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MATRIX TRANSFORMATIONS BETWEEN SETS OF
THE FORM Wξ AND OPERATOR GENERATORS OF

ANALYTIC SEMIGROUPS

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

Abstract. In this paper we establish a relation between the no-
tion of operators of analytic semigroups and matrix transforma-
tions from a set of sequences into w∞. We get extensions of some
results given by Labbas and de Malafosse concerning applications
of the sum of operators in the nondifferential case.

1. Introduction

In this paper we consider spaces that generalize the well-known sets
w0 and w∞ introduced and studied by Maddox [5]. Recall that w0 and
w∞ are the sets of sequences that are strongly summable to zero and
bounded by the Cesàro method of order 1. In [14], Malkowsky and
Rakočević gave the characterizations of matrix maps between w0, w,
or w∞ and wp

∞ and between w0, w, or w∞ and `1.
More recently it was shown by de Malafosse and Malkowsky in [10]

that if λ is an exponentially bounded sequence then (w∞(λ), w∞(λ))
is a Banach algebra. Here we give some properties of operators on
the sets Wτ = Dτw∞ and apply these results to particular matrix
transformations between Wτ and w∞. In this way we are led to explictly
represent two unbounded operators that are given by infinite matrices
and are operator generators of an analytic semigroup (OGASG). Recall
that this notion is a part of the theory of the sum of operators which
was studied by many authors such as Da Prato and Grisvard [1], R.
Labbas and B. Terreni [3]. In Labbas and de Malafosse [4] and de
Malafosse [7] there are some applications of the sum of operators in
the theory of summability in the noncommutative case. In this paper
we extend some results given in [4, 7] using the same infinite matrices
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A and B defined here in sets Wξ ⊂ w∞. The relative boundedness with
respect to A or B is not satisfied, so we are not within the framework
of the classical perturbation theory given by Kato [2].

In this paper we establish a relation between results in summability
and the basic notions used in the theory of the sum of operators.

2. Preliminaries and well known results

For a given infinite matrix M = (anm)n,m≥1 we define the operators
Mn for every integer n ≥ 1 by Mn(X) =

∑∞
m=1 anmxm, where X =

(xn)n≥1 and the series are convergent. So we are led to the study of the
infinite linear system Mn(X) = yn with n = 1, 2, ... where Y = (yn)n≥1

is a one-column matrix and X is the unknown, see [6, 9]. The equations
Mn(X) = yn for n = 1, 2, ... can be written in the form MX = Y , where
MX = (Mn(X))n≥1. We write s for the set of all complex sequences
and `∞, c0 for the set of all bounded and null sequences. Recall that
`∞ and c0 are Banach spaces with norm ‖X‖`∞ = supn≥1(|xn|).

For subsets E and F of s we denote by (E, F ) the set of all matrices
that map E to F . For any subset E of s, we write ME for the set of
all Y ∈ s such that Y = MX for some X ∈ E. If F is a subset of s,
we will denote

(1) F (M) = FM = {X ∈ s : Y = MX ∈ F}.
A Banach space E of complex sequences with the norm ‖ · ‖E is a
BK space if each projection Pn : X 7→ PnX = xn is continuous,
(cf. [15]). A BK space E ⊂ s is said to have AK if every sequence
X = (xn)n≥1 ∈ E has a unique representation X =

∑∞
n=1 xne(n) where

e(n) is the sequence with 1 in the n-th position and 0 otherwise. The
set B(E) of all bounded linear operators L mapping E to E normed
by

‖L‖∗B(E) = sup
X 6=0

‖L (X)‖E

‖X‖E

is a Banach algebra and it is well known that if E is a BK space with
AK, then B(E) = (E, E).

Throughout we write U+ for the set of all sequences (un)n≥1 with
un > 0 for all n, and e = (1, ..., 1, ...). For λ = (λn)n≥1 ∈ U+ we define
the operator C(λ) = (cnm)n,m≥1 by

cnm =





1

λn

if m ≤ n,

0 otherwise.
(n = 1, 2, . . . ).
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It can be proved that the matrix ∆(λ) = (c′nm)n,m≥1 with

c′nm =





λn if m = n,

−λn−1 if m = n− 1 and n ≥ 2,

0 otherwise

is the inverse of C(λ), see [8]. In the following we use the spaces of
strongly bounded and summable sequences defined by

w∞(λ) = {X = (xn)n≥1 ∈ s : C(λ)|X| ∈ `∞ },
w0(λ) = {X ∈ s : C(λ)|X| ∈ c0 }

and

w(λ) = {X ∈ s : X − le ∈ w0(λ) for some l ∈ C}.
These spaces were studied by Malkowsky with the concept of exponen-
tially bounded sequences, see [12]. Recall that Maddox [5] defined and
studied the special case λn = n for all n of these sets, and denoted
them by w∞, w0 and w.

