
Jordan Journal of Mathematics and Statistics (JJMS) 2008, 1(1), pp.31-49

STRONGLY SINGULAR CALDERÓN-ZYGMUND OPERATORS
AND THEIR COMMUTATORS

YAN LIN AND SHANZHEN LU

Abstract In this paper, the authors obtain two kinds of endpoint estimates for
strongly singular Calderón-Zygmund operators. Moreover, the pointwise estimate for
the sharp maximal function of commutators generated by strongly singular Calderón-
Zygmund operators and BMO functions is also established. As its applications, the
boundedness of the commutators on Morrey type spaces will be obtained.

1. Introduction

The introduction of strongly singular integral operators is motivated by a class of
multiplier operators whose symbol is given by ei|ξ|a/|ξ|β away from the origin, where
0 < a < 1 and β > 0. Fefferman and Stein [8] have enlarged the multiplier operators
onto a class of convolution operators. Coifman [6] has also considered a related class
of operators for n = 1.

The strongly singular non-convolution operator was introduced by Alvarez and
Milman in [3], whose properties are similar to those of Calderón-Zygmund operators,
but the kernel is more singular than that of the standard case near the diagonal.
Furthermore, following a suggestion of Stein, the authors in [3] showed that the

pseudo-differential operators with symbols in the class S−β
α, δ, where 0 < δ ≤ α < 1

and n(1−α)/2 ≤ β < n/2, are included in the strongly singular Calderón-Zygmund
operator defined as follows.

Definition 1.1. Let T : S → S ′ be a bounded linear operator. T is called a strongly
singular Calderón-Zygmund operator if the following conditions are satisfied:

(1) T can be extended into a continuous operator from L2 into itself.

(2) There exists a continuous function K(x, y) away from the diagonal {(x, y) :
x = y} such that

|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)| ≤ C
|y − z|δ
|x− z|n+ δ

α

,
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if

2|y − z|α ≤ |x− z| for some 0 < δ ≤ 1, 0 < α < 1,

and 〈Tf, g〉 =
∫

K(x, y)f(y)g(x)dydx, for f, g ∈ S with disjoint supports.

(3) For some n(1− α)/2 ≤ β < n/2, both T and its conjugate operator T ∗ can be
extended into continuous operators from Lq to L2, where 1/q = 1/2 + β/n.

Alvarez and Milman [3, 4] discussed the boundedness of strongly singular Calderón-
Zygmund operators on Lebesgue spaces.

Theorem A [3] If T is a strongly singular Calderón-Zygmund operator, then T can
be defined to be a continuous operator from L∞ to BMO.

Theorem B [4] If T is a strongly singular Calderón-Zygmund operator, then T is
of weak (L1, L1) type.

Moreover, the authors in [10] obtained that the strongly singular Calderón-Zygmund
operator T is bounded from H1 to L1. Obviously, T is bounded on Lp, 1 < p < ∞,
by the interpolation theory.

Now, let us return to the classical singular integral defined by

Tf(x) = lim
ε→0

∫

|x−y|>ε

K(x− y)f(y)dy,

where the kernel K ∈ C(Rn \ {0}) satisfies the following three conditions:

(a)
∫

ε<|x|<N
K(x)dx = 0, for any 0 < ε < N < ∞;

(b) |K(x)| ≤ C|x|−n, x 6= 0;

(c) |K(x− y)−K(x)| ≤ C|y||x|−n−1, for all |x| > 2|y|.
A well-known result in [14] showed that the above operator T is bounded on the

BMO space.

Definition 1.2. LMO is a subspace of BMO, equipped with the semi-norm

[f ]LMO = sup
0<r<1

1 + | ln r|
|Br|

∫

Br

|f(x)− fBr |dx + sup
r≥1

1

|Br|
∫

Br

|f(x)− fBr |dx,

where Br denotes a ball in Rn with radius r.

The authors in [12, 13] also obtained the LMO-boundedness of classical singular
integral operators.

These results mentioned above essentially depend on the cancellation condition of
the kernel in (a). A natural question is: whether the strongly singular Calderón-
Zygmund operator T is bounded on the BMO and LMO spaces if we add a condition
similar to (a) to it. In Section 2, we will give an affirmative answer.
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On the other hand, a pointwise estimate for the sharp maximal function of strongly
singular Calderón-Zygmund operators was obtained in [4]:

(Tf)](x) ≤ CM2(f)(x).

Here and in what follows, for 1 < p < ∞, Mp(f)(x) = M(|f |p)1/p(x), where M stands
for the Hardy-Littlewood maximal function. As a matter of fact, this estimate was
generalized in [9] as follows:

(Tf)](x) ≤ CMs(f)(x), for any
n(1− α) + 2β

2β
≤ s < ∞,

where α, β are given as in Definition 1.1. Then a weighted norm inequality can

be established immediately. T is bounded on Lp
ω(Rn) for n(1−α)+2β

2β
≤ s < p < ∞

and ω ∈ Ap/s. By the well known result of Alvarez-Bagby-Kurtz-Pérez in [2], the
commutator [b, T ] generated by a strongly singular Calderón-Zygmund operator T
and a BMO function b, which is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for suitable functions f , is also bounded on Lp
ω(Rn) for n(1−α)+2β

2β
≤ s < p < ∞

and ω ∈ Ap/s. In particular, [b, T ] is bounded on Lp(Rn), n(1−α)+2β
2β

< p < ∞. A

standard discussion about duality and interpolation yields the boundedness of [b, T ]
on Lp(Rn), 1 < p < ∞.

