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MODERN FUNCTIONAL ANALYSIS IN THE THEORY OF
SEQUENCE SPACES AND MATRIX TRANSFORMATIONS

EBERHARD MALKOWSKY

Abstract. Many concepts and theories in functional analysis have turned out to be
powerful and widely used tools in operator theory, in particular in the theory of matrix
transformations between sequences spaces in summability. We give an introduction to
the basic theory of FK, BK, AK and AD spaces, the various types of dual spaces of
sequence spaces, and apply the general results to the characterisations of classes of ma-
trix operators between certain sequence spaces that arise in summability. We also study
the Hausdorff measure of noncompactness and its applications to the characterisations
of compact operators between sequence spaces.

This is a survey paper which also includes some results of the author’s joint research
with V. Rakočević and I. Djolević at the Department of Mathematics of the Faculty
of Science and Mathematics at the University of Nǐs, Serbia. Although many of the
results are probably known to specialists, the proofs are included for the convenience of
those readers who may not be too familiar with the subject, and an appendix is added
at the end containing the fundamental theorems in functional analysis in the versions
they are applied.

1. Introduction, Standard Notations and Well–Known Results

Let X be a normed space. Then we denote the open unit ball and the unit sphere in
X by BX = {x ∈ X : ‖x‖ < 1} and SX = {x ∈ X : ‖x‖ = 1}.

Let X and Y be Banach spaces. Then B(X, Y ) denotes the set of all bounded linear
operators L : X → Y ; B(X, Y ) is a Banach space with the operator norm defined by
‖L‖ = supx∈SX

‖L(x)‖ for all L ∈ B(X, Y ).
Let X be a linear metric space. A Schauder basis of X is a sequence (bn)∞n=0 in

X such that, for every x ∈ X, there exists a unique sequence (λn)∞n=0 of scalars such
that x =

∑∞
n=0 λnbn. By X ′ we denote the continuous dual of X, that is the set of all

continuous linear functionals on X. If X is a Banach space then we write X∗ for X ′

with its norm defined by ‖f‖ = supx∈SX
|f(x)|.

We write ω, c0, c and `∞ for the sets of all complex, null, convergent and bounded
sequences, `p = {x ∈ ω :

∑∞
k=0|xk|p < ∞} for 1 ≤ p < ∞, and cs and bs for the sets of
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all convergent and bounded series. By e and e(n) (n = 0, 1, . . . ), we denote the sequences

with ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

It is well known that ω is a complete locally convex linear metric space with its metric
given by

(1.1) d(x, y) =
∞∑

k=0

1

2k

|xk − yk|
1 + |xk − yk| for all x = (xk)

∞
k=0, y = (yk)

∞
k=0 ∈ ω;

c0, c, `∞, `p (1 ≤ p < ∞), cs and bs are Banach spaces with their natural norms
given by ‖x‖∞ = supk |xk| on c0, c and `∞, ‖x‖p = (

∑∞
k=0|xk|p)1/p on `p, and ‖x‖bs =

supn |
∑n

k=0 xk| on cs and bs.
Furthermore, c∗0 is norm isomorphic to `1; this means f ∈ c∗0 if and only if f(x) =∑∞
k=0akxk (x ∈ X) for some a ∈ `1, and ‖f‖ = ‖a‖ ([Wil1, Example 6.4.4, p. 91]).

Similarly `∗1 is norm isomorphic to `∞ ([Wil1, Example 6.4.2, p. 91]), and `∗p for 1 < p <
∞ is norm isomorphic to `q where q = p/(p − 1) ([Wil1, Example 6.4.3, p. 91]); also
f ∈ c∗ if and only if

(1.2) f(x) = χf lim
k→∞

xk +
∞∑

k=0

akxk (x ∈ c) with a = (f(e(k))∞k=0 ∈ `1,

where

(1.3) χf = f(e)−
∞∑

k=0

f(e(k)) ([Wil1, Example 6.4.5, p. 92]);

furthermore

(1.4) ‖f‖ = |χf |+ ‖a‖1.

Finally, the continuous dual of `∞ is not given by a sequence space ([Wil1, Example
6.4.8, pp. 93, 94]).

We give a short survey of the most important concepts and methods of summability,
an introduction to the basic theories of FK, BK, AK and AD spaces, consider multi-
plier and dual spaces of sequence spaces, characterise matrix transformations between
sequence spaces, and apply the Hausdorff measure of noncompactness to the character-
isations of compact operators between sequence spaces.

2. Summability

This section is intended as a motivation of what follows; the results presented here are
not needed in the sequel.

Summability encompasses a variety of fields, originally mainly from analysis, and has
many applications, for instance in numerical analysis to speed up the rate of convergence,
and in approximation theory, operator theory and the theory of orthogonal series.
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2.1. Concepts and Methods of Summability. The classical summability theory deals
with a generalisation of the convergence of sequences or series of real or complex numbers.
The idea is to assign a limit to divergent sequences or series by considering a transform
rather than the original sequence or series. Most popular are matrix transformations
given by an infinite matrix A = (ank)

∞
n,k=0.

There are three concepts of summability, ordinary, absolute and strong summability.
First we consider ordinary summability. A sequence x = (xk)

∞
k=0 of complex numbers

is said to be summable A to a complex number η, if the series

(2.1) Anx =
∞∑

k=0

ankxk converge for all n and lim
n→∞

Anx = η;

this is denoted by x → η(A). The matrix A defines a summability method A or a matrix
transformation by (2.1).

Let 0 < p < ∞. Then a sequence x is said to be absolutely summable with index p to
a complex number η if the series Anx in (2.1) converge for all n, and

∑∞
n=0 |Anx|p = η;

this is denoted by x → η|A|p. A sequence x is said to be strongly summable A with
index p to a complex number ξ if the series

∑∞
k=0ank|xk − ξ|p converge for all n and

limn→∞
∑∞

k=0ank|xk − ξ|p = 0; this is denoted by x → ξ[A]p.

Example 2.1. Let the matrix A = (an,k)
∞
n,k=0 be given by ank = 1/(n + 1) for 0 ≤ k ≤ n

and ank = 0 (n = 0, 1, . . . ). Then A transforms every sequence x into the sequence of its
arithmetic means. It is well known by Cauchy’s theorem that every convergent sequence
is summable A to the same limit. Furthermore, the divergent sequence ((−1)k)∞k=0 is
summable A to 0.

The most important summability methods are given by Hausdorff matrices and their
special cases, the Cesàro, Hölder and Euler matrices, and by Nörlund matrices. All
these matrices are triangles, that is ank = 0 for k > n and ann 6= 0 (n = 0, 1, . . . ).

Let µ = (µ)∞n=0 be a given complex sequence, M = (mnk)
∞
n,k=0 be the diagonal matrix

with mnn = µn (n = 0, 1, . . . ), and D = (dnk)
∞
n,k=0 be the matrix with dnk = (−1)k

(
n
k

)
.

Then the matrix H = H(µ) = DMD is called the Hausdorff matrix associated with
the sequence µ; its entries are given by hnk =

∑n
j=k(−1)j+k

(
n
j

)(
j
k

)
µj (0 ≤ k ≤ n; n =

0, 1, . . . ). The Cesàro matrix Cα of order α > −1 is the Hausdorff matrix associated
with the sequence µ where µn = Aα

n =
(

n+α
n

)
(n = 0, 1, . . . ); its entries are given by

(Cα)n,k = Aα−1
n−k/A

α
n (0 ≤ k ≤ n; n = 0, 1, . . . ); the numbers Aα

n are called the Cesàro
coefficients of order α. The Hölder matrix Hα of order α > −1 is the Hausdorff matrix
associated with the sequence µ where µn = (n + 1)−α (n = 0, 1, . . . ); no explicit formula
is known for the entries of the matrices Hα, in general. The Euler matrix Eq of order
q > 0 is the Hausdorff matrix associated with the sequence µ where µn = (q +1)−n (n =
0, 1, . . . ); its entries are given by (Eq)n,k =

(
n
k

)
qn−k(q + 1)−n (0 ≤ k ≤ n; n = 0, 1, . . . ).

Finally, let q = (qk)
∞
k=0 be a sequence of complex numbers such that Qn =

∑n
k=0 qk 6= 0

for all n. Then the Nörlund matrix (N, q) is given by ((N, q))n,k = qn−k/Qn (0 ≤ k ≤
n; n = 0, 1, . . . ).
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Example 2.2. (a) Let µ = e. Then we obtain for the Hausdorff matrix H = H(µ)

hnk =
n∑

j=k

(−1)j+k

(
n

j

)(
j

k

)
µj =

(
n

k

) n∑

j=k

(−1)j+k

(
n− k

j − k

)

=

(
n

k

) n−k∑
j=0

(−1)k

(
n− k

j

)
= δnk (n, k = 0, 1, )̇

where δnn = 1 and δnk = 0 for k 6= 0. Thus we have H = I, the identity matrix.
(b) Let µn = 1/(n + 1) = A1

n (n = 0, 1, . . . ).Then we obtain H(u) = H1 = C1; thus the
matrix A of Example 2.1 is a Hölder and Cesàro matrix of order 1.
(c) Let q = e. Then we obtain Qn = n+1 (n = 0, 1, . . . ). Thus the matrix A of Example
2.1 is also the Nörlund matrix (N, e).

We refer the interested reader to [Boo, Coo, Har, Mad, Pey, Z–B] for the classical
summability theory.

2.2. Matrix Transformations. The theory of matrix transformations deals with es-
tablishing necessary and sufficient conditions on the entries of a matrix to map a sequence
space X into a sequence space Y . This is a natural generalisation of the problem to char-
acterise all summability methods given by infinite matrices that preserve convergence.

Given X, Y ⊂ ω, we write (X, Y ) for the class of all infinite matrices that map X into
Y . So A ∈ (X, Y ) if and only if the series Anx in (2.1) converge for all n and all x ∈ X,
and

(2.2) Ax = (Anx)∞n=0 ∈ Y for all x ∈ X.

The first results were the Toeplitz theorem for the classes (c, c) of conservative or (con-
vergence preserving) matrices, (c, c; P ) of regular matrices, that is conservative matrices
that preserve limits, and the Schur theorem for the classes (`∞, c), the so–called coercive
matrices, and (`∞, c0).

Theorem 2.3 (O. Toeplitz, 1911). ([Toe]) (a) We have A ∈ (c, c) if and only if

(i) ‖A‖ = sup
n

∞∑

k=0

|ank| < ∞, (ii) lim
n→∞

ank = αk exists for every k and (iii) lim
n→∞

∞∑

k=0

ank = α exists.

If A ∈ (c, c) and x ∈ c then

lim
n→∞

An(x) =

(
α−

∞∑

k=0

αk

)
lim
k→∞

xk +
∞∑

k=0

αkxk.

(b) We have A ∈ (c, c; P ) if and only if (i), (ii) and (iii) in (a) hold with αk = 0
(k = 0, 1, . . . ) and α = 1.