3. The set Wτ and matrix transformations between sets
of the form Wξ

In this section we state some results on Wτ = Dτw∞ and deal with
the triangles ∆ρ and ∆T

ρ that map Wτ to itself.

3.1. Some properties of the set Wτ . For a given sequence τ =
(τn)n≥1 ∈ U+, we define the infinite diagonal matrix Dτ = (τnδnm)n,m≥1.
For any subset E of s, DτE is the set of sequences with (xn/τn)n≥1 ∈ E.
We put Wτ = Dτw∞, W 0

τ = Dτw
0 for τ ∈ U+. So We = w∞ and

W 0
e = w0. It is well known [5] that w∞ and w0 are BK spaces with the

norm

‖X‖w∞ = sup
n

(
1

n

n∑
m=1

|xm|
)

and w0 has AK. It was shown in [10] that the class (w∞, w∞) is a
Banach algebra normed by

(2) ‖M‖∗(w∞,w∞) = sup
X 6=0

(‖MX‖w∞

‖X‖w∞

)
.

To study operator generators of analytic semigroups (OGASG) map-
ping into w∞ we need the following results.
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Proposition 3.1. Let τ , ν ∈ U+. Then
i) The sets Wτ and W 0

τ are BK spaces normed by

(3) ‖X‖Wτ = sup
n

(
1

n

n∑
m=1

|xm|
τm

)

and W 0
τ has AK.

ii) We have τ/ν ∈ `∞ if and only Wτ ⊂ Wν.
iii) We have Wτ = Wν if and only if there are C1, C2 > 0 with

(4) C1 ≤ τn

νn

≤ C2 for all n.

Proof. i) Since w∞ and w0 are BK spaces with the norm ‖ · ‖w∞ by [14,
Theorem 3.3, pp. 179], the sets Wτ = w∞(D1/τ ) and W 0

τ = w0(D1/τ )
are BK spaces normed by ‖X‖Wτ = ‖D1/τX‖w∞ and W 0

τ has AK.
ii) The necessity is a direct consequence of the inequality

‖X‖Wν ≤
∥∥∥τ

ν

∥∥∥
`∞
‖X‖Wτ for all X ∈ Wτ .

Conversely put λn = n for all n. The inclusion Wτ ⊂ Wν means that
y = C(λ)D1/τ |X| ∈ `∞ implies C(λ)D1/ν |X| ∈ `∞ for all X ∈ s. Since
(C(λ)D1/τ )

−1 = Dτ∆(λ), we have Wτ ⊂ Wν if and only if

Y ∈ `∞ implies C(λ)D1/νDτ∆(λ)Y ∈ `∞ for all Y,

that is

(5) C(λ)Dτ/ν∆(λ) ∈ (`∞, `∞).

An elementary calculation gives

[
C(λ)Dτ/ν∆(λ)

]
nm

=





(
τm

νm

− τm+1

νm+1

)
m

n
for m ≤ n− 1,

τn

νn

for m = n,

0 otherwise.

Then using the characterization of (`∞, `∞) and condition (5), we ob-
tain

τn

νn

≤ sup
n≥2

(
n−1∑
m=1

∣∣∣∣
τm

νm

− τm+1

νm+1

∣∣∣∣
m

n
+

τn

νn

)
< ∞ for all n

and we conclude τ/ν ∈ `∞.
iii) Wτ = Wν is equivalent to τ/ν, ν/τ ∈ `∞ that is (4). ¤
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3.2. On the operators ∆+
ρ and ∆−

ρ considered as maps in Wτ .
For given a given sequence ρ = (ρn)n≥1 we consider the operator ∆+

ρ

defined by [
∆+

ρ X
]
n

= xn − ρnxn+1 for all n ≥ 1.

Then we get, putting (∆+
ρ )T = ∆−

ρ ,
[
∆−

ρ X
]
n

= xn − ρn−1xn−1 for all n ≥ 1

with the convention x0 = 0.
To state the next Lemma we write for all τ ∈ U+ and all integers k

ρ+(τ) = (ρnτn+1/τn)n≥1, ρ−(τ) = (ρnτn−1/τn)n≥2,

θ+
k (τ) = (1 +

1

k
) sup

n≥k
(|ρ+

n (τ)|) and θ−k (τ) = (1 +
1

k
) sup

n≥k+1

(|ρ−n (τ)|) .