Besides the above method, there is another way to obtain the weighted norm
estimate of [b, T ]. In Section 3, we will establish a pointwise estimate for the sharp
maximal function of [b, T ] directly. Furthermore, this estimate can be applied to
get boundedness properties of [b, T ] on other function spaces. In Section 4, we will
state the boundedness of [b, T ] on Morrey type spaces, which can be regarded as
applications of the result in Section 3.

In what follows, for 1 < p < ∞, p′ is the conjugate index of p, that is, 1/p+1/p′ = 1.
χE is the characteristic function of a set E. Ec = Rn \E is the complementary set of
E. C’s will be constants which may vary from line to line. We will always denote by
B(x,R) the ball centered at x with radius R > 0, CB(x,R) = B(x,CR) for C > 0,
|B(x,R)| the Lebesgue measure of B(x,R) and fB(x, R) = 1

|B(x, R)|
∫

B(x, R)
f(y)dy.

2.Endpoint estimates

The most useful property of a BMO function is the classical John-Nirenberg in-
equality, which shows that functions in BMO are locally exponentially integrable.
This implies that for any 1 ≤ q < ∞, the functions in BMO can be described by
means of the condition:

sup
B⊂Rn

(
1

|B|
∫

B

|f(x)− fB|qdx

)1/q

< ∞.

33



Based on the above property, the following estimate can be established, which is
very convenient in applications.

Lemma 2.1. Let f be a function in BMO. Suppose 1 ≤ p < ∞, x ∈ Rn, and
r1, r2 > 0. Then

(
1

|B(x, r1)|
∫

B(x, r1)

|f(y)− fB(x, r2)|pdy

)1/p

≤ C

(
1 +

∣∣ln r1

r2

∣∣
)
‖f‖BMO,

where C > 0 is independent of f , x, r1 and r2.

Proof We only consider the case 0 < r1 ≤ r2. Actually, the similar procedure also
works for another case 0 < r2 < r1.

For 0 < r1 ≤ r2, there are k1, k2 ∈ Z such that 2k1−1 < r1 ≤ 2k1 and 2k2−1 < r2 ≤
2k2 . Then k1 ≤ k2 and

(k2 − k1 − 1) ln 2 < ln
r2

r1

< (k2 − k1 + 1) ln 2.

Thus, we have

(
1

|B(x, r1)|
∫

B(x, r1)

|f(y)− fB(x, r2)|pdy

)1/p

≤
(

1

|B(x, r1)|
∫

B(x, r1)

|f(y)− fB(x, 2k1 )|pdy

)1/p

+ |fB(x, 2k1) − fB(x, r2)|

≤
(

2n

|B(x, 2k1)|
∫

B(x, 2k1 )

|f(y)− fB(x, 2k1 )|pdy

)1/p

+ |fB(x, r2) − fB(x, 2k2 )|

+

k2−1∑

j=k1

|fB(x, 2j+1) − fB(x, 2j)|

≤ C‖f‖BMO +
1

|B(x, r2)|
∫

B(x, r2)

|f(y)− fB(x, 2k2)|dy

+

k2−1∑

j=k1

1

|B(x, 2j)|
∫

B(x, 2j)

|f(y)− fB(x, 2j+1)|dy

≤ C‖f‖BMO +
2n

|B(x, 2k2)|
∫

B(x, 2k2 )

|f(y)− fB(x, 2k2 )|dy

+

k2−1∑

j=k1

2n

|B(x, 2j+1)|
∫

B(x, 2j+1)

|f(y)− fB(x, 2j+1)|dy

≤ ‖f‖BMO

(
C + 2n + 2n(k2 − k1)

)
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≤ C

(
1 + ln

r2

r1

)
‖f‖BMO.

This completes the proof of the lemma. ¤

LMO is essentially a special case of a kind of function spaces introduced by Spanne
in [12]. For a LMO function, there are some properties similar to those of a BMO
function. One can refer to [1] for the details.

For 1 ≤ p < ∞, define

[f ]LMOp = sup
0<r< 1

2

(1 + | ln r|)
(

1

|Br|
∫

Br

|f(x)− fBr |pdx

)1/p

.

Lemma 2.2. [1] If f ∈ LMO, then for any 1 ≤ p < ∞, there exists a constant
C > 0 depending only on n and p such that

[f ]LMOp ≤ C[f ]LMO.

Lemma 2.3. Let ε > 0 and f ∈ LMO. Then for any ball B = B(x, r) with
0 < r < 1

2
,

∫

Bc

|f(y)− fB|
|x− y|n+ε

dy ≤ Cr−ε(1 + | ln r|)−1[f ]LMO,

where C > 0 is independent of f , x and r.