Theorem 2.4 (O. Schur, 1920). ([Wil2, Theorem 1.7.18, p. 15]) (a) We have A ∈ (`∞, c)
if and only if (ii) in Theorem 2.3 holds and

(i’) sup
n

∞∑

k=0

|ank| is uniformly convergent in n.
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(b) ([S–T, 21, (21.1)]) We have A ∈ (`∞, c0) if and only if

(ii’) lim
n→∞

∞∑

k=0

|ank| = 0.

We close this section with some applications of Theorems 2.3 and 2.4.

Example 2.5. (a) The matrix A of Example 2.1 is regular.
(b) The Euler matrices Eq are regular for all q > 0.

Proof. (a) This is obvious from Theorem 2.3 (b).
(b) We write A = Eq. Since ank ≥ 0 (n, k = 0, 1, . . . ) for q > 0, it follows that

∞∑

k=0

|ank| =
∞∑

k=0

ank =
1

(q + 1)n

n∑

k=0

(
n

k

)
qn−k =

(q + 1)n

(q + 1)n
= 1 for all n,

and (i) and (iii) of Theorem 2.3 (b) are satisfied. We fix k. Since 0 < q/(q + 1) < 1, we
have, for ρ = 1/q > 0, q/(q + 1) = 1/(1 + ρ), and so

0 ≤ ank =
1

(q + 1)n

(
n

k

)
qn−k =

1

qk

(
n

k

)
1

(1 + ρ)n
≤ 1

qk

(
n

k

)
1(

n
k+1

)
ρk+1

=
1

ρ(qρ)k

k + 1

n− k
→ 0 (n →∞).

Thus (ii) of Theorem 2.3 (b) is also satisfed. ¤

Example 2.6. The famous Steinhaus theorem states that, for every regular matrix A,
there is a bounded sequence which is not summable A.

Proof. We assume there is a matrix A ∈ (c, c; P )∩(`∞, c). Then it follows from Theorem
2.3 (iii), (ii), and Theorem 2.4 (i’) that 1 = limn→∞

∑∞
k=0ank =

∑∞
k=0( lim

n→∞
ank) = 0, a

contradiction. ¤

Example 2.7. Weak and strong convergence coincide in `1.

Proof. We assume that the sequence (x(n))∞n=0 is weakly convergent to x in `1, that is
f(x(n)) − f(x) → 0 (n → ∞) for every f ∈ `∗1. Since `∗1 and `∞ are norm isomorphic,
to every f ∈ `∗1 there corresponds a sequence a ∈ `∞ such that f(y) =

∑∞
k=0akyk for

all y ∈ `1. We define the matrix B = (bnk)
∞
n,k=0 by bnk = x

(n)
k − xk (n, k = 0, 1, . . . ).

Then we have f(x(n)) − f(x) =
∑∞

k=0ak(x
(n)
k − xk) =

∑∞
k=0bnkak → 0 (n → ∞) for all

a ∈ `∞, that is B ∈ (`∞, c0), and it follows from Theorem 2.4 (b) that ‖x(n) − x‖1 =∑∞
k=0|x(n)

k − xk| =
∑∞

k=0|bnk| → 0 (n →∞). ¤

Further results on matrix transformations and references can be found in [Boo, Coo,
K–G, S–T, Z–B, Wil2, Mad, M–R, Mal, J–M], and in [Mad1] for infinite matrices of
operators.
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3. FK, BK, AK and AD Spaces

The theory of FK spaces is the most powerful tool in the theory of matrix transforma-
tions ([Wil1, Wil2, K–G, Zel, M–R]). The fundamental result of this section is Theorem
3.8 which states that matrix maps between FK spaces are continuous.

We start with a more general definition.

Definition 3.1. Let H be a linear space and a Hausdorff space. An FH space is a
Fréchet space, that is a locally convex linear metric space X, such that X is a subspace
of H and the topology of X is stronger than the restriction of the topology of H on X.
If H = ω with its topology given by the metric d of (1.1), then an FH space is called an
FK space.
A BH space or a BK space is an FH or FK space which is a Banach space.

Remark 3.2. (a) If X is an FH space, then the inclusion map ι : X → H with ι(x) = x
for all x ∈ X is continuous. Therefore X is continuously embedded in H.
(b) Since convergence in (ω, d) and coordinatewise convergence are equivalent ([Wil1,
Theorem 4.1.1, p. 54]), convergence in an FK space implies coordinatewise convergence.
(c) The letters F, H, K and B stand for Fréchet, Hausdorff, Koordintate, the German
word for coordinate, and Banach.

Example 3.3. Let H = F = {f : [0, 1] → IR}, and, for every t ∈ [0, 1], let t̂ : F → IR
be the function with t̂(f) = t(f). We assume that F has the weak topology by Φ =
{t̂ : t ∈ [0, 1]}. Then C[0, 1] = {f ∈ F : f is continuous} is a BH space with ‖f‖ =
supt∈[0,1] |f(t)|.
Proof. Let (fk)

∞
k=0 be a sequence in C[0, 1] with fk → 0 (k →∞), then t̂(fk) = fk(t) → 0

(k →∞) for all t̂ ∈ Φ, that is fk → 0 (k →∞) in F . ¤

Example 3.4. Trivially ω is an FK space with the metric of (1.1). The spaces `∞, c
and c0 and `p (1 ≤ p < ∞) are BK spaces with their natural norms, since |xk| ≤ ‖x‖ in
each case.

The following results are fundamental.

Theorem 3.5. ([Wil2, Theorem 4.2.2, p. 56]) Let X be a Fréchet space, Y be an FH
space and f : X → Y be linear. Then f : X → H is continuous, if and only if f : X → Y
is continuous.

Proof. Let TX , TY and TH be the topologies on X, Y and of H on Y , respectively.
First, we assume that f : (X,Y ) is continuous. Since Y is an FH space, we have
TH ⊂ TY , and so f : X → H is continuous.
Conversely, we assume that f : X → (Y, TH) is continuous, then it has closed graph by
the closed graph lemma (Theorem A.1). Since Y is an FH space, we again have TH ⊂ TY ,
and so f : X → (Y, TY ) has closed graph. Hence f : X → (Y, TY ) is continuous by the
closed graph theorem (Theorem A.2). ¤

We obtain as an immediate consequence of Theorem 3.5.



SEQUENCE SPACES AND MATRIX TRANSFORMATIONS 7

Corollary 3.6. ([Wil2, Corollary 4.2.3, p. 56]) Let X be a Fréchet space, Y be an FK
space, f : X → Y be linear, and Pn : X → |C (n = 0, 1, . . . ) be defined by Pn(x) = xn for
all x ∈ X. If Pn ◦ f : X → |C is continuous for every n, then f : X → Y is continuous.

Proof. Since convergence and coordinatewise convergence are equivalent in ω by Remark
3.2 (b), the continuity of Pn : X → |C for all n implies the continuity of f : X → ω,
hence of f : X → Y by Theorem 3.5. ¤

By φ we denote the set of all finite sequences. Thus x = (xk)
∞
k=0 ∈ φ if and only if

there is an integer k such that xj = 0 for all j > k.

Theorem 3.7. ([M–R, Remark 1.16, p. 152]) Let X ⊃ φ be an FK space. If the
series

∑∞
k=0akxk converge for all x ∈ X, then the linear functional fa defined by fa(x) =∑∞

k=0akxk for all x ∈ X is continuous.

Proof. We define the functionals fa (n ∈ IN0) by f
[n]
a (x) =

∑n
k=0 akxk for all x ∈ X.

Since X is an FK space and f
[n]
a is a finite linear combination of coordinates, we have

f
[n]
a ∈ X ′ for all n. By hypothesis, the limits fa(x) = limn→∞ f

[n]
a (x) exist for all x ∈ X,

hence fa ∈ X ′ by the Banach–Steinhaus theorem (Theorem A.3). ¤
Theorem 3.8. ([Wil2, Theorem 4.2.8, p. 57]) Any matrix map between FK spaces is
continuous.

Proof. Let X and Y be FK spaces, A ∈ (X, Y ) and fA : X → Y be defined by fA(x) =
Ax for all x ∈ X. Since the maps Pn ◦ fA : X → |C are continuous for all n by Theorem
3.7, fA : X → Y is continous by Corollary 3.6. ¤

It turns out that the FH topology of an FH space is unique.

Theorem 3.9. ([Wil2, Corollary 4.2.4, p. 56]) Let X and Y be FH spaces with X ⊂ Y .
Then the topology TX is larger than the topology TY |X of Y on X.
They are equal if and only if X is a closed subspace of Y .
In particular, the topology of an FH space is unique.

Proof. Since X is an FH space, the inclusion map ι : X → H is continuous by Remark
3.2 (a), hence ι : X → Y is continuous by Theorem 3.5. This implies TX ⊃ TY |X .
Now let T and T ′ be FH topologies for an FK space. Then it follows by what we have
just shown that T ⊂ T ′ ⊂ T .
If X is closed in Y , then X becomes an FH space with TY |X . It follows from the
uniqueness that TX = TY |X .
If TX = TY |X , then X is a complete, hence closed, subspace of Y . ¤

The class of FK spaces is fairly large.

Example 3.10. A Banach sequence space which is not a BK space
We consider the spaces (c0, ‖ · ‖∞) and (`2, ‖ · ‖2). Since they have the same algebraic
dimension, there is an isomorphism f : c0 → `2. We define a second norm ‖ · ‖ on c0

by ‖x‖ = ‖f(x)‖2 for all x ∈ c0. Then (c0, ‖ · ‖) becomes a Banach space. But c0 and
`2 are not linearly homeomorphic, since `2 is reflexive, and c0 is not. Therefore the two
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norms on c0 are incomparable. By Example 3.4 and Theorem 3.9, (c0, ‖ · ‖) is a Banach
sequence space which is not a BK space.

Theorem 3.11. ([Wil2, Theorem 4.2.5, p. 57]) Let X, Y and Z be FH spaces with
X ⊂ Y ⊂ Z. If X is closed in Z, then X is closed in Y .

Proof. Since X is closed in (Y, TZ |Y ), it is closed in (Y, TY ) by Theorem 3.9. ¤
Let Y be a topological space, and E ⊂ Y . Then we write clY (E) for the closure of E

in Y .

Theorem 3.12. ([Wil2, Theorem 4.2.7, p. 57]) Let X and Y be FH spaces with X ⊂ Y ,
and E be a subset of X. Then we have

clY (E) = clY (clX(E)), in particular clX(E) ⊂ clY (E).

Proof. Since TY |X ⊂ TX by Theorem 3.9, it follows that clX(E) ⊂ clY (E). This implies

clY (clX(E)) ⊂ clY (clY (E)) = clY (E).

Conversely, E ⊂ clX(E) implies clY (E) ⊂ clY (clX(E)). ¤
Example 3.13. (a) Since c0 and c are closed in `∞, their BK topologies are the same;
since `1 is not closed in `∞, its BK topology is strictly stronger than that of `∞ on `1

(Theorem 3.9).
(b) If c is not closed in an FK space X, then X must contain unbounded sequences
(Theorem 3.11).

