Jordan Journal of Mathematics and Statistics (JJMS) 2008, 1(1), pp.51-67

MATRIX TRANSFORMATIONS BETWEEN SETS OF
THE FORM W, AND OPERATOR GENERATORS OF
ANALYTIC SEMIGROUPS

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

ABSTRACT. In this paper we establish a relation between the no-
tion of operators of analytic semigroups and matrix transforma-
tions from a set of sequences into ws,. We get extensions of some
results given by Labbas and de Malafosse concerning applications
of the sum of operators in the nondifferential case.

1. INTRODUCTION

In this paper we consider spaces that generalize the well-known sets
wo and we, introduced and studied by Maddox [5]. Recall that wy and
We are the sets of sequences that are strongly summable to zero and
bounded by the Cesaro method of order 1. In [14], Malkowsky and
Rakocevi¢ gave the characterizations of matrix maps between wy, w,
or We, and w? and between wy, w, or we, and ¢;.

More recently it was shown by de Malafosse and Malkowsky in [10]
that if A is an ezponentially bounded sequence then (ws(N), Weo(A))
is a Banach algebra. Here we give some properties of operators on
the sets W, = D,w,, and apply these results to particular matrix
transformations between W, and w,. In this way we are led to explictly
represent two unbounded operators that are given by infinite matrices
and are operator generators of an analytic semigroup (OGASG). Recall
that this notion is a part of the theory of the sum of operators which
was studied by many authors such as Da Prato and Grisvard [1], R.
Labbas and B. Terreni [3]. In Labbas and de Malafosse [4] and de
Malafosse [7] there are some applications of the sum of operators in
the theory of summability in the noncommutative case. In this paper
we extend some results given in [4, 7] using the same infinite matrices
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A and B defined here in sets We C wo,. The relative boundedness with
respect to A or B is not satisfied, so we are not within the framework
of the classical perturbation theory given by Kato [2].

In this paper we establish a relation between results in summability
and the basic notions used in the theory of the sum of operators.

2. PRELIMINARIES AND WELL KNOWN RESULTS

For a given infinite matrix M = (apm)nm>1 we define the operators
M, for every integer n > 1 by M,(X) = > °_| @pm®p, where X =
(xn)n>1 and the series are convergent. So we are led to the study of the
infinite linear system M,,(X) =y, with n = 1,2,... where Y = (y,,)n>1
is a one-column matrix and X is the unknown, see [6, 9]. The equations
M, (X) =y, forn =1,2,... can be written in the form M X =Y where
MX = (M,(X))n>1. We write s for the set of all complex sequences
and f., c¢o for the set of all bounded and null sequences. Recall that
l+ and ¢q are Banach spaces with norm || X ||, = sup,;s;(|zx]|)-

For subsets E and F of s we denote by (E, F') the set of all matrices
that map F to F. For any subset E of s, we write M E for the set of
all Y € s such that Y = MX for some X € E. If F'is a subset of s,
we will denote

(1) FM)=Fy={Xe€s : Y=MXeF}

A Banach space E of complex sequences with the norm || - ||g is a
BK space if each projection P, : X — P, X = x, 1is continuous,
(cf. [15]). A BK space E C s is said to have AK if every sequence
X = (2y)n>1 € E has a unique representation X =Y 7, z,e™ where
e(™ is the sequence with 1 in the n-th position and 0 otherwise. The
set B(E) of all bounded linear operators L mapping F to E normed
by

1L (X))l

1 Xl

is a Banach algebra and it is well known that if E is a BK space with
AK, then B(F) = (E,E).

Throughout we write U™ for the set of all sequences (uy,),>1 with
up, > 0 for all n, and e = (1,...,1,...). For A = (A\,)n>1 € U™ we define
the operator C'(\) = (Com)nm>1 by

L if m <
— ifm<n
Cnm = )\n - (n:1,2,)
0 otherwise.