We also use the infinite matrices Σ
+(N)
ρ and Σ

−(N)
ρ defined by

Σ+(N)
ρ =




[
∆

+(N)
ρ

]−1

0

1
0 .


 and Σ−(N)

ρ =




[
∆
−(N)
ρ

]−1

0

1
0 .




where ∆
+(N)
ρ and ∆

−(N)
ρ are the finite matrices whose elements are those

of the N first rows and columns of ∆+
ρ and ∆−

ρ . Now we state the next
lemma.

Lemma 3.2. Let ρ, τ ∈ U+.

i) a) For every N ≥ 1 we have ‖I −∆+
ρ Σ

+(N)
ρ ‖∗(Wτ ,Wτ ) ≤ θ+

N(τ);

b) if limn→∞|ρ+
n (τ)| = 0 then

lim
n→∞

∥∥I −∆+
ρ Σ+(n)

ρ

∥∥∗
(Wτ ,Wτ )

= 0.

ii) a) For every N ≥ 1 we have ‖I −∆−
ρ Σ

−(N)
ρ ‖∗(Wτ ,Wτ ) ≤ θ−N(τ);

b) if limn→∞|ρ−n (τ)| = 0 then

lim
n→∞

∥∥I −∆−
ρ Σ−(n)

ρ

∥∥∗
(Wτ ,Wτ )

= 0.

Proof. (i) a) First we note that the finite matrix ∆
+(N)
ρ is invertible,

since it is an upper triangle. We get ∆+
ρ Σ

+(N)
ρ = (anm)n,m≥1 with ann =

1 for all n; an,n+1 = −ρn for all n ≥ N ; and anm = 0 otherwise. For

every X ∈ Wτ , we have (I−∆+
ρ Σ

+(N)
ρ )X = (ξn(X))n≥1 with ξn(X) = 0

for all n ≤ N − 1 and ξn(X) = ρnxn+1 for all n ≥ N . Then we obtain
for every X ∈ Wτ
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∥∥(I −∆+
ρ Σ+(N)

ρ )X
∥∥

Wτ
= sup

n≥N

(
1

n

n∑

k=N

|ρkxk+1|
τk

)

= sup
n≥N

(
1

n

n∑

k=N

|ρk|
τk

τk+1
|xk+1|
τk+1

)
≤ sup

n≥N

[(
sup
k≥N

|ρ+
k (τ)|

)
1

n

n+1∑

k=N+1

|xk|
τk

]

≤ sup
n≥N

(
n + 1

n

)
sup
k≥N

(|ρ+
k (τ)|) sup

n≥N

(
1

n + 1

n+1∑

k=N+1

|xk|
τk

)

≤
[(

1 +
1

N

)
sup
k≥N

(|ρ+
k (τ)|)

]
‖X‖Wτ = θ+

N(τ)‖X‖Wτ .

We conclude
∥∥I −∆+

ρ Σ+(N)
ρ

∥∥∗
(Wτ ,Wτ )

≤ θ+
N(τ) < 1.

i) b) Part b) is a direct consequence of Part a).
ii) Part ii) can be shown similarly. ¤

As a direct consequence of the preceding lemma we get the following

Proposition 3.3. Let ρ, τ ∈ U+.
i) a) If ρ+(τ) ∈ `∞ then ∆+

ρ ∈ (Wτ ,Wτ ) and

(6) ‖∆+
ρ ‖∗(Wτ ,Wτ ) ≤ 1 + 2‖ρ+(τ)‖`∞ .

b) If

(7) lim
n→∞

(|ρ+
n (τ)|) < 1

then the operator ∆+
ρ is a bijection from Wτ to itself.

ii) a) If ρ−(τ) ∈ `∞ then ∆−
ρ ∈ (Wτ ,Wτ ) and

‖∆−
ρ ‖∗(Wτ ,Wτ ) ≤ 1 + ‖ρ−(τ)‖`∞ ;

b) if

(8) lim
n→∞

(|ρ−n (τ)|) < 1

then the operator ∆−
ρ is a bijection from Wτ to itself and

Wτ (∆
−
ρ ) = Wτ .