Definition 3.14. Let X ⊃ φ be an FK space. Then X is said to have
(a) AD if clX(φ) = X;
(b) AK if every sequence x = (xk)

∞
k=0 ∈ X has a unique representation x =

∑∞
k=0xke

(k).

Remark 3.15. The letters A, D and K stand for abschnittsdicht, the German word for
sectionally dense, and Abschnittskonvergenz, the German word for sectional convergence.

Example 3.16. (a) Every FK space with AK obviously has AD.
(b) An Example of an FK space with AD which does not have AK can be found in
[Wil2, Example 5.2.14, p. 80].
(c) The spaces ω, c0 and `p (1 ≤ p < ∞) have AK.
(d) The space c does not have AK; every sequence x = (xk)

∞
k=0 ∈ c has a unique repre-

sentation x = ξ e +
∑∞

k=0(xk − ξ)e(k) where ξ = limk→∞ xk.
(e) The space `∞ has no Schauder basis, since it is not separable.

Theorem 3.17. ([Wil2, 8.3.6, p. 123]) Let X be an FK space with AD, and Y and Y1

be FK spaces with Y1 a closed subspace of Y . Then A ∈ (X, Y1) if and only if A ∈ (X, Y )
and Ae(k) ∈ Y1 for all k.

Proof. First, we assume A ∈ (X, Y1). Then Y1 ⊂ Y implies A ∈ (X,Y ), and e(k) ∈ X for
all k implies Ae(k) ∈ Y1 for all k.
Conversely, we assume A ∈ (X,Y ) and Ae(k) ∈ Y1 for all k. We define the map fA : X →
Y by fA(x) = Ax for all x ∈ X. Then Ae(k) ∈ Y1 implies fA(φ) ⊂ Y1. By Theorem 3.8,
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fA is continuous, hence fA(clX(φ)) = clY (fA(φ)). Since Y1 is closed in Y , and φ is dense
in the AD space X, we have fA(X) = fA(clX(φ)) = clY (fA(φ)) ⊂ clY (Y1) = clY1(Y1) = Y1

by Theorem 3.9. ¤

Theorem 3.18. ([Wil2, 8.3.7, p. 123]) Let X be an FK space, X1 = X ⊕ e = {x1 =
x + λe : x ∈ X, λ ∈ |C}, and Y be a linear subspace of ω. Then A ∈ (X1, Y ) if and only
if A ∈ (X,Y ) and Ae ∈ Y .

Proof. First, we assume A ∈ (X1, Y ). Then X ⊂ X1 implies A ∈ (X,Y ), and e ∈ X1

implies Ae ∈ Y .
Conversely, we assume A ∈ (X,Y ) and Ae ∈ Y . Let x1 ∈ X1 be given. Then there
are x ∈ X and λ ∈ |C such that x1 = x + λe, and it follows that Ax1 = A(x + λe) =
Ax + λAe ∈ Y . ¤

We close this section with two applications of our results.
Let (X, d) be a metric space, δ > 0 and x0 ∈ X. Then we write Bδ[x0] = {x ∈ X :

d(x, x0) ≤ δ} for the closed ball of radius δ with its centre in x0. If X ⊂ ω is a linear
metric space and a ∈ ω, then we write

‖a‖∗δ = ‖a‖∗X,δ = sup
x∈Bδ[0]

∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ ,

provided the expression on the right hand exists and is finite which is the case whenever
the series

∑∞
k=0akxk converge for all x ∈ X (Theorem 3.7); if X is a normed space then

we write

‖a‖∗ = ‖a‖X∗ = sup
x∈SX

∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ .

The first result is the characterisation of the class (X, `∞) for arbitrary FK spaces X.

Theorem 3.19. ([M–R, Theorem 1.23 (b)]) Let X be an FK space. Then we have
A ∈ (X, `∞) if and only if

(3.1) ‖A‖∗δ = sup
n
‖An‖∗δ < ∞ for some δ > 0,

where An = (ank)
∞
k=0 denotes the sequence in the n–th row of the matrix A.

Proof. First, we assume that (3.1) is satisfied. Then the series Anx converge for all
x ∈ Bδ[0] and for all n, and Ax ∈ `∞ for all x ∈ Bδ[0]. Since the set Bδ[0] is absorbing
by [Wil1, Fact (ix), p. 53], we conclude that the series Anx converge for all n and all
x ∈ X, and Ax ∈ `∞ for all x.
Conversely, we assume A ∈ (X, `∞). Then the map LA : X → `∞ defined by

(3.2) LA(x) = Ax for all x ∈ X

is continuous by Theorem 3.8. Hence there exist a neighbourhood N of 0 in X and a
real δ > 0 such that Bδ[0] ⊂ N and ‖LA(x)‖∞ < 1 for all x ∈ X. This implies (3.1). ¤
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Theorem 3.20. ([M–R, Theorem 1.23. p. 155]) Let X and Y be BK spaces.
(a) Then (X, Y ) ⊂ B(X,Y ), that is every A ∈ (X,Y ) defines an operator LA ∈ B(X, Y )
by (3.2).
(b) If X has AK then B(X,Y ) ⊂ (X, Y ).
(c) We have A ∈ (X, `∞) if and only if

(3.3) ‖A‖(X,`∞) = sup
n
‖An‖∗X < ∞;

if A ∈ (X, `∞) then

(3.4) ‖LA‖ = ‖A‖(X,`∞).

Proof. (a) This is Theorem 3.8.
(b) Let L ∈ B(X, Y ) be given. We write Ln = Pn ◦ L for all n, and put ank =

Ln(e(k)) for all n and k. Let x = (xk)
∞
k=0 ∈ X be given. Since X has AK, we have

x =
∑∞

k=0xke
(k), and since Y is a BK space, it follows that Ln ∈ X∗ for all n. Hence we

obtain Ln(x) =
∑∞

k=0xkLn(e(k)) =
∑∞

k=0ankxk = (Ax)n for all n, and so L(x) = Ax.
(c) This follows immediately from Theorem 3.19 and the definition of ‖A‖(X,`∞). ¤

4. Multiplier and Dual Spaces

The so–called β–duals are of greater interest than the continuous duals in the the-
ory of matrix transformations. They naturally arise in the characterisations of matrix
transformations in connection with the convergence of the series Anx.

The β–duals of sequence spaces are special cases of multiplier spaces.

Definition 4.1. Let X and Y be subsets of ω. The set M(X, Y ) = {a ∈ ω : ax =
(akxk)

∞
k=0 ∈ Y for all x ∈ X} is called the multiplier space of X in Y . Special cases are

Xα = M(X, `1), Xβ = M(X, cs) and Xγ = M(X, bs), the α–, β and γ– duals of X.

Proposition 4.2. ([M–R, Lemma 1.25, p. 156]) Let X, X1, Y , Y1 ⊂ ω and {Xδ} be a
collection of subsets of ω. Then we have

(i) Y ⊂ Y1 implies M(X, Y ) ⊂ M(X, Y1)
(ii) X ⊂ X1 implies M(X1, Y ) ⊂ M(X,Y )
(iii) X ⊂ M(M(X, Y ), Y )
(iv) M(X, Y ) = M (M(M(X, Y ), Y ), Y )

(v) M

(⋃
δ

Xδ, Y

)
=

⋂
δ

M(Xδ, Y ).

Proof. (i), (ii) Parts (i) and (ii) are trivial.
(iii) If x ∈ X, then ax ∈ Y for all a ∈ M(X, Y ), and consequently x ∈ M(M(X, Y ), Y ).
(iv) We replace X by M(X, Y ) in (iii) to obtain M(X, Y ) ⊂ M(M(M(X,Y ), Y ), Y ).

Conversely we have X ⊂ M(M(X,Y )) by (iii), so M(M(M(X, Y ), Y ), Y ) ⊂ M(X, Y )
by (ii).

(v) First Xδ ⊂
⋃

δ Xδ for all δ implies M(
⋃

δ Xδ, Y ) ⊂ ⋂
δ M(Xδ, Y ) by (ii).

Conversely, if a ∈ ⋂
δ M(Xδ, Y ), then a ∈ M(Xδ, Y ) for all δ, and so we have ax ∈ Y for

all x ∈ Xδ and all δ. This implies ax ∈ Y for all x ∈ ⋃
δ Xδ, hence a ∈ M(

⋃
δ Xδ, Y ). ¤
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Example 4.3. We have (i) M(c0, c) = `∞; (ii) M(c, c) = c; (iii) M(`∞, c) = c0.

Proof. (i) If a ∈ `∞, then ax ∈ C for all x ∈ c0, and so `∞ ⊂ M(c0, c).
Conversely, we assume a 6∈ `∞. Then there is a subsequence ak(j) of the sequence a such
that |ak(j)| > j + 1 for all j = 0, 1, . . . . We define the sequence x by

(4.1) xk =





(−1)j

ak(j)

(k = k(j))

0 (k 6= k(j))

(j = 0, 1, . . . ).

Then we have x ∈ c0 and ak(j)xk(j) = (−1)j for all j = 0, 1, . . . , hence ax 6∈ c. This shows
M(c0, c) ⊂ `∞.

(ii) If a ∈ c, then ax ∈ c for all x ∈ c, and so c ⊂ M(c, c).
Conversely, we assume a 6∈ c. Since e ∈ c and ae = a 6∈ c, we have a 6∈ M(c, c). This
shows M(c, c) ⊂ c.

(iii) If a ∈ c0 then ax ∈ c for all x ∈ `∞, and so c0 ⊂ M(`∞, c0).
Conversely, we assume a 6∈ c0. Then there are a real b > 0 and a subsequence (ak(j))

∞
j=0

of the sequence a such that |ak(j)| > b for all j = 0, 1, . . . . We define the sequence x
as in (4.1). Then we have x ∈ `∞ and ak(j)xk(j) = (−1)j for all j = 0, 1, . . . , hence
a 6∈ M(`∞, c). This shows M(`∞, c) = c0. ¤
Example 4.4. Let † denote any of the symbols α, β or γ. Then we have ω† = φ, φ† = ω,
c†0 = c† = `†∞ = `1, `†1 = `∞, and `†p = `q (1 < p < ∞; q = p/(p− 1)).

Another dual space frequently arises in the theory of sequence spaces.

Definition 4.5. Let X ⊃ φ be an FK space. Then Xf = {(f(e(n)))∞n=0 : f ∈ X ′} is
called the functional dual of X.

Theorem 4.6. (a) We have Xα ⊂ Xβ ⊂ Xγ and X ⊂ X†† where † is any of the symbols
α, β and γ.
(b) Let X ⊃ φ be an FK space. Then we have Xf = (clX(φ))f ([Wil2, Theorem 7.2.4,
p. 106]).
(c) Let X, Y ⊃ φ be FK spaces. If X ⊂ Y then Xf ⊃ Y f . If X is closed in Y then
Xf = Y f ([Wil2, Theorem 7.2.4, p. 106]).