Proof Since r−1 > 2, there exists a k ∈ N+ such that 2k < r−1 ≤ 2k+1. Then
k ∼ | ln r|.

∫

Bc

|f(y)− fB|
|x− y|n+ε

dy ≤
∞∑

j=0

∫

2j+1B\2jB

|f(y)− fB|
|x− y|n+ε

dy

≤ C

∞∑
j=0

(2jr)−ε 1

|2j+1B|
∫

2j+1B

|f(y)− fB|dy

≤ C

∞∑
j=0

(2jr)−ε

(
1

|2j+1B|
∫

2j+1B

|f(y)− f2j+1B|dy +

j∑
i=0

|f2i+1B − f2iB|
)

= C

k−1∑
j=0

(2jr)−ε

(
1

|2j+1B|
∫

2j+1B

|f(y)− f2j+1B|dy +

j∑
i=0

|f2i+1B − f2iB|
)

+C

∞∑

j=k

(2jr)−ε

(
1

|2j+1B|
∫

2j+1B

|f(y)− f2j+1B|dy +

j∑
i=0

|f2i+1B − f2iB|
)

:= I + II.
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Let us estimate II first.

II ≤ C

∞∑

j=k

(2jr)−ε

(
1

|2j+1B|
∫

2j+1B

|f(y)− f2j+1B|dy

+

j∑
i=0

1

|2iB|
∫

2iB

|f(y)− f2i+1B|dy

)

≤ C‖f‖BMOr−ε

∞∑

j=k

j 2−εj

≤ Cr−ε[f ]LMO

∞∑

j=k

j2

k + 1
2−εj

≤ Cr−ε[f ]LMO

∞∑
j=1

j2

1 + | ln r|2
−εj

= Cr−ε(1 + | ln r|)−1[f ]LMO.

To estimate I, we use the fact that 0 < 2j+1r < 1 for 0 ≤ j ≤ k − 1.

I ≤ C

k−1∑
j=0

(2jr)−ε

(
1 + | ln 2j+1r|

(1 + | ln 2j+1r|)|2j+1B|
∫

2j+1B

|f(y)− f2j+1B|dy

+

j∑
i=0

1 + | ln 2i+1r|
(1 + | ln 2i+1r|)|2i+1B|

∫

2i+1B

|f(y)− f2i+1B|dy

)

≤ Cr−ε[f ]LMO

k−1∑
j=0

2−εj

(
1

1 + | ln 2j+1r| +

j∑
i=0

1

1 + | ln 2i+1r|
)

≤ Cr−ε[f ]LMO

∞∑
j=0

j∑
i=0

2−εj

1 + | ln 2i+1r|

= Cr−ε[f ]LMO

∞∑
i=0

1

1 + | ln r + (i + 1) ln 2|
∞∑
j=i

2−εj

= Cr−ε[f ]LMO

∞∑
i=0

2−εi

1 + | ln r + (i + 1) ln 2|
≤ Cr−ε(1 + | ln r|)−1[f ]LMO.

The following basic inequality was applied to get the last inequality above.

1 + |a + b| ≥ (1 + |a|)−1(1 + |b|), for any a, b ∈ R. (2.1)
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Combining the above two estimates, we can obtain the desired result. ¤

Now, let us state the main results in this section.

Theorem 2.1. Let T be a strongly singular Calderón-Zygmund operator and T1 =
0. Suppose f ∈ BMO such that Tf(x) exists a.e. in Rn. Then Tf ∈ BMO and

‖Tf‖BMO ≤ C‖f‖BMO,

where C > 0 is independent of f .

Proof Let α, β and δ be given as in Definition 1.1. For any ball B = B(x0, r) ⊂ Rn,
there are two cases.

(i) r > 1.

Write

f(x) = f2B + (f(x)− f2B)χ8B(x) + (f(x)− f2B)χ(8B)c(x)

:= f1(x) + f2(x) + f3(x).

It follows from the hypothesis T1 = 0 that Tf1 = 0.

By Hölder’s inequality, the L2-boundedness of T and Lemma 2.1, we have

1

|B|
∫

B

|Tf2(x)|dx ≤
(

1

|B|
∫

B

|Tf2(x)|2dx

)1/2

≤ C

(
1

|B|
∫

Rn

|f2(y)|2dy

)1/2

= C

(
1

|8B|
∫

8B

|f(y)− f2B|2dy

)1/2

≤ C‖f‖BMO.