IL15(5) = sup
X#0
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It can be proved that the matrix A(\) = (¢),,,,)nm>1 With

An if m=n,
Gm =13 =M1 ifm=n—1andn>2,
0 otherwise

is the inverse of C'()), see [8]. In the following we use the spaces of
strongly bounded and summable sequences defined by

Weo(A) = {X =(p)n>1 €5 : CN)|X| €l },
wo(A) = {X e€s:CMN)|X]| €}

and
wA) ={X €s: X —le € wy(A) for some [ € C}.

These spaces were studied by Malkowsky with the concept of exponen-
tially bounded sequences, see [12]. Recall that Maddox [5] defined and
studied the special case )\, = n for all n of these sets, and denoted
them by we, w° and w.

3. THE SET W, AND MATRIX TRANSFORMATIONS BETWEEN SETS
OF THE FORM W¢

In this section we state some results on W, = D, w and deal with
the triangles A, and Af that map W, to itself.

3.1. Some properties of the set W,. For a given sequence 7 =
(Tn)n>1 € UT, we define the infinite diagonal matrix D; = (7,,00m )n.m>1-
For any subset E of s, D, E is the set of sequences with (z,,/Tn)n>1 € E.
We put W, = D,we, W2 = D’ for 7 € UT. So W, = w., and
WO = wP. Tt is well known [5] that ws, and w® are BK spaces with the

norm
1 n
Hm%=in]w>
n m=1

and w® has AK. It was shown in [10] that the class (ws,ws) 1S a
Banach algebra normed by

2) HW@%zm(
(o) = S0 X

To study operator generators of analytic semigroups (OGASG) map-
ping into ws, we need the following results.
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Proposition 3.1. Let 7, v € UT. Then
i) The sets W, and W° are BK spaces normed by

1 |$m|
X = - —
®) Xy, = sup (n§j m)

m=1

and W? has AK.
ii) We have T/v € Ly if and only W, C W,.
ii1) We have W, = W, if and only if there are Cy, Co > 0 with

(4) C; < Z—n < Cy for all n.

n

Proof. i) Since wy, and w® are BK spaces with the norm || - ||... by [14,
Theorem 3.3, pp. 179], the sets W, = woo(D1y7) and WP = w®(Dy;)
are BK spaces normed by || X |lw, = || D1/ X||w.. and W} has AK.

ii) The necessity is a direct consequence of the inequality

[ Xlw, < HEH 1 X ||y, for all X € W,.

= -

Conversely put A\, = n for all n. The inclusion W, C W, means that
y = C(N)Dy/-|X| € Lo implies C(X)D1,,|X| € € for all X € s. Since
(C(N)D1/r)~t = D;A(N), we have W, C W, if and only if

Y € ly implies C(\) D1, D-A(N)Y € Ly, for all Y,
that is
(5) C()‘)DT/VA(A) S (goovgoo)'

An elementary calculation gives

T, T, m
(—m— mH)— form <n—1,
n

Vm Vm+1
[C(A)DT/VA()\)}nm - T—n for m = n,
VTL
0 otherwise.

Then using the characterization of (¢, ) and condition (5), we ob-

tain
T, s T, m T,
n m m—+1 n
— < sup E — — —+— | <ooforalln
Up n>2 m—1 Vm Vmt1| Un

and we conclude 7/v € (.
iii) W, = W, is equivalent to 7/v, v/7 € { that is (4). O



MATRIX TRANSFORMATIONS AND OPERATOR GENERATORS 55

3.2. On the operators A7 and A7 considered as maps in W,.

For given a given sequence p = (p,)n>1 we consider the operator A;f
defined by

[A;X}n = Tp — Pnne for all n > 1.
Then we get, putting (AF)" = A7,
[A;X}n =Ty — Pn_1ZTn_1 foralln > 1

with the convention zy = 0.
To state the next Lemma we write for all 7 € U" and all integers k

p+(7') = (PnTn-H/Tn)nZly P (7—) = (pnTn—l/Tn)nZQ:
1 _ 1 _
0f (r) = (1+ ) sup(lp; (7)]) and 6, () = (1+ ) sup (|p, (7)]) -

k™ n>k k™ n>kt

We also use the infinite matrices Z;(N) and E;(N) defined by

a7 o 327 o
N —(N

E;r( ) = 1 ande( ) = 1
0 . 0

where AX(N) and A;(N) are the finite matrices whose elements are those

of the N first rows and columns of A;“ and A;. Now we state the next
lemma.