Proof. (a) Since `1 ⊂ cs ⊂ bs, it follows from Proposition 4.2 (i) that Xα ⊂ Xβ ⊂ Xγ,
and Proposition 4.2 (iii) yields X ⊂ X††.

(b) We write Z = clX(φ).
First, we assume that a ∈ Xf , that is an = f(e(n)) (n = 0, 1, . . . ) for some f ∈ X ′. We
write g = f |Z for the restriction of f to Z. Then an = g(e(n)) for all n = 0, 1, . . . , g ∈ Z ′

and so a ∈ Zf .
Conversely, let a ∈ Z, then an = g(e(n)) (n = 0, 1, . . . ) for some g ∈ Z ′. By the Hahn–
Banach–Theorem (Theorem A.4), g can be extended to f ∈ X ′, and we have an = f(e(n))
for n = 0, 1, . . . , hence a ∈ Xf .

(c) We assume that a ∈ Y f . Then an = f(e(n)) (n = 0, 1, . . . ) for some f ∈ Y ′.
Since X ⊂ Y , we have g = f |X ∈ X ′ by Theorem 3.9. If X is closed in Y , then the FK
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topologies are the same by Theorem 3.9, and we obtain Xf = (clX(φ))f = (clY (φ))f = Y f

from Part (b). ¤
It might be expected from X ⊂ X†† that X is contained in Xff ; but this is not the

case in general (Example 4.7). We will, however, see below that X ⊂ Xff for BK spaces
with AD (Theorem 4.16).

Example 4.7. Let X = c0 ⊕ z with z unbounded. Then X is a BK space, Xf = `1 and
Xff = `∞, so X 6⊂ Xff .

Theorem 4.8. ([Wil2, Theorem 7.2.7, p. 106]) Let X ⊃ φ be an FK space.
(a) We have Xγ ⊂ Xf .
(b) If X has AK, then Xβ = Xf .
(c) If X has AD then Xβ = Xγ.

Proof. Let a ∈ Xβ. We define the linear functional f by f(x) =
∑∞

k=0akxk for all x ∈ X.
Then f ∈ X ′ by Theorem 3.7, and we have f(e(n)) = an for all n, hence a ∈ Xf . Thus
we have shown

(4.2) Xβ ⊂ Xf .

(b) Now we assume that X has AK, and a ∈ Xf . Let x ∈ X be given. Then
x =

∑∞
k=0xke

(k), since X has AK, and since f ∈ X ′, we have f(x) = f(
∑∞

k=0xke
(k)) =∑∞

k=0xkf(e(k)) =
∑∞

k=0xkak, hence a ∈ Xβ. Thus we have shown Xf ⊂ Xβ. Together
with Xβ ⊂ Xf , this yields Xβ = Xf .

(c) Now we assume that X has AD and a ∈ Xγ. We define the linear functionals
fn for n = 0, 1, . . . by fn(x) =

∑n
k=0 akxk (x ∈ X). Since X is an FK space, we have

fn ∈ X ′ for all n. Furthermore, a ∈ Xγ implies that the sequence (fn)∞n=0 is pointwise
bounded, hence equicontinuous by the uniform boundedness principle (Theorem A.5).
Since limn→∞ fn(x) exists for all x ∈ X and X has AD, it must exists for all x ∈ X by
the convergence lemma (Theorem A.6), hence a ∈ Xβ. Thus we have shown Xγ ⊂ Xβ.
We also have Xβ ⊂ Xγ by Theorem 4.6 (a), hence Xβ = Xγ.

(a) First we observe that clX(φ) ⊂ X implies Xγ ⊂ (clX(φ))γ by Proposition 4.2 (ii).
Furthermore, we have (clX(φ))γ = (clX(φ))β ⊂ (clX(φ))f = Xf by Part (c), (4.2) and
Theorem 4.6 (b). Thus we have shown Xγ ⊂ Xf . ¤

Now we establish a relationship between the β– and continuous duals of an FK space.

Theorem 4.9. ([Wil2, Theorem 7.2.9, p. 107]) Let X ⊃ φ be an FK space. Then
Xβ ⊂ X ′; this means, that there is a linear one–to–one map T : Xβ → X ′. If X has
AK then T is onto.

Proof. We define the map T by Ta = fa (a ∈ Xβ) where fa is the functional with
fa =

∑∞
k=0akxk for all x ∈ X, and observe that Ta = fa ∈ X ′ for all a ∈ Xβ by Theorem

3.7. Obviously T is linear. Furthermore, if Ta = 0 then fa(x) =
∑∞

k=0akxk = 0 for all
x ∈ X, in particular fa(e

(k)) = ak = 0 for all k, that is a = 0. Thus Ta = 0 implies
a = 0, and consequently T is one–to–one.
Now we assume that X has AK. Let f ∈ X ′ be given. We define the sequence a by
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ak = f(e(k)) for k = 0, 1, . . . . Let x ∈ X be given. Then x =
∑∞

k=0xke
(k), since X has

AK, and f ∈ X ′ implies f(x) = f(
∑∞

k=0xke
(k)) =

∑∞
k=0xkf(e(k)) =

∑∞
k=0xkak, hence

a ∈ Xβ and Ta = f . This shows that the map T is onto. ¤

A relation between the functional and continuous duals of an FK space is given by

Theorem 4.10. Let X ⊃ φ be an FK space.
(a) Then the map q : X ′ → Xf given by q(f) = (f(e(k))∞k=0 is onto. Moreover, if
T : Xβ → X ′ denotes the map of Theorem 4.9, then q(Ta) = a for all a ∈ Xβ ([Wil2,
Theorem 7.2.10, p. 107]).
(b) Then Xf = X ′, that is the map q of Part (a) is one–to–one, if and only if X has
AD ([Wil2, Theorem 1.11.12, p. 108]).

Proof. (a) Let a ∈ Xf be given. Then there is f ∈ X ′ such that ak = f(e(k)) for all k,
and so q(f) = (f(e(k))∞k=0 = a. This shows that q is onto.
Now let a ∈ Xβ be given. We put f = Ta ∈ X ′ and obtain q(Ta) = q(f) = (f(e(k)))∞k=0 =
((Ta)(e(k)))∞k=0 = (ak)

∞
k=0 = a.

(b) First we assume that X has AD. Then q(f) = 0 implies f = 0 on φ, hence f = 0,
since X has AD. This shows that q is one–to–one.
Conversely we assume that X does not have AD. By the Hahn–Banach theorem, (The-
orem A.4) there exists an f ∈ X ′ with f 6= 0 and f = 0 on φ. Then we have q(f) = 0,
and q is not one–to–one. ¤

Example 4.11. We have cβ = cf = `1. The map T of Theorem 4.9 is not onto. We
consider lim ∈ X ′. If there were a ∈ Xf with lim a =

∑∞
k=0akxk then it would follow

that ak = lim e(k) = 0, hence lim x = 0 for all x ∈ c, contradicting lim e = 1. Also then
map q of Theorem 4.10 is not onto, since q(lim) = 0.

It turns out that the multiplier spaces and the functional duals of BK spaces are again
BK spaces. These results do not extend to FK spaces, in general.

Theorem 4.12. ([M–R, Theorem 1.30, p. 158]) Let X ⊃ φ and Y be BK spaces. Then
Z = M(X, Y ) is a BK space with ‖z‖ = supx∈SX

‖xz‖ for z ∈ Z.

Proof. Let ‖ · ‖X and ‖ · ‖Y denote the BK norms of X and Y .
Every z ∈ Z defines a diagonal matrix map ẑ : X → Y where ẑ(x) = xz = (xkzk)

∞
k=0

for all x ∈ X, and ẑ ∈ B(X,Y ) by Theorem 3.20 (a). This embeds Z in B(X, Y ), for if
ẑ = 0 then (ẑ(en))n = zn = 0 for all n, hence z = 0.
To see that the coordinates are continuous, we fix n and put u = 1/‖e(n)‖X and
v = ‖e(n)‖Y . Then we have ‖ue(n)‖X = 1 and uv|zn| = u‖zne

(n)‖Y = u‖e(n)z‖Y =
‖(ue(n))z‖Y ≤ ‖z‖.
It remains to show that Z is a closed subspace of the Banach space B(X,Y ). Let
(ẑ(m))∞m=0 be a sequence in B(X, Y ) with ẑ(m) → T ∈ B(X,Y ) (m → ∞). For every
fixed x ∈ X, we obtain ẑ(m)(x) → T (x) ∈ Y (m → ∞), and since Y is a BK space,

this implies xkz
(m)
k = (ẑ(m)(x))k → (T (x))k (m → ∞) for every fixed k. If we choose

x = e(k) then we obtain z
(m)
k → tk = (T (e(k)))k. Thus we have xkz

(m)
k → xktk and
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xkz
(m)
k → (T (x))k (m → ∞), hence T (x) = xt, and so T = t̂. This shows that Z is

closed. ¤

We obtain as an immediate consequence of Theorem 4.12.

Corollary 4.13. ([M–R, Corollary 1.31, p. 158]) The α–, β– and γ–duals of a BK
space X are BK spaces with ‖a‖α = supx∈SX

‖ax‖1 = supx∈SX
(
∑∞

k=0|akxk|) for all

a ∈ Xα, and ‖a‖β = supx∈SX
‖a‖bs = supx∈SX

(supn |
∑n

k=0 akxk|) for all a ∈ Xβ, Xγ.

Furthermore, Xβ is a closed subspace of Xγ.

Proof. The first part is an immediate consequence of Theorem 4.12.
Since the BK norms on Xβ and Xγ are the same and Xβ ⊂ Xγ by Theorem 4.6, the
second part follows from Theorem 3.9. ¤

Theorem 4.12 fails to hold for FK spaces, in general.

Example 4.14. The space ω is an FK space, and ωα = ωβ = ωγ = φ, but φ has no
Fréchet metric.

We give the following result without proof.

Theorem 4.15. ([Wil2, Theorem 7.2.14, p. 108]) Let X ⊃ φ be a BK space. Then Xf

is a BK space.

Theorem 4.16. ([Wil2, Theorem 7.2.15, p. 108]) Let X ⊃ φ be a BK space. Then
Xff ⊃ clX(φ). Hence, if X has AD, then X ⊂ Xff .