Since Tf(x) and Tf2(x) exist a.e. in Rn, there is a point z1 ∈ B such that
|Tf3(z1)| < ∞. For any x ∈ B and y ∈ (8B)c, 2|x − z1|α ≤ 2(2r)α < 4r < |y − z1|
since r > 1. It follows from (2) of Definition 1.1, Lemma 2.1 and r > 1 that

1

|B|
∫

B

|Tf3(x)− Tf3(z1)|dx

≤ 1

|B|
∫

B

∫

(8B)c

|K(x, y)−K(z1, y)||f(y)− f2B|dydx

≤ C
1

|B|
∫

B

∫

(8B)c

|x− z1|δ
|y − z1|n+δ/α

|f(y)− f2B|dydx

≤ Crδ

∞∑

k=3

∫

2k+1B\2kB

|f(y)− f2B|
|y − z1|n+δ/α

dy
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≤ Crδ

∞∑

k=3

(2kr)−δ/α 1

|2k+1B|
∫

2k+1B

|f(y)− f2B|dy

≤ Crδ−δ/α‖f‖BMO

∞∑

k=3

k2−kδ/α

≤ C‖f‖BMO.

The last inequality is due to δ − δ/α < 0.

Thus,

1

|B|
∫

B

|Tf(x)− (Tf)B|dx

≤ 2

|B|
∫

B

|Tf(x)− Tf3(z1)|dx

≤ 2

|B|
∫

B

|Tf2(x)|dx +
2

|B|
∫

B

|Tf3(x)− Tf3(z1)|dx

≤ C‖f‖BMO.

(ii) 0 < r ≤ 1.

Let B̃ = B(x0, r
α). Write

f(x) = f2 eB + (f(x)− f2 eB)χ8 eB(x) + (f(x)− f2 eB)χ(8 eB)c(x)

:= f4(x) + f5(x) + f6(x).

It follows from the hypothesis T1 = 0 that Tf4 = 0.

By Hölder’s inequality, the (L2, Lq′)-boundedness of T in Definition 1.1, where
1/q′ = 1/2− β/n, Lemma 2.1 and 0 < r ≤ 1, we have

1

|B|
∫

B

|Tf5(x)|dx ≤
(

1

|B|
∫

B

|Tf5(x)|q′dx

)1/q′

≤ C|B|−1/q′
(∫

8 eB
|f(y)− f2 eB|2dy

)1/2

≤ C‖f‖BMO|B|−1/q′|B̃|1/2

= C‖f‖BMOrn(α/2−1/q′)

≤ C‖f‖BMO.

The last inequality is due to α/2 − 1/q′ ≥ 0 which follows from β ≥ n(1 − α)/2 in
Definition 1.1.

Since Tf(x) and Tf5(x) exist a.e. in Rn, there is a point z2 ∈ B such that

|Tf6(z2)| < ∞. For any x ∈ B and y ∈ (8B̃)c, 2|x− z2|α ≤ 2(2r)α < 4rα < |y − z2|
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since 0 < r ≤ 1. It follows from (2) of Definition 1.1 and Lemma 2.1 that

1

|B|
∫

B

|Tf6(x)− Tf6(z2)|dx

≤ 1

|B|
∫

B

∫

(8 eB)c

|K(x, y)−K(z2, y)||f(y)− f2 eB|dydx

≤ C
1

|B|
∫

B

∫

(8 eB)c

|x− z2|δ
|y − z2|n+δ/α

|f(y)− f2 eB|dydx

≤ Crδ

∞∑

k=3

∫

2k+1 eB\2k eB

|f(y)− f2 eB|
|y − z2|n+δ/α

dy

≤ Crδ

∞∑

k=3

(2krα)−δ/α 1

|2k+1B̃|

∫

2k+1 eB
|f(y)− f2 eB|dy

≤ C‖f‖BMO

∞∑

k=3

k2−kδ/α

= C‖f‖BMO.

Thus,

1

|B|
∫

B

|Tf(x)− (Tf)B|dx

≤ 2

|B|
∫

B

|Tf(x)− Tf6(z2)|dx

≤ 2

|B|
∫

B

|Tf5(x)|dx +
2

|B|
∫

B

|Tf6(x)− Tf6(z2)|dx

≤ C‖f‖BMO.

Therefore, in both cases, we have

1

|B|
∫

B

|Tf(x)− (Tf)B|dx ≤ C‖f‖BMO,

which completes the proof of the theorem. ¤

Remark 2.1. If we assume that T ∗1 = 0, then by a discussion similar to that in
Theorem 2.1, it follows that

‖T ∗f‖BMO ≤ C‖f‖BMO

for f ∈ BMO such that T ∗f(x) exists a.e. in Rn.
39



Given f ∈ H1, for any g ∈ VMO with compact support, the duality relation
(H1)′ = BMO and T ∗1 = 0 imply that

|〈Tf, g〉| = |〈f, T ∗g〉| ≤ ‖T ∗g‖BMO‖f‖H1 ≤ C‖g‖BMO‖f‖H1 .

Because the set of VMO functions with compact support is dense in VMO, we can
get that Tf ∈ (VMO)′ = H1. Moreover

‖Tf‖H1 ≤ C‖f‖H1 .

Actually, this conclusion has been obtained by Alvarez and Milman in [3].

From a contrasting point of view, the BMO-boundedness in Theorem 2.1 can be
also formulated by a duality discussion based on the (H1, H1)-boundedness in [3].
As a matter of fact, we give a straightforward proof for it in this paper.