Lemma 3.2. Let p,7 € UT.
i) a) For every N > 1 we have ||I — AjEj(N)HfWﬁWT) < 05(7);
b) if lim,—o|p,t (T)] = O then

Jim (|1 = APSIOf, =0

ii) a) For every N > 1 we have ||I — AP_E;(N)||>(*WT7WT) < Oy(7);
b) if lim,_|p, (7)| = 0 then

Jim |1 a5, (W, W5)

*

=0.

Proof. (i) a) First we note that the finite matrix A s invertible,
since it is an upper triangle. We get AjE;(N) = (Qpm)nm>1 With a,, =
1 for all n; aypny1 = —py for all n > N; and ap,, = 0 otherwise. For
every X € W,, we have (I - AYSr ™)X = (£,(X))ns1 with £,(X) =0
foralln < N —1 and &,(X) = ppxne1 for all n > N. Then we obtain
for every X € W,
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_AFYHWY) |Pkivk+1|
HU Ap Zp Wr sgg (n Z
leel . Jownl SN
k k+1 k
(nz ) < sup [<sup|p;:<f>|) Ly ]
n>N N Tk Tk+1 n>N | \k>N heNg1 Tk
n+1 1 O oy
< sup ( ) sup (lef (M) sup ( Y =
n>N n+1 vy TE

n

[( >sup<rp (r >|>] 1X . = 05Xl
We conclude

11— AZZZ(N)H(WT,WT) < 05(r) < 1.

i) b) Part b) is a direct consequence of Part a).
ii) Part ii) can be shown similarly. O

As a direct consequence of the preceding lemma we get the following

Proposition 3.3. Let p,TeUT.

i) a) If p™(7) € b then AT € (W, W) and
(6) HA;”(WT,WT) < 1427 (7)llewe -
b) If
) T (1 (7)) < 1

then the operator A+ 15 a bijection from W, to itself.
i) a) If p~(7) € b then AT € (W, W;) and

||Ap_||(WT,WT) < T+ lp7 (M)l
b) if
(8) T (1o (7)) < 1
then the operator AJ is a bijection from W to itself and
Wi (A,)) = W..
Proof. i) a) We have for each X € W,

1 = |xm + pmxm+1|
+ — _
147 X[, = sup (n 2

m=1
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and, since pp@mi1/Tm = P (T)Tm41/Tms1, we deduce

n+l 1 & om
HMMWﬂMmHmwmmw< §X|0>

1
n n+ — T

< (420" (7) llew) IX 1w,

and conclude that (6) holds.
i) b) By (7), for given [ with 0 <[ < 1 and for every ¢ > 0, there is
an integer ng such that

sup (|, (7)]) <l +e.

n>ng

Then there is an integer n; with sup,,>,, (1+1/n) < 14¢. So there is
N > max{ng,n1} and a sufficiently small ¢ > 0 such that

05(1) < (1+e)(l+¢e) < 1.
We obtain

*

(Wr ;)

and A;Z;(N) has a unique inverse in the Banach algebra (W.,W,).
Since ZX(N) obviously is bijective from W, into itself, the operators
defined by AZFZ:(N) and A = (AjE:(N))(Z;(N))_l are bijective from
W, into itself. So for every given Y € W, the equation A;X =Y has

a unique solution in W..
ii) a) Here we have

— 1 . ’xm pmxmfl‘
A X ||, = =3
” P H ! Slrlbp (n — Tm

n—1
- n—1 1 |2
< | X
w|mHmWMg%7LW¢ZﬂJ

m=1

< (L4 lp~(M)lle) IX]lw, for all X € W,.