Proof. First we have to show φ ⊂ Xf in order for Xff to be meaningful.
This is true because Pk ∈ X ′ for all k where Pk(x) = xk (x ∈ X) since X is a BK space,
and q(Pk) = e(k) (Theorem 4.10 (a)).
Since the second part is equivalent to the first part by Theorem 4.6 (b), we assume that
X has AD, and have to show X ⊂ Xff .
Let x ∈ X be given. We define the functional f : X ′ → |C by f(ψ) = ψ(x) for all ψ ∈ X ′.
Then we have |f(ψ)| = |ψ(x)| ≤ ‖ψ‖‖x‖, and consequently f ∈ X ′′. Let q : X ′ → Xf

be the map of Theorem 4.10 (a) which is an isomorphism by Theorem 4.10 (b), since X
has AK. Thus the inverse map q−1 : Xf → X ′ exists. We define the map g : Xf → |C
by g(b) = ψ(x) (b ∈ Xf ) where x = q−1(b). It follows that

|g(b)| = |ψ(x)| = |f(ψ)| ≤ ‖f‖ ‖ψ‖ = ‖f‖ ‖q−1(b)‖ ≤ ‖f‖ ‖q−1‖ ‖b‖,
and the open mapping theorem (Theorem A.7) yields ‖q−1‖ < ∞. Thus we have g ∈
(Xf )′. Finally it follows that xk = Pk(x) = g(q(Pk)) = g(e(k)) for all k, hence x ∈ Xff .
Thus we have shown X ⊂ Xff . ¤

The condition that X has AD is not necessary for X ⊂ Xff , in general.

Example 4.17. Let X = c0 ⊕ z with z ∈ `∞. Then we have Xff = `f
1 = `∞ ⊃ X, but X

does not have AD.
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5. Matrix Transformations

We apply the results of the previous sections to give necessary and sufficient conditions
on the entries of a matrix A to be in a class (X, Y ).

The first two results concern the transpose AT of a matrix A.

Theorem 5.1. ([Wil2, Theorem 8.3.8, p. 124]) Let X be an FK space and Y be any
set of sequences. If A ∈ (X,Y ) then AT ∈ (Y β, Xf ). If X and Y are BK spaces and
Y β has AD then we have AT ∈ (Y β, clXf (Xβ)).

Proof. Let A ∈ (X,Y ) and z ∈ Y β be given. We define the functional f : X → |C
by f(x) =

∑∞
n=0 znAnx (x ∈ X). Since X is an FK space, Ax ∈ Y by assumption

and z ∈ Y β, we have f ∈ X ′ by Theorem 3.7. Furthermore it follows that f(e(k)) =∑∞
n=0 znank = AT

k z for all k, hence AT z ∈ Xf . This shows that AT ∈ (Y β, Xf ).
Now we assume that X and Y are BK spaces and Y has AD. Then Xβ ⊂ Xf by
Theorems 4.6 (a) and 4.8 (a), and Xf is a BK space by Theorem 4.15. Also clXf (Xβ)
is a closed subspace of Xf . Since A ∈ (X, Y ), we have An = (ank)

∞
k=0 ∈ Xβ for all n,

but AT e(n) = (
∑∞

j=0 ajke
(n)
j )∞k=0 = (ank)

∞
k=0 = An for all n. So we have AT e(n) ∈ Xβ for

all n, and this and A ∈ (Y β, Xf ) imply AT ∈ (Y β, clXf (Xβ)) by Theorem 3.17. ¤

Theorem 5.2. ([Wil2, Theoren 8.3.9, p. 124]) Let X and Z be BK spaces with AK
and Y = Zβ. Then we have (X, Y ) = (Xββ, Y ); furthermore A ∈ (X, Y ) if and only if
AT ∈ (Z,Xβ).

Proof. Since X is a BK space with AK, Xβ is a BK space by Corollary 4.13, and
Xβ = Xf by Theorem 4.8 (b).
First we assume A ∈ (X,Y ). Then it follows by Theorem 5.1 and since Zββ ⊃ Z by
Theorem 4.6 (a) that AT ∈ (Y β, Xβ) = (Zββ, Xβ) ⊂ (Z,Xβ).
Conversely, if AT ∈ (Z, Xβ) then it follows by Theorem 5.1 and since Xββ ⊃ X by
Theorem 4.6 (a) that A ∈ (Xββ, Zβ) ⊂ (X,Zβ) = (X, Y ). This proves the second part.
To prove the first part, we first observe that X ⊂ Xββ implies (Xββ, Y ) ⊂ (X, Y ).
Conversely we assume A ∈ (X, Y ). Then we have AT ∈ (Z,Xβ) as proved above, and
Theorem 5.1 implies A = ATT ∈ (Xββ, Zβ) = (Xββ, Y ). ¤

Remark 5.3. The results of the previous sections yield the characterisations of the classes
(X, Y ) where X and Y are any of the spaces `p (1 ≤ p ≤ ∞), c0, c with the exceptions
of (`p, `r) where both p, r 6= 1,∞ (the characterisations are unknown), and of (`∞, c)
(Schur’s theorem 2.4) and (`∞, c0) ([S–T, 21 (21.1)]) for which no functional analytic
proofs seem to be known.

The class (`2, `2) was characterised by Crone ([Cro] or [Ruc, pp. 111–115]).

Example 5.4. (a) We have (c0, `∞) = (c, `∞) = (`∞, `∞); furthermore A ∈ (`∞, `∞) if
and only if

(5.1) ‖A‖(∞,∞) = sup
n

∞∑

k=0

|ank| < ∞.
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If A is in any of the classes above then ‖LA‖ = ‖A‖(∞,∞).
(b) We have A ∈ (c0, c) if and only if (5.1) holds and

(5.2) lim
n→∞

ank = αk exists for every k.

If A ∈ (c0, c) then

(5.3) lim
n→∞

An(x) =
∞∑

k=0

αkxk.

(c) (Toeplitz’s theorem 2.3) We have A ∈ (c, c) if and only if (5.1) and (5.2) hold, and

(5.4) lim
n→∞

∞∑

k=0

ank = α exists.

If A ∈ (c, c) and x ∈ c then

(5.5) lim
n→∞

An(x) =

(
α−

∞∑

k=0

αk

)
lim
k→∞

xk +
∞∑

k=0

αkxk.

Furthermore have A ∈ (c, c; P ) if and only if (5.1), (5.2) and (5.4) hold with αk = 0
(k = 0, 1, . . . ) and α = 1.

Proof. (a) We have A ∈ (c0, `∞) if and only if (5.1) by (3.3) in Theorem 3.20, and since

cβ
0 = `1 and c∗0 and `1 are norm isomorphic.

Furthermore c0 ⊂ c ⊂ `∞ implies (`∞, `∞) ⊂ (c, `∞) ⊂ (c0, `∞).

Also (c0, `∞) = (cββ
0 , `∞) = (`∞, `∞) by the first part of Theorem 5.2.

The last part is obvious from Theorem 3.20.
(b) Since c is a closed subspace of `∞, the characterisation of the class (c0, c) is an

immediate consequence of Theorem 3.17 and Part (a).
Now we assume A ∈ (c0, c), and write ‖A‖ = ‖A‖(`∞,`∞), for short. Let m be a given non–
negative integer Then it follows from (5.2) and (5.1) that

∑m
k=0 |αk| = limn→∞

∑m
k=0 |ank|

≤ ‖A‖. Since m was arbitrary, we have (αk)
∞
k=0 ∈ `1,

(5.6)
∞∑

k=0

|αk| ≤ ‖A‖ and
∞∑

k=0

|αkxk| < ‖A‖ ‖x‖∞ for all x ∈ c.

Now let x ∈ c0 and ε > 0 be given. Then we can choose an integer k(ε) such that
|xk| ≤ ε/((4‖A‖+ 1)) for all k > k(ε), and by (5.2) we can choose and integer n(ε) such

that
∑k(ε)

k=0 |ank − αk| |xk| < ε/2 for all n > n(ε). Let n > n(ε). Then (5.1) and (5.6)
imply

∣∣∣∣∣Anx−
∞∑

k=0

αkxk

∣∣∣∣∣ ≤
k(ε)∑

k=0

|ank − αk|+
∞∑

k=k(ε)

(|ank + αk|)|xk|

<
ε

2
+

ε

4‖A‖+ 1

( ∞∑

k=0

|ank|+
∞∑

k=0

|αk|
)
≤ ε

2
+

ε

2
= ε.
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Thus we have proved (5.3).
(c) The characterisation of the class (c, c) is an immediate consequence of Part (a),

and Theorems 3.17 and 3.18.
Now we assume A ∈ (c, c). Let x ∈ c be given and ξ = limk→∞ xk. Then x− ξe ∈ c0 and
it follows from (5.3) and (5.5) that

Anx = An(x− ξe) + ξAne →
∞∑

k=0

αk(xk − ξ) + ξα = ξ(α−
∞∑

k=0

ak) +
∞∑

k=0

αkxk,

which is (5.5).
Finally, the characterisation of the class (c, c; P ) is an immediate consequence of the
characterisation of (c, c) and (5.5). ¤
Example 5.5. We have (`1, `1) = B(`1, `1) and A ∈ (`1, `1) if and only if

(5.7) ‖A‖(1,1) = sup
k

∞∑
n=0

|ank| < ∞.

If A ∈ (`1, `1) then

(5.8) ‖LA‖ = ‖A‖(`1,`1).

Proof. Since `1 has AK, Theorem 3.20 (b) yields the first part.
We apply the second part of Theorem 5.2 with X = `1, Z = c0, BK spaces with AK,
and Y = Zβ = `1 to obtain A ∈ (`1, `1) if and only if AT ∈ (`∞, `∞); by Example 5.4
(a), this is the case if and only if (5.7) is satisfied.
Furthermore, if A ∈ (`1, `1) then

‖LA(x)‖1 =
∞∑

n=0

∣∣∣∣∣
∞∑

k=0

ankxk

∣∣∣∣∣ ≤
∞∑

k=0

∞∑
n=0

|ankxk| ≤ ‖A‖(1,1)‖x‖1

implies ‖LA‖ ≤ ‖A‖(1,1). Also LA ∈ B(`1, `1) implies ‖LA(x)‖1 = ‖Ax‖1 ≤ ‖LA‖ ‖x‖1,

and it follows from ‖e(k)‖1 = 1 for all k that ‖A‖(1,1) = supk

∑∞
n=0 |ank| = supk ‖LA(e(k))‖1 ≤

‖LA‖. ¤

6. Measures of Noncompactness

Now we find necessary and sufficient conditions for a matrix A ∈ (X,Y ) to define
a compact operator LA. This can be achieved by applying the Hausdorff measure of
noncompactness.

The first measure of noncompactness was defined and studied by Kuratowski ([Kur]),
and later used by Darbo ([Dar]). The Hausdorff measure of noncompactness was intro-
duced and studied by Goldenstein, Gohberg and Markus ([GGM]). Istrǎţesku introduced
and studied the Istrǎţesku measure of noncompactness ([Ist]). The interested reader is
referred for measures on noncompactness to [AKP, B–G, Ist1, TBA, M–R].

We only consider the Hausdorff measure of noncompactness; it is the most suitable
one for our purposes.