On the other hand, the boundedness of strongly singular Calderón-Zygmund op-
erators on the LMO space can be established as follows.

Theorem 2.2. Let T be a strongly singular Calderón-Zygmund operator and T1 =
0. Suppose f ∈ LMO such that Tf(x) exists a.e. in Rn. Then Tf ∈ LMO and

[Tf ]LMO ≤ C[f ]LMO,

where C > 0 is independent of f .

Proof Let α, β and δ be given as in Definition 1.1. For any ball B = B(x0, r) ⊂ Rn

with r ≥ 1, by the BMO-boundedness of T in Theorem 2.1, we have

1

|B|
∫

B

|Tf(x)− (Tf)B|dx ≤ ‖Tf‖BMO ≤ C‖f‖BMO ≤ C[f ]LMO.

It suffices to prove that, for any ball B = B(x0, r) ⊂ Rn with 0 < r < 1, the
following inequality holds.

1 + | ln r|
|B|

∫

B

|Tf(x)− (Tf)B|dx ≤ C[f ]LMO.

We consider two cases respectively.

(i) 16−1/α ≤ r < 1.

The BMO-boundedness of T also implies that

1 + | ln r|
|B|

∫

B

|Tf(x)− (Tf)B|dx

=
1 + ln 1

r

|B|
∫

B

|Tf(x)− (Tf)B|dx

≤ C
1

|B|
∫

B

|Tf(x)− (Tf)B|dx

≤ C‖Tf‖BMO ≤ C‖f‖BMO ≤ C[f ]LMO.
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(ii) 0 < r < 16−1/α.

Let B̃ = B(x0, r
α). Write

f(x) = f8 eB + (f(x)− f8 eB)χ8 eB(x) + (f(x)− f8 eB)χ(8 eB)c(x)

:= f1(x) + f2(x) + f3(x).

It follows from the hypothesis T1 = 0 that Tf1 = 0.

Notice that 0 < 8rα < 1/2. By Hölder’s inequality, the (L2, Lq′)-boundedness of
T , Lemma 2.2 and (2.1), we have

1

|B|
∫

B

|Tf2(x)|dx ≤
(

1

|B|
∫

B

|Tf2(x)|q′dx

)1/q′

≤ C|B|−1/q′
(∫

8 eB
|f(y)− f8 eB|2dy

)1/2

≤ C[f ]LMO2|B|−1/q′|B̃|1/2(1 + | ln 8rα|)−1

≤ C[f ]LMOrn(α/2−1/q′)(1 + | ln 8 + α ln r|)−1

≤ C[f ]LMO(1 + ln 8)(1 + α| ln r|)−1

≤ C[f ]LMO(1 + | ln r|)−1.

Since Tf(x) and Tf2(x) exist a.e. in Rn, there is a point x∗ ∈ B such that

|Tf3(x
∗)| < ∞. For any x ∈ B and y ∈ (8B̃)c, 2|x− x∗|α ≤ 2(2r)α < 4rα < |y − x∗|

since 0 < r < 1. It follows from (2) of Definition 1.1, Lemma 2.3 and (2.1) that

1

|B|
∫

B

|Tf3(x)− Tf3(x
∗)|dx

≤ 1

|B|
∫

B

∫

(8 eB)c

|K(x, y)−K(x∗, y)||f(y)− f8 eB|dydx

≤ C
1

|B|
∫

B

∫

(8 eB)c

|x− x∗|δ
|y − x∗|n+δ/α

|f(y)− f8 eB|dydx

≤ Crδ

∫

(8 eB)c

|f(y)− f8 eB|
|y − x0|n+δ/α

dy

≤ Crδ(8rα)−δ/α(1 + | ln 8rα|)−1[f ]LMO

≤ C[f ]LMO(1 + | ln r|)−1.

Thus,

1 + | ln r|
|B|

∫

B

|Tf(x)− (Tf)B|dx
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≤ 2
1 + | ln r|
|B|

∫

B

|Tf(x)− Tf3(x
∗)|dx

≤ 2
1 + | ln r|
|B|

∫

B

|Tf2(x)|dx + 2
1 + | ln r|
|B|

∫

B

|Tf3(x)− Tf3(x
∗)|dx

≤ C[f ]LMO.

This gives the desired result. ¤

Remark 2.2. It should be pointed out that there is a counterpart of the above result
for T ∗ under the hypothesis T ∗1 = 0, but we omit the details for their similarity.

3.A pointwise estimate for the sharp maximal function

The definition and properties of BMO functions lead us naturally to study the
sharp maximal function f ], associated to any locally integrable function f . It is
defined by

f ](x) = sup
B3x

1

|B|
∫

B

|f(y)− fB|dy

∼ sup
B3x

inf
a∈C

1

|B|
∫

B

|f(y)− a|dx,

where the supremum is taken over all balls B containing x. In fact, the above
definition is equivalent to the one by taking the supremum over all balls B centered
at x.

A function f is in the BMO exactly when f ] is a bounded function. This obser-
vation illustrates that sometimes significant aspects of f are most directly expressed
in terms of f ].