Proof. i) a) We have for each X ∈ Wτ

‖∆+
ρ X‖Wτ = sup

n

(
1

n

n∑
m=1

|xm + ρmxm+1|
τm

)
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and, since ρmxm+1/τm = ρ+
m(τ)xm+1/τm+1, we deduce

‖∆+
ρ X‖Wτ ≤ ‖X‖Wτ + sup

m
(|ρ+

m(τ)|) sup
n

(
n + 1

n

1

n + 1

n+1∑
m=2

( |xm|
τm

))

≤ (
1 + 2‖ρ+ (τ) ‖`∞

) ‖X‖Wτ ,

and conclude that (6) holds.
i) b) By (7), for given l with 0 < l < 1 and for every ε > 0, there is

an integer n0 such that

sup
n≥n0

(|ρ+
n (τ)|) < l + ε.

Then there is an integer n1 with supn≥n1
(1 + 1/n) < 1 + ε. So there is

N ≥ max{n0, n1} and a sufficiently small ε > 0 such that

θ+
N(τ) ≤ (1 + ε)(l + ε) < 1.

We obtain ∥∥I −∆+
ρ Σ+(N)

ρ

∥∥∗
(Wτ ,Wτ )

≤ θ+
N(τ) < 1,

and ∆+
ρ Σ

+(N)
ρ has a unique inverse in the Banach algebra (Wτ ,Wτ ).

Since Σ
+(N)
ρ obviously is bijective from Wτ into itself, the operators

defined by ∆+
ρ Σ

+(N)
ρ and ∆+

ρ = (∆+
ρ Σ

+(N)
ρ )(Σ

+(N)
ρ )−1 are bijective from

Wτ into itself. So for every given Y ∈ Wτ the equation ∆+
ρ X = Y has

a unique solution in Wτ .
ii) a) Here we have

‖∆−
ρ X‖Wτ = sup

n

(
1

n

n∑
m=1

|xm + ρmxm−1|
τm

)

≤ ‖X‖Wτ + ‖ρ−(τ)‖`∞ sup
n

(
n− 1

n

1

n− 1

n−1∑
m=1

|xm|
τm

)

≤ (
1 + ‖ρ−(τ)‖`∞

) ‖X‖Wτ for all X ∈ Wτ .

This concludes the proof of ii) a).
Reasoning as in the proof of i) b), we get ii) b). ¤

4. Spectral properties of an unbounded operator
mapping into w∞

In this section we apply the results obtained in the previous section
to special matrix transformations A from Wξ to w∞, and give some
spectral properties of A.
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4.1. Definition and first properties of an upper triangle map-
ping into w∞. Let a = (an)n≥1 and b = (bn)n≥1 be two sequences
and define the matrix A by [A]nn = an, [A]n,n+1 = bn for all n and
[A]nm = 0 otherwise. Then we have

(9) An(X) = anxn + bnxn+1 for all n and all X ∈ s.

We assume that A satisfies the following properties

(10)

{
i) a ∈ U+, and there is αA > 0 with an ≥ αAn for all n,
ii) there is MA > 0 such that |bn| ≤ MA for all n.

We immediatly get the following properties.

Lemma 4.1. Let a be as in (10). Then we have
i) W1/a ⊂ w∞,

ii) W1/a 6= w∞,
iii) A ∈ (W1/a, w∞), and for every X ∈ W1/a

(11) ‖AX‖w∞ ≤ ‖X‖W1/a
+ 2MA‖X‖w∞ .

Proof. i) Part i) is a consequences of Proposition 3.1.
ii) To show Part (ii), let e ∈ w∞ and assume X ′

p = (xnp)n≥1 tends to
e in W1/a, that is

‖X ′
p − e‖W1/a

= sup
n

(
1

n

n∑
m=1

am|xmp − 1|
)
→ 0 (p →∞).

We have for every n by (10) i)

‖X ′
p − e‖W1/a

≥ αA|xnp − 1|
and xnp → 1 (p → ∞). There is p0 such that for every p ≥ p0 and
every n, |xnp| ≥ 1/2 and

‖X ′
p‖W1/a

≥ 1

n

n∑
m=1

am|xmp| ≥ 1

2n

n∑
m=1

am.

Again we have for every k by(10) i)

‖a‖w∞ ≥
1

2k

2k∑

m=k

am ≥ αA
1

2k

2k∑

m=k

m ≥ 3

4
αA(k − 1).

