3.9) are equivalent.
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