In this section, we will state a pointwise estimate for the sharp maximal function of
commutators generated by strongly singular Calderón-Zygmund operators and BMO
functions. First, the following elementary inequality is necessary.

Lemma 3.1. Given ε > 0, there is

ln x ≤ 1

ε
xε, for all x ≥ 1.

Let ϕ(x) = ln x− 1
ε
xε, x ≥ 1. The above result comes from the monotone property

of the function ϕ.

Besides the (Lp, Lp)-boundedness, 1 < p < ∞, the strongly singular Calderón-
Zygmund operator T still has other boundedness properties on Lebesgue spaces. By
interpolating between (L2, Lq′) and (L∞, BMO), where q is given as in Definition 1.1

and 1/q + 1/q′ = 1, T is bounded from Lu to Lv, 2 ≤ u < ∞ and v = uq′
2

. It is easy

to see that 0 < u
v
≤ α. Then we interpolate between (L2, Lq′) and weak (L1, L1)
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to obtain the boundedness of T from Lu to Lv, 1 < u ≤ 2 and v = uq′
2q′−uq′+2u−2

.

In this situation, 0 < u
v
≤ α if and only if n(1−α)+2β

2β
≤ u ≤ 2. In a word, T is

bounded from Lu to Lv, n(1−α)+2β
2β

≤ u < ∞ and 0 < u
v
≤ α. In particular, if we

restrict n(1−α)
2

< β < n
2

in (3) of Definition 1.1, then T is bounded from Lu to Lv,
n(1−α)+2β

2β
< u < ∞ and 0 < u

v
< α.

Theorem 3.1. Let T be a strongly singular Calderón-Zygmund operator, α, β, δ be

given as in Definition 1.1 and n(1−α)
2

< β < n
2
. If b ∈ BMO, then for any s satisfying

n(1−α)+2β
2β

< s < ∞, there exists a constant C > 0 such that for all smooth functions

f with compact support,

([b, T ]f)](x) ≤ C‖b‖BMO(Ms(Tf)(x) + Ms(f)(x)).

Proof For any ball B = B(x0, r) ⊂ Rn, there are two cases.

(i) r > 1.

Write

[b, T ]f(x) = [b− b2B, T ]f(x)

= (b− b2B)Tf(x)− T ((b− b2B)fχ2B)(x)− T ((b− b2B)fχ(2B)c)(x).

Then

1

|B|
∫

B

|[b, T ]f(x)− T ((b2B − b)fχ(2B)c)(x0)|dx

≤ 1

|B|
∫

B

|b(x)− b2B||Tf(x)|dx +
1

|B|
∫

B

|T ((b− b2B)fχ2B)(x)|dx

+
1

|B|
∫

B

|T ((b− b2B)fχ(2B)c)(x)− T ((b− b2B)fχ(2B)c)(x0)|dx

:= I1 + I2 + I3.

For I1, Hölder’s inequality yields that

I1 ≤
(

1

|B|
∫

B

|b(x)− b2B|s′dx

)1/s′(
1

|B|
∫

B

|Tf(x)|sdx

)1/s

≤ C‖b‖BMOMs(Tf)(x0).

Since n(1−α)+2β
2β

< s < ∞, there exists an s0 such that n(1−α)+2β
2β

< s0 < s < ∞.

Denote by 1/s1 = 1/s0 − 1/s. To estimate I2, we use Hölder’s inequality and the
(Ls0 , Ls0)-boundedness of T .

I2 ≤
(

1

|B|
∫

B

|T ((b− b2B)fχ2B)(x)|s0dx

)1/s0
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≤ C

(
1

|B|
∫

2B

|b(y)− b2B|s0|f(y)|s0dy

)1/s0

≤ C

(
1

|2B|
∫

2B

|b(y)− b2B|s1dy

)1/s1
(

1

|2B|
∫

2B

|f(y)|sdy

)1/s

≤ C‖b‖BMOMs(f)(x0).

For any x ∈ B and y ∈ (2B)c, 2|x − x0|α ≤ 2rα < 2r ≤ |y − x0| since r > 1. It
follows from (2) of Definition 1.1 and Lemma 2.1 that

I3 ≤ 1

|B|
∫

B

∫

(2B)c

|K(x, y)−K(x0, y)||b(y)− b2B||f(y)|dydx

≤ C
1

|B|
∫

B

∫

(2B)c

|x− x0|δ
|y − x0|n+δ/α

|b(y)− b2B||f(y)|dydx

≤ Crδ

∞∑

k=1

∫

2k+1B\2kB

1

|y − x0|n+δ/α
|b(y)− b2B||f(y)|dy

≤ Crδ

∞∑

k=1

(2kr)−δ/α 1

|2k+1B|
∫

2k+1B

|b(y)− b2B||f(y)|dy

≤ Crδ−δ/α

∞∑

k=1

2−kδ/α

(
1

|2k+1B|
∫

2k+1B

|b(y)− b2B|s′dy

)1/s′

×
(

1

|2k+1B|
∫

2k+1B

|f(y)|sdy

)1/s

≤ C‖b‖BMOMs(f)(x0)r
δ−δ/α

∞∑

k=1

k2−kδ/α

≤ C‖b‖BMOMs(f)(x0).