We recall of few standard notations and definitions.
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The convex hull of a set S in a linear space X is the set

conv(S) =

{
x =

n∑

k=0

λksk : λk > 0, sk ∈ S (k = 0, 1, . . . , n) and
n∑

k=0

λk = 1

}

of (finite) convex linear combinations of S.
Let (X, d) be a metric space, x0 ∈ X and r > 0. By B(x0, r) = {x ∈ X : d(x, x0) < r}

we denote the open ball of radius r, centred at x0. If M is a subset of X, then M̄ denotes
the closure of M . A set in a metric space is said to be totally bounded, if for every ε > 0
it can be covered by a finite number of open balls of radius ε. It is well–known that a
subset M of a metric space is compact if and only if every sequence (xn) in M has a
convergent subsequence, and in this case the limit of the subsequence is in M . The set
M is said to be relatively compact if the closure M̄ of M is a compact set. If the set M
is relatively compact, then M is totally bounded. If the metric space is complete, then
the set M is relatively compact if and only if it is totally bounded. It is easy to prove
that a subset M of a metric space X is relatively compact if and only if every sequence
(xn) in M has a convergent subsequence; in this case, the limit of the subsequence need
not be in M .

Let X and Y be infinite–dimensional complex Banach spaces. A linear operator L
from X to Y is called compact if the domain of L is all of X, and, for every bounded
sequence (xn) in X, the sequence (L(xn)) has a convergent subsequence in Y .

Now we give the definition of the Hausdorff measure of compactness of bounded sets
in a metric space.

Definition 6.1. Let (X, d) be a metric space and M denote the collection of bounded
subsets of X. The function χ : M→ [0,∞) with

χ(Q) = inf

{
ε > 0 : Q ⊂

n⋃

k=0

B(xk, rk); xk ∈ X, rk < ε (n = 0, 1, 2 . . . )

}

is called Hausdorff measure of noncompactness; χ(Q) is called the Hausdorff measure of
noncompactness of Q.

The Hausdorff measure of noncompactness has the following basic properties.

Proposition 6.2. ([M–R, Lemma 2.11, p. 168]) Let X be a metric space and Q,Q1,Q2

∈M. Then we have

χ(Q) = 0 if and only if Q is totally bounded,(i)

χ(Q) = χ(Q̄),(ii)

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),(iii)

χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)},(iv)

χ(Q1 ∩Q2) ≤ min{χ(Q1), χ(Q2)}.(v)

Proof. (i), (iii) The statements in (i) and (iii) follow directly from Definition 6.1.
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(ii) We have χ(Q) ≤ χ(Q̄) by (iii).
Let ρ = χ(Q). Then, given ε > 0, there are n = n(ε) ∈ IN and xk ∈ X such that
Q ⊂ ⋃n

k=0 B(xk, ρ + ε/2), and it follows that

Q̄ ⊂
n⋃

k=0

B(xk, ρ + ε/2) =
n⋃

k=0

B(xk, ρ + ε/2) ⊂
n⋃

k=0

B(x0, ρ + ε).

Since ε > 0 was arbitrary, this implies χ(Q̄) ≤ ρ.
(iv) It follows from (iii), that χ(Qj) ≤ χ(Q1 ∪Q2) for j = 1, 2, hence

(6.1) max{χ(Q1), χ(Q2)} ≤ χ(Q1 ∪Q2).

Now let ρ = max{χ(Q1), χ(Q2)} and ε > 0 be given. Then, by Definition 6.1, Q1 and
Q2 can be covered by finite unions of open balls of radius ρ + ε. Obviously the union of
these covers is a finite cover of Q1∪Q2. This implies χ(Q1∪Q2) ≤ ρ+ε, and since ε > 0
was arbitrary, it follows that χ(Q1 ∪ χ(Q2) ≤ ρ. Now this and (6.1) together imply the
equality in (iv).

(v) It follows from (iii) that χ(Q1 ∩ Q2) ≤ χ(Qj) for j = 1, 2, hence χ(Q1 ∩ Q2) ≤
min{χ(Q1), χ(Q2)}. ¤

Proposition 6.3. ([M–R, Theorem 2.12, p. 169]) Let X be a normed space and Q,Q1,Q2

∈M. Then we have

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),(i)

χ(Q + x) = χ(Q) for all x ∈ X,(ii)

χ(λQ) = |λ|χ(Q) for all scalars,(iii)

χ(Q) = χ(conv(Q)).(iv)

Proof. We denote the norm of X by ‖ · ‖.
(i) Let ρj = χ(Qj) for j = 1, 2, ρ = ρ1 + ρ2, and ε > 0 be given. Then there are

nj = nj(ε) ∈ IN0 and x
(j)
k ∈ X (0 ≤ k ≤ nj) for j = 1, 2 such that

(6.2) Qj ⊂
nj⋃

k=0

B(x
(j)
k , ρj + ε/2) for j = 1, 2.

Let x ∈ Q1 + Q2. Then there are xj ∈ Qj (j = 1, 2) such that x = x1 + x2, and it

follows from (6.2) that there are kj ∈ {0, 1, . . . , nj} such that xj ∈ B(x
(j)
kj

, ρj + ε/2) for

j = 1, 2. This implies ‖x − (x
(1)
k1

+ x
(2)
k2

)‖ ≤ ‖x1 − x
(1)
kj
‖ + ‖x2 − x

(2)
k2
‖ < ρ + ε, and

so Q1 + Q2 ⊂
⋃n1

k=0

⋃n2

j=0 B(x
(1)
k + x

(2)
j , ρ + ε). Since ε > 0 was arbitrary, we conclude

χ(Q1 + Q2) ≤ ρ.
(ii) Let x ∈ X. Since obviously χ({x}) = χ({−x}) = 0, it follows from (i) that

χ(Q) = χ ((Q + x)− x) ≤ χ(Q + x) + χ({−x})
= χ(Q + x) ≤ χ(Q) + χ({x}) = χ(Q).
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(iii) Since the equality in (iii) is trivial for λ = 0, we assume λ 6= 0. Let ρ = χ(Q) and
ε > 0 be given. Then we have

(6.3) Q ⊂
n⋃

k=0

B(xk, ρ + ε)

Let y ∈ λQ be given. Then there are x ∈ Q such that y = λx, and k0 ∈ {0, 1, . . . , n}
such that x ∈ B(xk, ρ + ε). We put yk = λxk for k = 0, 1, . . . and obtain ‖y − yk0‖ =
|λ| ‖x − xk‖ < |λ|(ρ + ε). This implies λQ ⊂ ⋃∞

k=0 B(yk, |λ|(ρ + ε)). Since ε > 0 was
arbitrary, we conclude χ(λQ) ≤ |λ|ρ = |λ|χ(Q). Furthermore, it follows by what we
have just shown that χ(Q) = χ(λ−1(λQ)) ≤ |λ−1|χ(λQ), hence |λ|χ(Q) ≤ χ(λQ).

(iv) Since obviously Q ⊂ conv(Q), we obtain χ(Q) ≤ χ(conv(Q)).
We have to show

(6.4) χ(conv(Q)) ≤ χ(Q).

Let ρ = χ(Q) and ε > 0 be given. Then we have (6.3), and every ball Bk = B(xk, ρ + ε)
is a convex set. To see this, let x, y ∈ Bk and 0 ≤ λ ≤ 1. Then we have

‖λx + (1− λ)y − xk‖ ≤ ‖λ(x− xk)‖+ ‖(1− λ)(y − xk)‖ < (λ + (1− λ))(ρ + ε) < ρ + ε.

We define σ = {λ = (λ0, . . . , λn) ∈ IRn :
∑n

k=0 λk = 1 and λk ≥ 0 for k = 0, . . . , n} and
A(λ) =

∑n
k=0 λkBk for every λ ∈ σ.

It follows from (i) and (iii) that

(6.5) χ(A(λ)) ≤
n∑

k=0

λkχ(Bk) ≤ ρ + ε.

Now we show that the set A =
⋃

λ∈σ A(λ) is convex.
Let x, y ∈ A. Then there are λ, µ ∈ σ such that x ∈ A(λ) and y ∈ A(µ), hence x =∑n

k=0 λkxk and y =
∑n

k=0 µkyk with λ = (λ0, . . . , λn), µ = (µ0, . . . , µn) and xk, yk ∈ Bk

(k = 0, 1, . . . ). We put z = tx+(1− t)y where 0 ≤ t ≤ 1 and η = tλ+(1− t)µ and have
to show z ∈ A(η) for some η ∈ σ. Putting ηk = tλk + (1− t)µk, ξk = tλk/ηk for ηk > 0
and ξk = 0 for ηk = 0, and zk = ξkxk + (1− ξ)yk (k = 0, 1, . . . , n), we obtain

n∑

k=0

ηkzk =
n∑

k=0

(ξkxk + (1− ξ)yk) =
n∑

k=0

(tλkxk + (1− t)µkyk) = z.

Since each Bk is a convex set, we have zk ∈ Bk for k = 0, 1, . . . . Furthermore, we
obviously have ηk ≥ 0 and

∑n
k=0 ηk = t

∑n
k=0 λk + (1− t)

∑n
k=0 µk = 1, hence η ∈ σ and

so z ∈ A(η). Thus we have shown that A is convex.
Now we can prove the result.
Since Q ⊂ ⋃n

k=0 Bk ⊂ A and the set A is convex, it follows that conv(B) ⊂ A. Since
the set σ is compact, given ε > 0, we can find finitely many λ(0), . . . , λ(m) ∈ σ such
that for all λ ∈ σ we have mink=0,...,m{‖λ− λ(k)‖1} < ε/M where M = supk=0,...,n{‖x‖ :
x ∈ Bk} < ∞. So if x ∈ A, x =

∑n
k=0 λkxk, λk ≥ 0,

∑n
k=0 λk = 1, then there exists

j ∈ {0, 1, . . . ,m} such that
∑n

k=0 |λk−λ
(j)
k | < ε/M . We put x̄ =

∑n
k=0 λ

(j)
k xk and obtain
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‖x − x̄‖ ≤ ∑n
k=0 |λk − λ

(j)
k | ‖xk‖ < ε, and therefore conv(B) ⊂ ⋃m

j=0 A(λ(j)) + εB̄(0, 1).

Thus we have by Proposition 6.2 (iv) and (6.5)

χ(conv(B)) ≤ max
j=0,...,m

{χ(A(λ(j)) + χ(ε(B̄(0, 1))} ≤ ρ + ε + 2ε.

Since ε > 0 was arbitrary, it follows that (6.4) holds. ¤

Theorem 6.4. ([M–R, Theorem 2.13, p. 169]) Let X be an infinite–dimensional normed
space. Then χ(B̄(0, 1)) = 1.

Proof. We write B = B̄(0, 1).
Obviously we have χ(B) ≤ 1. If χ(B) = ρ < 1 then we choose ε > 0 such that
ρ + ε < 1. Then we have B ⊂ ⋃n

k=0 B(xk, ρ + ε) ⊂ ⋃n
k=0(xk + (ρ + ε)B), and it follows

from Proposition 6.2 (iv) and Proposition 6.3 (ii) and (iii) that

ρ = χ(B) ≤ max
0≤k≤n

χ (xk + (q + ε)B) = (ρ + ε)q.