Finally we obtain ‖X ′
p‖W1/a

≥ ‖a‖w∞/2 = ∞ for p ≥ p0. This contra-
dicts the fact that X ′

p ∈ W1/a for all p.
iii) Part iii comes from the inequality

1

n

n∑
m=1

|bm+1xm+1| = n + 1

n

1

n + 1

n+1∑

k=2

|bkxk| ≤ 2MA‖X‖w∞ for all n.



MATRIX TRANSFORMATIONS AND OPERATOR GENERATORS 59

¤

4.2. Spectral properties of A. We state some elementary lemmas
which can be found in [4].

Lemma 4.2. Let ε ∈]0, π/2[ and x > 0. Then we have

|x− λ| ≥ x sin ε for all λ ∈ C with |Arg(λ)| ≥ ε.

Lemma 4.3. Let x > 0. Then we have{ |x− λ| ≥ |λ| sin θ for all λ = |λ|eiθ /∈ R−,
|x− λ| ≥ |λ| for all λ ∈ R−.

Now we can state the next results on the inverse of A− λI.

Proposition 4.4. Let εA ∈]0, π/2[. Then the infinite matrix A − λI
considered as operator in W1/a is invertible for every λ ∈ C with
|Arg(λ)| ≥ εA, that is

(A− λI)−1 ∈ (W1/a, w∞)

and

(12) ‖(A− λI)−1‖∗(w∞,w∞) ≤
M

|λ| for all λ 6= 0 with |Arg(λ)| ≥ εA.

Proof. i) We fix εA ∈]0, π/2[ and consider the sector

ΠεA
= {λ ∈ C : |Arg(λ)| < εA}.

We put for every λ /∈ ΠεA

χn =
bn

an − λ

and D′
λ = D(1/((an−λ)n). Then we have [D′

λ(A − λI)]nn = 1, [D′
λ(A −

λI)]n,n+1 = χn and [D′
λ(A − λI)]nm = 0 otherwise. We apply Lemma

4.2 with ρ = χ and obtain

|χn| ≤ MA

an sin εA

for all n and all λ /∈ ΠεA

and, since an →∞ (n →∞), there is n0 such that

sup
n≥n0

|χn| an

an+1

≤ 1

4
for all λ /∈ ΠεA

.

Then we get, putting ∆+
χ = D′

λ(A− λI) and applying Lemma 3.2

∥∥I −∆+
χ Σ+(n0)

χ

∥∥∗
(W1/a,W1/a)

≤ θ+
n0

(
1

a

)
≤ 1

4

(
1 +

1

n0

)
≤ 1

2
< 1

for all λ /∈ ΠεA
.
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Therefore ∆+
χ Σ

+(n0)
χ is bijective from W1/a to itself and (∆+

χ Σ
+(n0)
χ )−1 ∈

(W1/a,W1/a). Now we have for every Y ∈ w∞

Y ′ = D ′
λY = (yn/(an − λ))n≥1 ∈ W1/a.

Indeed, we get for every n and λ /∈ ΠεA

1

n

n∑
m=1

∣∣∣∣
ym

am − λ

∣∣∣∣ am ≤ 1

n

n∑
m=1

|ym|
am sin εA

am ≤ 1

sin εA

‖Y ‖w∞

and ‖Y ′‖W1/a
≤ ‖Y ‖w∞/ sin εA. We successively obtain

(
∆+

χ Σ+(n0)
χ

)−1
Y ′ ∈ W1/a,

(A− λI)−1Y = Σ+(n0)
χ

(
∆+

χ Σ+(n0)
χ

)−1
Y ′ ∈ W1/a for all Y ∈ w∞

and

(A− λI)−1 = Σ+(n0)
χ

(
∆+

χ Σ+(n0)
χ

)−1
D ′

λ ∈ (w∞,W1/a) for all λ /∈ ΠεA
.

Now we show that (12) holds. We have, for all λ /∈ ΠεA
and for all

Y ∈ w∞, Σ
+(n0)
χ ∈ (w∞, w∞) and

(13)
∥∥(A− λI)−1Y

∥∥
w∞

≤
∥∥Σ+(n0)

χ

∥∥
(w∞,w∞)

∥∥∥
(
∆+

χ Σ+(n0)
χ

)−1
∥∥∥

(w∞,w∞)
‖D ′

λY ‖w∞ .