(ii) 0 < r ≤ 1.

For the index s0 which we chose above, there exists an l0 such that T is bounded
from Ls0 to Ll0 and 0 < s0

l0
< α. Then we can take a θ satisfying 0 < s0

l0
< θ < α.

Let B̃ = B(x0, r
θ).

Write

[b, T ]f(x) = [b− b2B, T ]f(x)

= (b− b2B)Tf(x)− T ((b− b2B)fχ2 eB)(x)− T ((b− b2B)fχ(2 eB)c)(x).

Then

1

|B|
∫

B

|[b, T ]f(x)− T ((b2B − b)fχ(2 eB)c)(x0)|dx
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≤ 1

|B|
∫

B

|b(x)− b2B||Tf(x)|dx +
1

|B|
∫

B

|T ((b− b2B)fχ2 eB)(x)|dx

+
1

|B|
∫

B

|T ((b− b2B)fχ(2 eB)c)(x)− T ((b− b2B)fχ(2 eB)c)(x0)|dx

:= II1 + II2 + II3.

The estimate of II1 is the same as that of I1.

II1 ≤ C‖b‖BMOMs(Tf)(x0).

The inequality 0 < s0

l0
< θ implies that ε1 := n( θ

s0
− 1

l0
) > 0. By Hölder’s inequality,

the (Ls0 , Ll0)-boundedness of T , Lemma 2.1 and Lemma 3.1, we have

II2 ≤
(

1

|B|
∫

B

|T ((b− b2B)fχ2 eB)(x)|l0dx

)1/l0

≤ C|B|−1/l0

(∫

2 eB
|b(y)− b2B|s0|f(y)|s0dy

)1/s0

≤ C|B|−1/l0|B̃|1/s0

(
1

|2B̃|

∫

2 eB
|b(y)− b2B|s1dy

)1/s1
(

1

|2B̃|

∫

2 eB
|f(y)|sdy

)1/s

≤ C‖b‖BMOMs(f)(x0)|B|−1/l0|B̃|1/s0

(
1 + (1− θ) ln

1

r

)

≤ C‖b‖BMOMs(f)(x0)|B|−1/l0|B̃|1/s0

(
1 +

1

ε1

r−ε1

)

≤ C‖b‖BMOMs(f)(x0)r
n( θ

s0
− 1

l0
)−ε1

= C‖b‖BMOMs(f)(x0).

The fact θ < α implies that ε2 := δ
α
(α − θ) > 0. For any x ∈ B and y ∈ (2B̃)c,

we have 2|x − x0|α ≤ 2rα ≤ 2rθ ≤ |y − x0| since 0 < r ≤ 1. It follows from (2) of
Definition 1.1, Lemma 2.1 and Lemma 3.1 that

II3 ≤ 1

|B|
∫

B

∫

(2 eB)c

|K(x, y)−K(x0, y)||b(y)− b2B||f(y)|dydx

≤ C
1

|B|
∫

B

∫

(2 eB)c

|x− x0|δ
|y − x0|n+δ/α

|b(y)− b2B||f(y)|dydx

≤ Crδ

∞∑

k=1

∫

2k+1 eB\2k eB

1

|y − x0|n+δ/α
|b(y)− b2B||f(y)|dy

≤ Crδ

∞∑

k=1

(2krθ)−δ/α 1

|2k+1B̃|

∫

2k+1 eB
|b(y)− b2B||f(y)|dy
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≤ Crδ−θδ/α

∞∑

k=1

2−kδ/α

(
1

|2k+1B̃|

∫

2k+1 eB
|b(y)− b2B|s′dy

)1/s′

×
(

1

|2k+1B̃|

∫

2k+1 eB
|f(y)|sdy

)1/s

≤ C‖b‖BMOMs(f)(x0)r
δ
α

(α−θ)

∞∑

k=1

2−kδ/α

(
1 + k + (1− θ) ln

1

r

)

≤ C‖b‖BMOMs(f)(x0)r
δ
α

(α−θ)

∞∑

k=1

2−kδ/α

(
1 + k +

1

ε2

r−ε2

)

≤ C‖b‖BMOMs(f)(x0)r
δ
α

(α−θ)−ε2

∞∑

k=1

k2−kδ/α

= C‖b‖BMOMs(f)(x0).

Thus,

([b, T ]f)](x0) ∼ sup
B(x0, r)⊂Rn

inf
a∈C

1

|B|
∫

B

|[b, T ]f(x)− a|dx

≤ C‖b‖BMO(Ms(Tf)(x0) + Ms(f)(x0)),

which completes the proof of the theorem. ¤

4.Applications

The estimate for the sharp maximal function of [b, T ] can be applied to obtain
not only the weighted norm estimate of the commutator, but also the boundedness
properties of it on Morrey type spaces.