Since q + ε < 1, this implies q = 0, and so B is a totally bounded set by Proposition
6.2 (i). But this is impossible, since X is an infinite–dimensional space. Thus we have
χ(B) = 1. ¤

Theorem 6.5 (Goldenstein, Gohberg, Markus). ([GGM]; [M–R, Theorem 2.23, p. 173])
Let X be a Banach space with a Schauder basis (bk)

∞
k=0, Q ∈M and Pn : X → X be the

projector onto the linear span of {b0, b1, . . . , bn}. Then we have

(6.6)
1

a
lim sup

n→∞

(
sup
x∈Q

‖(I − Pn)(x)‖
)
≤ χ(Q) ≤ lim sup

n→∞

(
sup
x∈Q

‖(I −Pn)(x)‖
)

where a = lim supn→∞ ‖I − Pn‖.
Proof. Obviously we have for every non–negative integer n

(6.7) Q ⊂ Pn(Q) + (I − Pn)(Q).

It follows from (6.7) and Propositions 6.2 and 6.3 that

(6.8) χ(Q) ≤ χ(Pn(Q)) + χ((I − Pn)(Q)) = χ((I − Pn)(Q)) ≤ sup
x∈Q

‖(I −Pn)(x)‖ ,

and we obtain

(6.9) χ(Q) ≤ inf
n

(
sup
x∈Q

‖(I − Pn)(x)‖
)
≤ lim sup

n→∞

(
sup
x∈Q

‖(I − Pn)(x)‖
)

.

This proves the second inequality in (6.6).
Now we show the first inequality in (6.6).
Let ρ = χ(Q) and ε > 0 be given. Then we have

Q ⊂
n⋃

k=0

Bk(xk, ρ + ε) ⊂ {x0, x1, . . . , xn}+ (ρ + ε)B̄(0, 1).
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This implies that for every x ∈ Q there exist y ∈ {x1, x2, . . . , xn} and z ∈ B̄(0, 1) such
that x = y + (ρ + ε)z, and so

sup
x∈Q

‖(I − Pn)(x)‖ ≤ sup
0≤k≤n

‖(I − Pn)(xk)‖+ (ρ + ε)‖I − Pn‖.

This yields

lim sup
n→∞

(
sup
x∈Q

‖(I − Pn)(x)‖
)
≤ (ρ + ε) lim sup

n→∞
‖I − Pn‖.

Since ε > 0 was arbitrary, the first inequality in (6.6) follows. ¤

So far we considered the measure of noncompactness of bounded subsets of a metric
space. Now we define the measure of noncompactness of an operator.

Definition 6.6. Let κ1 and κ2 be measures of noncompactness on the Banach spaces
X and Y , and MX and MY denote the collections of bounded sets in X and Y . An
operator L : X → Y is said to be (κ1, κ2)–bounded if

L(Q) ∈MY for all Q ∈MX

and there exists a non–negative real c such that

κ2(L(Q)) ≤ c κ1(Q) for all Q ∈MX .

If an operator L is (κ1, κ2)–bounded, then the number

(6.10) ‖L‖(κ1,κ2) = inf{c ≥ 0 : κ2(L(Q)) ≤ c κ1(Q) for all Q ∈MX}
is called the (κ1, κ2)–measure of noncompactness of L.
If κ = κ1 = κ2, then we write ‖L‖κ = ‖L‖(κ,κ).

The following result is useful to compute the Hausdorff measure of noncompactness
of a bounded linear operator between Banach spaces.

Theorem 6.7. ([M–R, Theorem 2.25, p. 175]) Let X and Y be Banach spaces, L ∈
B(X,Y ), SX and B̄X be the unit sphere and the closed unit ball in X, and χ be the
Hausdorff measure of noncompactness. Then we have

(6.11) ‖L‖χ = χ(L(SX)) = χ(L(B̄X)).

Proof. Since conv(S) = B̄X and L(conv(SX)) = conv(L(SX)), it follows from Proposition
6.3 (iv) that

(6.12) χ(L(B̄X)) = χ(L(conv(SX))) = χ(conv(L(SX))) = χ(L(SX)),

and we have χ(L(B̄X)) ≤ ‖L‖χ χ(B̄) = ‖L‖χ by (6.10) and Theorem 6.4.
To prove the converse inequality, let Q ∈ MX be given, ρ = χ(Q) and ε > 0 be given.
Then we have Q ⊂ ⋃n

k=0 B(xk, ρ + ε) and obviously L(Q) ⊂ ⋃n
k=0 L(B(xk, ρ + ε). It
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follows from this, Proposition 6.2 (ii), Proposition 6.2 (ii),and (iii) that

χ(L(Q)) ≤ χ

(
n⋃

k=0

L(B(xk, ρ + ε))

)
≤ χ (L({x0, . . . , xn}+ B(0, ρ + ε))

= χ(L(B(0, ρ + ε))) ≤ χ(L((ρ + ε)B(0, 1))) = χ((ρ + ε)L(B(0, 1)))

≤ (ρ + ε)χ(L(B̄)).

Since ε > 0 was arbitrary, we have χ(L(Q)) ≤ ρχ(L(B̄X)) = χ(Q)χ(L(B̄X)) for all
Q ∈MX , hence ‖L‖χ ≤ χ(L(B̄X)). ¤

Theorem 6.8. ([M–R, Corollary 2.26, p. 175]) Let X, Y and Z be Banach spaces,
L ∈ B(X,Y ), L̃ ∈ B(Y, Z), and C(X,Y ) denote the set of compact operators in B(X,Y ).
Then ‖ · ‖χ is a seminorm on B(X,Y ) and

‖L‖χ = 0 if and only if L ∈ C(X,Y ),(6.13)

‖L‖χ ≤ ‖L‖,
‖L̃ ◦ L‖χ ≤ ‖L̃‖χ ‖L‖χ.

Proof. First we show that ‖L‖χ is a seminorm.
Obviously we have ‖L‖χ ∈ [0,∞) for all L ∈ B(X,Y ).
Now we show ‖λL‖χ = |λ| ‖L‖χ for all scalars λ and all L ∈ B(X,Y ). Since trivially
‖λL‖χ = |λ| ‖L‖χ for λ = 0, we may assume that λ 6= 0. Let ρ = ‖L‖χ and ε > 0 be
given. Then we have χ(L(Q)) ≤ (ρ + ε)χ(Q) and so χ(λL(Q)) = |λ|χ(L(Q)) ≤ |λ|(ρ +
ε)χ(Q) for all Q ∈ MX . Since ε > 0 was arbitrary, it follows that χ(λL(Q)) ≤ |λ|χ(Q)
for all Q ∈ MX , hence ‖λL‖χ ≤ |λ|ρ = |λ| ‖L‖χ. Also it follows by what we have just
shown that ‖L‖χ = ‖λ−1(λL)‖χ ≤ |λ−1| ‖λL‖χ, and so |λ| ‖L‖χ ≤ ‖λL‖χ.
Now we prove the triangle inequality.
Let ρk = ‖Lk‖χ for k = 1, 2, and ε > 0 be given. Then we have χ(Lk(Q)) ≤ (ρk +
ε/2)χ(Q) for all Q ∈MX , and so by Proposition 6.3 (i)

χ ((L1 + L2)(Q)) = χ ((L1(Q) + L2(Q)) ≤ χ(L1(Q)) + χ(L2(Q)) ≤ (ρ1 + ρ2 + ε)χ(Q)

for all Q ∈MX . Since ε > 0 was arbitrary, this implies χ((L1 +L2)(Q)) ≤ (ρ1 +ρ2)χ(Q)
for all Q ∈ MX , hence ‖L1 + L2‖χ ≤ ρ1 + ρ2 = ‖L1‖χ + ‖L2‖χ which is the triangle
inequality.
Thus we have shown that ‖ · ‖χ is a seminorm.

The statement in (6.13) is trivial in view of the remarks at the beginning of this
section.

(i) Let B̄X and B̄Y denote the closed unit balls in X and Y . If y ∈ L(B̄X) then there

is x ∈ B̄X such that y = L(x) and ‖y‖ = ‖L(x)‖ ≤ ‖L‖, hence L(B̄X) ⊂ BY (0, ‖L‖) ⊂
‖L‖ B̄Y , and it follows from (6.11) in Theorem 6.7, Propositions 6.2 (iii) and 6.3 (iii),
and Theorem (6.4) that ‖L‖χ = χ(L(B̄X)) ≤ χ(‖L‖ B̄Y ) = ‖L‖χ(B̄Y ) = ‖L‖.

(ii) Let Q ∈MX be given. Then we have χ((L̃◦L)(Q)) = χ(L̃(L(Q))) ≤ ‖L̃‖χ χ(L(Q))

≤ ‖L̃‖χ ‖L‖χ χ(Q), and (ii) follows from Definition 6.6. ¤
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Now we apply our results to characterise the classes C(`1, `1) and C(c, c). First we
characterise the class C(`1, `1).

Theorem 6.9. ([M–R, Theorem 2.27, p. 175]) Let L ∈ B(`1, `1), and A denote the
infinite matrix such that L(x) = Ax for all x ∈ `1. Then we have L ∈ C(`1, `1) if and
only if

(6.14) lim
r→∞

(
sup

k

∞∑
n=r

|ank|
)

= 0.

Proof. By Theorem 3.20 (b), every L ∈ B(X, Y ) can be represented by a matrix A ∈
(X, Y ). Writing S = S`1 , we have ‖L‖χ = χ(L(S)) by (6.11) in Theorem 6.7. For
r = 0, 1, . . . , let A(r) be the matrix with the first r rows replaced by 0. Then we obtain
‖(I −Pr−1)(L(x))‖1 = ‖A(r)x‖1 hence, by (5.7) in Example 5.5,

sup
x∈S

‖(I − Pr−1)(L(x))‖1 = ‖A(r)‖(`1,`1) = sup
k

∞∑
n=r

|ank|.

Since obviously ‖I − Pr−1‖ = 1 for all r, and the limit in (6.14) exists, it follows from
(6.6) in Theorem 6.5 that χ(L(S)) = limr→∞(supk

∑∞
n=r |ank|). Finally it follows from

(6.13) in Theorem 6.8 that L ∈ C(`1, `1) if and only if (6.14) is satisfied. ¤

Remark 6.10. It follows from Theorem 6.9 and Example 5.5 that every L ∈ B(`1, `1) is
compact.

Now we characterise the class C(X, Y ).
First we give a representation of continuous linear operators from c to c.

Theorem 6.11. We have L ∈ B(c, c) if and only if there exists a matrix A ∈ (c0, c) and
a sequence b ∈ `∞ with

(6.15) lim
n→∞

(
bn +

∞∑

k=0

ank

)
= α̃ exists

such that

(6.16) L(x) = b lim
k→∞

xk + Ax for all x ∈ c;

furthermore, we have

(6.17) ‖L‖ = sup
n

(
|bn|+

∞∑

k=0

|ank|
)

.