(R

< 0% (1) <1,

This concludes the proof of ii) a).
Reasoning as in the proof of i) b), we get ii) b). O

4. SPECTRAL PROPERTIES OF AN UNBOUNDED OPERATOR
MAPPING INTO Wqo

In this section we apply the results obtained in the previous section
to special matrix transformations A from W¢ to ws, and give some
spectral properties of A.
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4.1. Definition and first properties of an upper triangle map-
ping into we. Let a = (ay)n>1 and b = (b,),>1 be two sequences
and define the matrix A by [A],., = an, [Alnnt1 = b, for all n and
[A],;m = 0 otherwise. Then we have

(9) An(X) = apxy, + bpx,yq for all n and all X € s.
We assume that A satisfies the following properties

(10) i) a€U", and there is oy > 0 with a,, > asn for all n,
ii) there is M4 > 0 such that |b,| < My for all n.

We immediatly get the following properties.

Lemma 4.1. Let a be as in (10). Then we have
Z) Wl/a C Weo,

ZZ) Wl/zz 7é Weo ,
i) A € (Wi, W), and for every X € Wy,

(11) [AX e < ([ X[, + 2Ma]| X e -

Proof. i) Part i) is a consequences of Proposition 3.1.
ii) To show Part (i), let € € wo, and assume X = (7,),>1 tends to
e in Wy,, that is

1 n
1, = ellw,, = sup (5 S il — 1|> — 0 (p— o0).

m=1
We have for every n by (10) i)
1X5, = ellw,y > aalzn, — 1

and z,, — 1 (p — o0). There is py such that for every p > py and
every n, |x,,| > 1/2 and

1 — 1 &
Xl = > || > o > am.
m=1 m=1

Again we have for every k by(10) i)

1 1 3
falluw > 5= > > aase 3o m > Jaa(k - 1),
=k

Finally we obtain || X}[lw,,, > |la/lw../2 = oo for p > py. This contra-
dicts the fact that X, € Wy, for all p.
iii) Part iii comes from the inequality

12”:% | n+1
- m+1Lm -
n 2~ +1Tm+1 n nol

1 n+1
> [brri| < 2Mal|X [, for all m.
k=2
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O

4.2. Spectral properties of A. We state some elementary lemmas
which can be found in [4].

Lemma 4.2. Let ¢ €]0,7/2] and x > 0. Then we have
|z — A > xsine for all X € C with |Arg(\)| > e.
Lemma 4.3. Let > 0. Then we have

|z — Al > |\|sin®  for all X\ = |\e? ¢ R,
|z — Al > || forall A e R™.

Now we can state the next results on the inverse of A — \I.

Proposition 4.4. Let €4 €]0,7/2[. Then the infinite matric A — X\
considered as operator in Wi, is invertible for every A € C with
|Arg(N)| > €4, that is

(A=A € (W4, weo)
and

(12) (A= AI)

M
) < 7 for all A # 0 with [Arg(\)| > €a.

— Al
Proof. i) We fix €4 €]0,7/2[ and consider the sector

II., ={A € C: |Arg(\)| < ea}.
We put for every A ¢ II.,

71H*
(Woo,Weo

bn
Ap — A
and DS\ = D(l/((an—)\)n)‘ Then we have [DS\(A — )\I)]nn = 1, [DS\(A —
M) ]pnt1 = Xn and [D4(A — AI)]pm = 0 otherwise. We apply Lemma
4.2 with p = x and obtain

Xn =

My

———— for all n and all A ¢ I1.,
an Siney

Ixn| <

and, since a,, — 0o (n — o0), there is ng such that

Qn

Sup X

n>ng Ap+1

1
< 1 for all A ¢ I1.,.

Then we get, putting AT = D) (A — AI) and applying Lemma 3.2

’ <o (D) <iiel)<tian
Wiy =\ g ) ST ) =5

for all A ¢ I1.,.