It follows that

(14) ‖D ′
λY ‖w∞ = sup

n

(
1

n

n∑
m=1

∣∣∣∣
ym

am − λ

∣∣∣∣
)
≤ sup

n≥1

1

|an − λ|‖Y ‖w∞

and we get by Lemma 4.3

‖D ′
λY ‖w∞ ≤ sup

n≥1

1

|an − λ|(15)

≤
{

1/|λ| sin θ for λ = |λ|eiθ /∈ R−,

1/|λ| for λ ∈ R−.

Now we have, again by Lemma 3.2

∥∥I −∆+
χ Σ+(n0)

χ

∥∥
(w∞,w∞)

≤ θ+
n0

(e) =

(
1 +

1

n0

)
sup
n≥n0

(|χn|) ≤ 1

2
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and then we easily get in the Banach algebra (w∞, w∞)

∥∥∥
(
∆+

χ Σ+(n0)
χ

)−1
∥∥∥

(w∞,w∞)
≤

∞∑
m=0

∥∥(
I −∆+

χ Σ+(n0)
χ

)∥∥m

(w∞,w∞)
(16)

≤
∞∑

m=0

2−m = 2.

Finally we have from the expression of Σ
+(n0)
χ in [4, p. 198]

sup
λ/∈ΠεA

∥∥Σ+(n0)
χ

∥∥
(w∞,w∞)

< ∞

and we deduce from (13), (14), (15) and (16) that (12) holds. This
concludes the proof. ¤

5. Matrix transformations in w∞ and (OGASG)

In this section we apply the previous results to explicitly present
matrices A and B for which D(A) and D(B) are not embedded in each
other and that are (OGASG).

5.1. Recall of some results in the general case. Here we recall
some results given in Da Prato-Grisvard [1] and Labbas-Terreni [3].
The set E is a Banach space and we consider two closed linear operators
A and B, whose domains are D(A) and D(B) and included in E. Then
we define SX = AX + BX for every X ∈ D(A) ∩D(B). The spectral
properties of A and B are

(H)





there are CA, CB > 0 and εA, εB ∈]0, π[ such that
i) ρ(A) ⊃ ∑

A = {z ∈ C : |Arg(z)| < π − εA} and

‖(A− zI)−1‖£(E) ≤
CA

|z| for all z ∈ ∑
A−{0};

ii) ρ(B) ⊃ ∑
B = {z ∈ C : |Arg(z)| < π − εB} and

‖(B − zI)−1‖£(E) ≤
CB

|z| for all z ∈ ∑
B −{0};

iii) εA + εB < π

If (H) is satisfied then A and B are (OGASG) not strongly continuous
at t = 0 and we have σ(A)∩ σ(−B) = ∅ and ρ(A)∪ ρ(−B) = C. In [4]
an application was given for the solvability of the equation (A + B +
λI)X = Y where A and B were considered as operators in `∞ in the
noncommutative case.
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Note that it is well known (cf. [1]) in the commutative case, that is
when

(A− ξI)−1(B − ηI)−1 − (B − ηI)−1(A− ξI)−1 = 0

for all ξ ∈ ρ(A), η ∈ ρ(B),

that if D(A) and D(B) are dense in E, then the bounded operator
defined by

Lλ = − 1

2iπ

∫

Γ

(B + zI)−1(A− λI − zI)−1 dz for all λ > 0,

where Γ is an infinite sectorial curve in ρ(A − λI) ∩ ρ(−B), coincides
with (A + B − λI)−1.

5.2. Matrix transformations as (OGASG). In our case A is de-
fined in Subsection 4.1 by (9) and (10). Then the matrix B is defined
for β = (βn)n≥1, γ = (γn)n≥1 ∈ s by

Bn(X) = γnxn−1 + βnxn for all n and all X ∈ s

with the convention x0 = 0, where we assume

(17)





i) β ∈ U+ and limn→∞ β2k = L 6= 0,
ii) limk→∞ β2k+1/a2k+1 = ∞
iii) α) there is MB > 0 such that |γ2k| ≤ MB for all n,

β) γ2k+1 = o(1) (n →∞).

We easily see that B ∈ (W1/β, w∞) and for each X ∈ W1/β

‖BX‖w∞ ≤ ‖X‖W1/β
+ MB‖X‖w∞ .

These results lead to the next remarks.

Remark 5.1. We note for the convenience of the reader that, for in-
stance, we can define A and B as follows; an = n; b = e; βn = 1 if
n = 2k, βn = k2 if n = 2k+1; γn = 1 if n = 2k, γn = 1/k if n = 2k+1
for all n and k.