Proof. First we assume that L ∈ B(c, c).
We write Ln = Pn ◦ L (n = 0, 1, . . . ) where Pn is the n–the coordinate with Pn(x) = xn
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(x ∈ ω). Since c is a BK space, we have Ln ∈ c∗ for all n, that is by (1.2)

(6.18) Ln(x) = bn lim
k→∞

xk +
∞∑

k=0

ankxk (x ∈ c)

with bn = Ln(e)−
∞∑

k=0

Ln(e(k)) and ank = Ln(e(k)) for k = 0, 1, . . . ,

and by (1.3)

(6.19) ‖Ln‖ = |bn|+
∞∑

k=0

|ank|.

Now (6.18) yields (6.16). Since L(x0) = Ax0 for all x0, we have A ∈ (c0, c), and so
‖A‖ = supn

∑∞
k=0|ank| < ∞ by (5.7) in Example 5.5. Also L(e) = b + Ae implies (6.15),

and we obtain ‖b‖∞ ≤ ‖L(e)‖∞ + ‖A‖ < ∞, that is b ∈ `∞. Consequently we have
C = supn(|bn| +

∑∞
k=0|ank|) < ∞. Now ‖L(x)‖∞ = supn |bn limk→∞ xk +

∑∞
k=0ankxk| ≤

(supn(|bn|+
∑∞

k=0|ank|)) ‖x‖∞ implies ‖L‖ ≤ C. We also have |Ln(x)| ≤ ‖L(x)‖∞ ≤ ‖L‖
for all x ∈ B̄c and all n, and so supn ‖Ln‖ = C ≤ ‖L‖. Thus we have shown (6.17).
Conversely we assume that A ∈ (c0, c) and b ∈ `∞ satisfy (6.15). Since A ∈ (c0, c) and
b ∈ `∞, we obtain C < ∞ by (5.7) in Example 5.5, and so L ∈ B(c, `∞). Finally let x ∈ c
be given and ξ = limk→∞ xk. Then we have x − ξe ∈ c0, Ln(x) = bnξ +

∑∞
k=0ankxk =

(bn +
∑∞

k=0ank)ξ + An(x − ξe) for all n, and it follows from (6.15) and A ∈ (c0, c) that
limn→∞ Ln(x) exists. Since x ∈ c was arbitrary, we have L ∈ B(c, c). ¤

Now we apply Theorems 6.11 and 6.5.

Theorem 6.12. Let L ∈ B(c, c). Using the notations of Theorem 6.11 and writing
αk = limn→∞ ank for all k = 0, 1, . . . , we have

(6.20)
1

2
lim sup

n→∞

(∣∣∣∣∣bn − α̃ +
∞∑

k=0

αk

∣∣∣∣∣ +
∞∑

k=0

|ank − αk|
)
≤ ‖L‖χ

≤ lim sup
n→∞

(∣∣∣∣∣bn − α̃ +
∞∑

k=0

αk

∣∣∣∣∣ +
∞∑

k=0

|ank − αk|
)

Proof. We assume that L ∈ B(c, c).
Let x ∈ c be given, ξ = limk→∞ xk and y = L(x). We have y = bξ + Ax where A ∈ (c0, c)
and b ∈ `∞ by Theorem 6.11, and also note that the limits αk = limn→∞ ank exist for all
k by Example 5.4 (b). We can write

(6.21) yn = bnξ + Anx = ξ

(
bn +

∞∑

k=0

ank

)
+ An(x− ξe) for all .

Since A ∈ (c0, c) it follows from (5.3) in Example 5.2 that

(6.22) lim
n→∞

An(x− ξe) =
∞∑

k=0

αk(xk − ξ) =
∞∑

k=0

αkxk − ξ

∞∑

k=0

αk.
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Thus it follows from (6.21), (6.22) and (6.15) that

(6.23) η = lim
n

yn = ξ

(
α̃−

∞∑

k=0

αk

)
+

∞∑

k=0

αkxk.

We are going to apply the Goldenstein–Gohberg–Markus theorem (Theorem 6.5) to
establish the estimate in (6.20).
First we note that ‖L‖χ = χ(L(B̄c)) by (6.11) in Theorem 6.7. Since every sequence
z = (zk)

n
k=0 ∈ c has a representation z = ζe +

∑∞
k=0(zk − ζ)e(k) with ζ = limk→∞, we

define the projector Pr : c → c by Pr(z) = ζe +
∑r

k=0(zk − ζ)e(k), and it follows that the
sequence z̃ = (I −P)(z) is given by z̃k = 0 for 0 ≤ k ≤ r and z̃k = zk − ζ for k ≥ r + 1.
Therefore we have |z̃k| ≤ |zk|+ |ζ| ≤ 2‖z‖∞ for all k, hence ‖I −Pr‖ ≤ 2. Now let z be
the sequence with zr+1 = (−1) and zk = 1 for k 6= r + 1. Then ζ = 1, ‖z‖∞ = 1 and
‖(I −Pr)(z)‖∞ = 2, hence ‖I − Pr‖ = 2. Thus we it follows that

(6.24) lim
r→∞

‖I − Pr‖ = 2.

Writing fn(x) = ((I −Pr)(L(x)))n, we obtain for n ≥ r + 1 by (6.21) and (6.23)

fn(x) = yn − η = ξbn + An(x)−
(

ξ

(
α̃−

∞∑

k=0

αk

)
+

∞∑

k=0

αkxk

)

= ξ

(
bn − α̃ +

∞∑

k=0

αk

)
+

∞∑

k=0

(ank − αk)xk,

and see that fn ∈ c∗ by (1.2), and ‖fn‖ = |bn − α̃ +
∑∞

k=0αk|+
∑∞

k=0|ank − αk| by (1.3).
Thus we have shown that

sup
x∈B̄c

‖(I − Pr)(L(x))‖ = sup
n≥r+1

‖fn‖ = sup
n≥r

(∣∣∣∣∣bn − α̃ +
∞∑

k=0

αk

∣∣∣∣∣ +
∞∑

k=0

|ank − αk|
)

,

and (6.20) now follows from (6.24), (6.11) in Theorem 6.7 and (6.6) in Theorem 6.5. ¤

The characterisation of the class C(c, c) is an immediate consequence of Theorem 6.12.

Corollary 6.13. Let L ∈ B(c, c). Then L is compact if and only if

(6.25) lim
n→∞

(∣∣∣∣∣bn − α̃ +
∞∑

k=0

αk

∣∣∣∣∣ +
∞∑

k=0

|ank − αk|
)

= 0.

In particular, if A ∈ (c, c) then LA is compact if and only if

(6.26) lim
n→∞

(∣∣∣∣∣
∞∑

k=0

αk − ã

∣∣∣∣∣ +
∞∑

k=0

|ank − αk|
)

= 0.

Remark 6.14. It is obvious from the second part of Corollary 6.13 that if A is a regular
matrix then LA cannot be compact. If A is a conservative matrix and LA is compact then
A is conull, that is ã−∑∞

k=0 αk = 0.
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An operator L ∈ B(c, c) is said to be regular if and only if limn→∞(L(x))n = limk→∞ xk

for all x ∈ c.

Corollary 6.15 (Cohen–Dunford). ([C–D, Corollary 3]) Let L ∈ B(c, c) be regular.
Then L is compact if and only if

(6.27) lim
n→∞

(
|bn − 1|+

∞∑

k=0

|ank|
)

= 0.

Proof. We show that L ∈ B(c, c) is regular if and only if αk = 0 and α̃ = 1. Then the
statement of the corollary is an immediate consequence of Corollary 6.13.
First we assume that L ∈ B(c, c) is regular. By Theorem 6.11 there are a matrix A ∈
(c0, c) such that (6.15) holds, and a sequence b ∈ `∞ such that L(x) = b limk→∞ xk +A(x)
for all x ∈ c. Thus we have

(6.28) lim
n→∞

(L(e(k)))n = 0 = lim
n→∞

ank = 0

and

(6.29) lim
n→∞

(L(e))n = 1 = lim
n→∞

(
bn +

∞∑

k=0

ank

)
= α̃.

Conversely if L(x) = b limk→∞ xk+A(x) and (6.28) and (6.29) are satisfied then it follows
from (6.23) that limn→∞(L(x))n = limk→∞ xk(α̃ −

∑∞
k=0αk) +

∑∞
k=0αkxk = limk xk for

all x ∈ c, and L is regular. ¤

Appendix A. Known Results from Functional Analysis

The following results are well known in functional analysis.

Theorem A.1 (The closed graph lemma). ([Wil1, Theorem 11.1.1, p. 195]) Any con-
tinuous map into a Hausdorff space has closed graph.

Theorem A.2 (The closed graph theorem). ([Wil1, Theorem 11.2.2, p. 200]) If X and
Y are Fréchet spaces and f : X → Y is a closed linear map, then f is continuous.

Theorem A.3 (The Banach–Steinhaus theorem). ([Wil1, Corollary 11.2.4, p. 200]) Let
(fn) be a pointwise convergent sequence of linear functionals on a Fréchet space X. Then
f defined by f(x) = limn→∞ f(x) is continuous.

Theorem A.4 (The Hahn–Banach theorem). ([Wil2, 3.0.4, p. 39]) Let X be a subspace
of a linear topological space Y and f be a linear functional on X which is continuous in
the relative topology of Y . Then f can be extended to a continuous linear functional on
Y .

Theorem A.5 (The uniform boundedness principle). ([Wil1, Corollary 11.2.3, p. 200])
Let (fn) be a pointwise convergent sequence of continuous linear functionals on a Fréchet
space. Then (fn) is equicontinuous.



28 EBERHARD MALKOWSKY

Theorem A.6 (The convergence lemma). ([Wil2, 7.0.3, p.103]) Let (fn) be a sequence
of equicontinuous linear functionals on a linear topological space X. Then the set {x ∈
X : limn→∞ fn(x) exists } is a closed linear subspace of X.

Theorem A.7 (The open mapping theorem). ([Wil1, Theorem 11.2.1, p. 199]) Let X
and Y be Fréchet spaces, and f : X → Y a closed linear map onto. Then f is open.
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[Ist1] V. Istrǎţesku, Fixed Point Theory, An Introduction, Reidel, Dordrecht, Boston and London, 1981
[J–M] A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability, Filomat 17 (2003),

59–78
[K–G] P. K. Kamthan, M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981
[Kur] K. Kuratowski, Sur les espaces complets, Fund. Math 15 (1930), 301–309
[Mad] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1971
[Mad1] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Mathematics 780, Springer

Verlag, Heidelberg–Berlin–New York, 1980
[Mal] E. Malkowsky, Matrix Transformations in a New Class of Sequence Spaces that Includes Spaces

of Absolutely and Strongly Summable Sequences, Habilitationsschrift, Giessen, 1988
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