- agmge
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Therefore A;Z;(no) is bijective from W, to itself and (A;Ei("o))*l

(Wija, Wia). Now we have for every Y € wq
Y'= DY = (yn/(an — )\))nZI € Wisa.

Indeed, we get for every n and A ¢ II.,

n

1 1
nm:1 Qyp, SIN E A SN € 4

and [[Y'[lw,,, <[|Y [lw../sinea. We successively obtain

(ArDpe9) Y e W

(A= AD)7'Y = 2100 (AT o) Y e Ty, for all V€ wi

and

(A=A =500 (AFSF00) T DI e (w0, Wi y,) for all A ¢TI, .

S

Now we show that (12) holds. We have, for all A ¢ II., and for all

Y € W, E;(m’) € (Woo, Woo) and
(13) [[(A— AI)—IYH%O

< [I=2 (Ars)”

(Woo,Woo) H Woo ,Woo

It follows that

n

1
) 1Dyl - sw (5 3

and we get by Lemma 4.3

Ym 1
< sup ——[[V]|,,
am—AD—iiE’ LY

1
(15) DY, < sup

n>1 'n,_A|
< 1/|A\|sinf for A = |\|e? ¢ R,
R RYARY for A € R™.

Now we have, again by Lemma 3.2

(Woo,Weo)

17— Ay <5 (e) = <1+ni) sup (| xn|) <

DAY e -
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and then we easily get in the Banach algebra (wuo, Weo)

D[N
m=0

< f: 27" =12,
m=0

Finally we have from the expression of Z;(no) in [4, p. 198]

a6 [z’

(Woo ,Woo

(no)
S0 15 sy <

and we deduce from (13), (14), (15) and (16) that (12) holds. This
concludes the proof. O

5. MATRIX TRANSFORMATIONS IN w,, AND (OGASG)

In this section we apply the previous results to explicitly present
matrices A and B for which D(A) and D(B) are not embedded in each
other and that are (OGASG).

5.1. Recall of some results in the general case. Here we recall
some results given in Da Prato-Grisvard [1] and Labbas-Terreni [3].
The set E' is a Banach space and we consider two closed linear operators
A and B, whose domains are D(A) and D(B) and included in £. Then
we define SX = AX + BX for every X € D(A) N D(B). The spectral
properties of A and B are

there are Cy, Cp > 0 and ¢4, ep €]0, 7| such that
i) pA) D> 4,={2€C:|Arg(z)| <m—eca} and
(4= 1) sy < T for all = € X5, —{0k
ii) p(B)D > 5={2€C:|Arg(z)] <m—ep} and
I8 = 21) sy < T2 for all = € £, ~{0;

iii) eatep<m

\

If (H) is satisfied then A and B are (OGASG) not strongly continuous
at t = 0 and we have o(A)No(—B) =0 and p(A)Up(—B) = C. In [4]
an application was given for the solvability of the equation (A + B +
A)X =Y where A and B were considered as operators in /, in the
noncommutative case.
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Note that it is well known (cf. [1]) in the commutative case, that is
when

(A—&n) ™ (B—nI)" = (B—nI)"(A=¢)" =0
for all § € p(A), n € p(B),

that if D(A) and D(B) are dense in E, then the bounded operator
defined by

1

Ly=—5— [(B+zD)7" (A= M ==z dz for all A > 0,
7r
T

where I' is an infinite sectorial curve in p(A — AI) N p(—B), coincides
with (A+ B — AI)~.

5.2. Matrix transformations as (OGASG). In our case A is de-

fined in Subsection 4.1 by (9) and (10). Then the matrix B is defined
for 8= (Bn)nz1, 7 = (Yn)n>1 € s by

Bn(X) = ypxn_1 + Buxy, for all n and all X € s
with the convention zy = 0, where we assume

i) BeU" and lim,_o Bor = L # 0,

(17) ii) limy oo Bop+1/G2k+1 = 00
iii) «) thereis Mp > 0 such that |ye| < Mp for all n,

B) k1 = o(1) (n — 00).
We easily see that B € (Wy/4, W) and for each X € Wy
| BX lwa < 1 X[, + MB[|X e -
These results lead to the next remarks.