Remark 5.2. We will see in Lemma 5.3 and Theorem 5.4 that the con-
dition in (10) ii) implies that A is a closed operator. The conditions in
(10) i) and (17) i), ii) imply that D(A) and D(B) are not embedded in
each other. We will see in Theorem 5.4 that the conditions in (10) i)
and (17) ii), iii) imply that B + µI considered as an operator in W1/β

is invertible and

(B + µI)−1 ∈ (w∞,W1/β) for all µ with |Arg(µ)| ≤ π − εB.

Now we state the next result.
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Lemma 5.3. Let A, B be as in (10) and (17). Then we have
i) W1/a ⊂ w∞, W1/β ⊂ w∞,
ii) w∞(A) = W1/a and w∞(B) = W1/β,
iii) W1/a and W1/β are not embedded in each other,

iv) W1/a 6= w∞, W1/β 6= w∞.

Proof. i) The inclusion W1/a ⊂ w∞ follows from Proposition 3.1 where
τ = 1/a, ν = e and 1/a ∈ c0 ⊂ `∞. Furthermore we have 1/β2k+1 =
(1/a2k+1)(a2k+1/β2k+1) = o(1) (k →∞) and W1/β ⊂ w∞.

ii) First we have A ∈ (W1/a, w∞) by Lemma 4.1. It remains to
show w∞(A) = W1/a. First we have W1/a ⊂ w∞(A). Indeed it follows
from [13, Theorem 1, pp. 260] that I ∈ (W1/a, w∞(A)) if and only if
A ∈ (W1/a, w∞). Now let X ∈ w∞(A). Then we have Y = AX ∈ w∞.
In the proof of Proposition 4.4, we can take λ = 0. Indeed there is n0

such that

χn =
|bn|
an

≤ MA

nαA

for all n ≥ n0.

Then, for Y ∈ w∞, we successively get D1/aY = (yn/an)n≥1 ∈ W1/a,

(∆+
χ Σ

+(n0)
χ )−1D1/aY ∈ W1/a, and since A−1 = Σ

+(n0)
χ (∆+

χ Σ
+(n0)
χ )−1D1/a,

we conclude
X = A−1Y ∈ W1/a.

This shows w∞(A) ⊂ W1/a, and since W1/a ⊂ w∞(A), we conclude
w∞(A) = W1/a. The proof is similar for B.

iii) Part iii) is a direct consequence of Proposition 3.1, since a/β and
β/a /∈ `∞.

iv) The property W1/a 6= w∞ has been shown in Lemma 4.1. To

show W1/β 6= w∞, we use the notations of Lemma 4.1. Here we have

(18)
∥∥X ′

p − e
∥∥

W1/β
= sup

n

(
1

n

n∑
m=1

βm|xmp − 1|
)
→ 0 (p →∞)

and

∥∥X ′
p − e

∥∥
W1/β

≥ sup
n


 1

n

n−1
2∑

k=1

β2k+1|x2k+1,p − 1|



≥ sup
n


 1

n

n−1
2∑

k=1

β2k+1

a2k+1

a2k+1|x2k+1,p − 1|



≥ αA sup
n


 1

n

n−1
2∑

k=1

β2k+1

a2k+1

(2k + 1)|x2k+1,p − 1|

 .
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Since β2k+1/a2k+1 →∞ (k →∞), there is C1 > 0 with β2k+1/a2k+1 ≥
C1 for all k and

∥∥X ′
p − e

∥∥
W1/β

≥ αAC1

n
n|xnp − 1| = αAC1|xnp − 1| for all n.

From (18), we have xnp → 1 (p → ∞) for all n. There is p0 such that
for every n and each p ≥ p0, |xnp| ≥ 1/2 and

(19)
∥∥X ′

p

∥∥
W1/β

≥ 1

2n

n∑
m=1

βm =
1

2
‖β‖w∞ .

We have for every integer i

‖β‖w∞ ≥
1

4i + 3

2i+1∑

k=1

β2k+1 =
1

4i + 3

2i+1∑

k=1

β2k+1

a2k+1

a2k+1

≥ αAC1

4i + 3

2i+1∑

k=1

(2k + 1) ≥ αAC1
(2i + 1)(2i + 3)

4i + 3
.

Since (2i + 1)(2i + 3)/(4i + 3) →∞ (i →∞), we deduce ‖β‖w∞ = ∞,
and by (19) we get ‖X ′

p‖W1/β
≥ ‖β‖w∞/2 = ∞ for p ≥ p0. This

contradicts the fact that X ′
p ∈ W1/β for all p. Therefore we conclude

W1/β 6= w∞. ¤

We immediatly obtain the next result.