Morrey spaces have been of great value through the years in studying the local
behavior of solutions to second elliptic partial differential equations.

Definition 4.1. A function f ∈ Lp
loc(Rn) is said to belong to the classical Morrey

space M q
p (Rn), 1 ≤ p ≤ q < ∞, if

‖f‖Mq
p (Rn) = sup

B⊂Rn

|B| 1q− 1
p

(∫

B

|f(x)|pdx

) 1
p

< ∞.

Remark 4.1. It can be seen from the special case Mp
p (Rn) = Lp(Rn) with 1 ≤ p <

∞ that Morrey spaces are the generalization of Lebesgue spaces.

Definition 4.2. For a general positive function ϕ on Rn × R+, the generalized
Morrey space Lp, ϕ with 1 ≤ p < ∞ is defined as follows.

Lp, ϕ = {f ∈ Lp
loc(R

n), ‖f‖Lp, ϕ < +∞},
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where

‖f‖Lp, ϕ = sup
x∈Rn, r>0

(
1

ϕ(x, r)

∫

B(x,r)

|f(y)|pdy

)1/p

.

Remark 4.2. For the case ϕ(x, r) = rn(1−p/q), we have Lp, ϕ = M q
p (Rn), 1 ≤ p ≤

q < ∞. Thus, generalized Morrey spaces are the generalization of classical Morrey
spaces.

Lemma 4.1. [11] Let ϕ be a positive function on Rn × R+ and there exists a C0

satisfying 0 < C0 < 2n such that

ϕ(x, 2r) ≤ C0ϕ(x, r) for all x ∈ Rn, r > 0. (4.1)

If 1 < p < ∞, then

‖Mf‖Lp, ϕ ≤ C‖f‖Lp, ϕ and ‖Mf‖Lp, ϕ ≤ C‖f ]‖Lp, ϕ ,

where C is independent of f .

Remark 4.3. As a matter of fact, the conditions of ϕ are stronger in [11] than
here. However, just for the result of Lemma 4.1, the hypothesis here is sufficient.

The boundedness of classical Calderón-Zygmund operators on Morrey spaces was
established by Chiarenza and Frasca in [5]. More generally, the authors in [7] ob-
tained that a sublinear operator T is bounded on Morrey spaces if T is bounded on
Lp(Rn) and satisfies the following size condition:

|Tf(x)| ≤ C

∫

Rn

|f(y)|
|x− y|n dy,

for any f ∈ L1(Rn) with compact support and x /∈ suppf .

For the case when T is a strongly singular Calderón-Zygmund operator, the cor-
responding conclusion has been obtained in [9].

Lemma 4.2. [9] Let T be a strongly singular Calderón-Zygmund operator, and α,
β, δ be given as in Definition 1.1. Let ϕ be a positive function on Rn×R+ such that

(4.1) holds. If n(1−α)+2β
2β

< p < ∞, then T is bounded on Lp, ϕ.

Now, let us proceed with the boundedness of commutators generated by strongly
singular Calderón-Zygmund operators and BMO functions on Morrey spaces.

Theorem 4.1. Let T be a strongly singular Calderón-Zygmund operator, α, β, δ

be given as in Definition 1.1 and n(1−α)
2

< β < n
2
. Let ϕ be a positive function on

Rn × R+ such that (4.1) holds. If b ∈ BMO, then [b, T ] is bounded on Lp, ϕ, where
n(1−α)+2β

2β
< p < ∞.
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Proof Noticing that n(1−α)+2β
2β

< p < ∞, there exists an s such that n(1−α)+2β
2β

<

s < p < ∞. By Lemma 4.1, Theorem 3.1 and Lemma 4.2, we have

‖[b, T ]f‖Lp, ϕ ≤ ‖M([b, T ]f)‖Lp, ϕ ≤ C‖([b, T ]f)]‖Lp, ϕ

≤ C‖b‖BMO

(‖Ms(Tf)‖Lp, ϕ + ‖Ms(f)‖Lp, ϕ

)

= C‖b‖BMO

(‖M(|Tf |s)‖1/s

Lp/s, ϕ + ‖M(|f |s)‖1/s

Lp/s, ϕ

)

≤ C‖b‖BMO

(‖|Tf |s‖1/s

Lp/s, ϕ + ‖|f |s‖1/s

Lp/s, ϕ

)

= C‖b‖BMO

(‖Tf‖Lp, ϕ + ‖f‖Lp, ϕ

)

≤ C‖b‖BMO‖f‖Lp, ϕ .

This completes the proof of the theorem. ¤

In particular, if we take ϕ(x, r) = rn(1−p/q), 1 ≤ p ≤ q < ∞, then Remark 4.2
implies the following conclusion.

Corollary 4.1. Let T be a strongly singular Calderón-Zygmund operator, α, β, δ

be given as in Definition 1.1 and n(1−α)
2

< β < n
2
. If b ∈ BMO, then [b, T ] is bounded

on M q
p (Rn), where n(1−α)+2β

2β
< p ≤ q < ∞.
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