Remark 5.1. We note for the convenience of the reader that, for in-
stance, we can define A and B as follows; a, = n; b =¢; 5, = 1 if
n=2k, B,=kifn=2k+1;v,=1ifn=2k, v, =1/k ifn=2k+1
for all n and k.

Remark 5.2. We will see in Lemma 5.3 and Theorem 5.4 that the con-
dition in (10) i1) implies that A is a closed operator. The conditions in
(10) i) and (17) i), i) imply that D(A) and D(B) are not embedded in
each other. We will see in Theorem 5.4 that the conditions in (10) i)
and (17) i), i) imply that B + pl considered as an operator in Wy g
is 1nvertible and

(B4 pul)™" € (Woo, Wiyg) for all p with |Arg(p)| < 7 — ep.

Now we state the next result.
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Lemma 5.3. Let A, B be as in (10) and (17). Then we have
Z) Wl/a C Weo;s Wl/ﬁ C Weo)
1) Woo(A) = Wijq and wee(B) = Wiy,
i) Wisq and Wi are not embedded in each other,
iU) Wl/a 7é Woo, Wl/,@ 7é Woo -

Proof. i) The inclusion W/, C ws follows from Proposition 3.1 where
T =1/a, v = e and 1/a € ¢y C l. Furthermore we have 1/8; 11 =
(1/agks1)(agk41/Boks1) = o(1) (k — o0) and Wy/3 C we.

ii) First we have A € (Wj/q,ws) by Lemma 4.1. It remains to
show ws(A) = Wiy,. First we have Wi/, C wo(A). Indeed it follows
from [13, Theorem 1, pp. 260] that I € (W1/,, w(A)) if and only if
A€ (Wyjg,Ws). Now let X € woo(A). Then we have Y = AX € wq.
In the proof of Proposition 4.4, we can take A = 0. Indeed there is ng
such that

[bn] _ My

Xn = < ——for all n > ng.

a, ~ oy
Then, for Y € w., we successively get Di/,Y = (yn/an)n>1 € Wi/a,
(A;ZI(HO)) 'D1/Y € Wy,, and since A™! =y () (A+E+ (mo)y— 'D1 /4,
we conclude

X =AY € Wy,
This shows weo(A) C Wi/e, and since Wi/, C woo(A), we conclude
Woo(A) = Wi/e. The proof is similar for 5.

iii) Part iii) is a direct consequence of Proposition 3.1, since a/( and
Bla ¢ ls. -

iv) The property Wi/, # ws has been shown in Lemma 4.1. To
show m # W, We use the notations of Lemma 4.1. Here we have

1 n
(18) ||X}; - 6||W1/@ = sup (5 Z B |Tmp — 1|) — 0 (p — o0)

and

n—1

1
HXp/ - ewa = sup o Zﬁ2k+1|$2k+1,p — 1]
n

n

Bokt1
> sup | — Z A2k+1|Tokt1,p — 1
n A2k+1

175%-1—1
> aysup | — (2k 4+ 1)|xor11 1
(23022004 i, -
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Since fori1/ask41 — 00 (K — 00), there is Cy > 0 with Bopy1/a2k11 >
C for all k£ and

asCh

X, >

p_ele/B = n|Tpy — 1| = ayCt|ay, — 1| for all n.