Theorem 5.4. The two linear operators A and B are closed in the
space w∞ and satisfy

i) D(A) = W1/a,
ii) D(B) = W1/β,

iii) D(A) 6= w∞, D(B) 6= w∞.
iv) There are εA, εB > 0 (with εA + εB < π) such that (12) holds

and

(20)
∥∥(B + µI)−1

∥∥∗
(w∞,w∞)

≤ M

|µ| for all µ 6= 0 and |Arg(µ)| ≤ π−εB.

Proof. We show that A is a closed operator. For this, we consider a
sequence X ′

p = (xnp)n≥1 tending to X = (xn)n≥1 in w∞ as p tends to
infinity, where X ′

p ∈ W1/a for all p. Then we have AX ′
p → Y (p →∞)

in w∞ with Y = (yn)n≥1. It follows that for every n

An(X ′
p) → An(X) = yn (p →∞)
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with An(X ′
p) = anxnp + bnxn+1,p, yn = anxn + bnxn+1, and since

1

n

n∑
m=1

|amxm| = 1

n

n∑
m=1

|ym − bmxm+1|

≤ ‖Y ‖w∞ + 2MA‖X‖w∞ for all n,

we conclude X ∈ W1/a. The proof for B is similar.
i), ii) and iii) These parts are direct consequences of Lemma 5.3.
iv) The first part in iv) has been shown in Proposition 4.4. Let

εB ∈]0, π/2[. We show that for every µ with |Arg(µ)| ≤ π − εB, the
infinite matrix B + µI, considered as an operator in W1/β, is invertible
and

(B + µI)−1 ∈ (W1/β, w∞).

We put ΣB = {µ ∈ C : |Arg(µ)| ≤ π − εB}. To be able to deal with
the inverse of B + µI, we need to study the sequences with |γ2k+1|/β2k

and |γ2k/(β2k + µ)|β2k/β2k−1. We have by (17) i), iii)

(21) γ2k+1/β2k → 0 (k →∞).

On the other hand we get for every µ ∈ ΣB

(22)

∣∣∣∣
γ2k

β2k + µ

∣∣∣∣
β2k

β2k−1

≤ MB

β2k sin εB

β2k

β2k−1

=
MB

sin εB

1

β2k−1

and

(23)
1

β2k−1

=
a2k−1

β2k−1

1

a2k−1

= o(1) (k →∞).

We deduce from (21), (22) and (23) that there is n1 such that

|γ2k+1| 1

β2k

≤ 1

4
sin εB for 2k + 1 ≥ n1,

and ∣∣∣∣
γ2k

β2k + µ

∣∣∣∣
β2k

β2k−1

≤ 1

4
for 2k ≥ n1 for all µ ∈ ΣB.

We define the matrices D ′
µ = D(1/(βn+µ)n), and then D ′

µ(B + µI) = ∆−
κ

with κn = γn/(βn + µ). We have

σ1 = |κ2k| β2k

β2k−1

≤ MB

β2k sin εB

β2k

β2k−1

≤ 1

4
for all k ≥ n1 − 1

2

and

σ2 = |κ2k+1|β2k+1

β2k

≤ 1

4
sin εB

1

β2k+1

sin εBβ2k+1 =
1

4

for all k ≥ n1

2
.



66 BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

It follows that

sup
n≥n1

(
|κn| βn

βn−1

)
= max{σ1, σ2 max} ≤ 1

4
for all µ ∈ ΣB.

Lemma 3.2 yields

∥∥I −∆−
κ Σ(n1−1)

κ

∥∥∗
(W1/β ,W1/β)

≤ θ−n1

(
1

β

)
≤ 1

4

(
1 +

1

n1 − 1

)
≤ 1

2
< 1

for all µ ∈ ΣB

So ∆−
κ = ∆−

κ Σ
(n1−1)
κ (Σ

(n1−1)
κ )−1 is bijective from W1/β to itself. Reason-

ing as in Proposition 4.4 with (B + µI)−1 = (∆−
κ )−1D ′

µ, we conclude
that B+µI, considered as an operator from W1/β into w∞ is invertible,
and (B + µI)−1 ∈ (w∞,W1/β) for all µ ∈ ΣB. Condition (20) can be
obtained by reasoning as in Proposition 4.4. This concludes the proof
of Part iv). ¤
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