From (18), we have z,, — 1 (p — o0) for all n. There is p, such that
for every n and each p > py, |z,p| > 1/2 and

1 — 1
(19) 17 s, 2 7 2 B = 5Bl

We have for every integer ¢

2i+1 1 22—1—15
2k+1
||B||woo = 4 +3 Z Bory1 = 4i+ 3 Z a2k+1a2k+1
e 212“(% 1) 5 a2 DRI
4i+3 & 4ir3

Since (20 +1)(2i + 3)/(4i + 3) — o0 (i — o0), we deduce ||F|w,, = 00,
and by (19) we get || X,llw,, > [IBllw./2 = oo for p > pp. This
contradicts the fact that X, € Wy for all p. Therefore we conclude
Wl//g 7é Weo- O

We immediatly obtain the next result.

Theorem 5.4. The two linear operators A and B are closed in the
space ws, and satisfy

i) D(A) = Wiy,

ii) D(B) = Wl/g,

iii) D(A) # Waso, D(B) # Wee.

iv) There are €4, eg > 0 (with €4 + e < ™) such that (12) holds
and

M
— forall p # 0 and |Arg(p)| < m—ep.

() = Tyl

(20) |[(B 4 pl)™!

Proof. We show that A is a closed operator. For this, we consider a
sequence X = (Tp)n>1 tending to X = (2,),>1 in we as p tends to
infinity, where X € Wy, for all p. Then we have AX] —Y (p — o0)
In Wee wWith Y = (y)n>1. It follows that for every n

An(X;:) — Ap(X) = yn (p — )
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with A,(X,) = anTnp + bnTnyip, Yo = Ann + bpTyy1, and since

1 & 1 &
- Z |amxm| - - Z |ym - bmxm+1|
nm:l nm:l

<Y |way + 2M 4| X ||, for all n,

we conclude X € W, /,. The proof for B is similar.

i), ii) and iii) These parts are direct consequences of Lemma 5.3.

iv) The first part in iv) has been shown in Proposition 4.4. Let
ep €]0,7/2[. We show that for every p with |Arg(u)| < 7 — ep, the
infinite matrix B + pf, considered as an operator in W 3, is invertible
and

(B+pl)™" € (Wi, wa).

We put X5 = {p € C: |Arg(n)] < m —ep}. To be able to deal with
the inverse of B+ pul, we need to study the sequences with |yagy1|/ B2k
and |yar/(Bar + )| Bor/ Bar—1. We have by (17) i), iii)

(21) Yok+1/Bor — 0 (k — o0).
On the other hand we get for every u € ¥p

(22) Yok Bar < Mp Do _ Mg 1
Bok + | Bor—1 — Poxsinep Por—1  sinep Pog—1
and
1 _ 1
(23) = d2kt = o(1) (k — ).

Pok—1  Pak—1 a1
We deduce from (21), (22) and (23) that there is ny such that

1 1
\72k+1|6— < ZSinEB for 2k +1 > ngq,
2%

and
Yok Bak 1

Do + 11| P2k 4
We define the matrices D), = D(1/(3,+4),), and then D (B + pul) = A;
with &, = 7./ (Bn + 1) We have

for 2k > ny for all u € ¥p.

M 1 —1
o1 = |Kaxl O 5 Do = forall k> =
Pok—1 ﬁ% sinep Bor—1 4 2
and
Bogr1 1 . 1. 1
oy = |k < —sine sinep 3 ==
2 = Kokt o 1 BﬂQkH BP2k+1

for all k > 2.
2
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It follows that

n 1
sup (’F&n‘ﬁﬁ ) = max{o, 0y max} < 1 for all p € ¥p.
n—1
Lemma 3.2 yields

* 1 1 1 1
—_ A~ (1) - [ = - -
HI By ||(W1/B7W1/B) S b, (ﬂ) = 4 <1+ ny — 1) = 2 <1

for all € ¥

So A- = A-2 D (w1 ig bijective from W15 to itself. Reason-
ing as in Proposition 4.4 with (B + uI)~' = (A;)~'D),, we conclude
that B+ pul, considered as an operator from W) g into wy is invertible,
and (B + pl)™! € (woo, Wijg) for all p € Xp. Condition (20) can be
obtained by reasoning as in Proposition 4.4. This concludes the proof
of Part iv). O
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