BEST SIMULTANEOUS APPROXIMATION IN METRIC SPACES

SH. AL-SHARIF

ABSTRACT. For a Banach space X and an increasing subadditive continuous function φ on $[0,\infty)$ with $\varphi(0)=0$, let us denote by $L^{\varphi}(I,X)$, the space of all X-valued φ -integrable functions $f:I\to X$ on a certain positive complete σ -finite measure space

$$(I, \sum, \mu,)$$
 with $\int_{I} \varphi \|f(t)\| d\mu(t) < \infty$ and $l^{\varphi}(X) = \left\{ (x_k) : \sum_{k=1}^{\infty} \varphi \|x_k\| < \infty, \ x_k \in X \right\}.$

The aim of this paper is to prove that for a closed separable subspace G of X, $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$ if and only if G is simultaneously proximinal in X. Other result on simultaneous approximation of $l^{\varphi}(G)$ in $l^{\varphi}(X)$ is presented.

1. Introduction

A function $\varphi:[0,\infty)\to[0,\infty)$ is called a modulus function if it satisfies the following conditions:

- (1) φ is continuous and increasing function.
- (2) $\varphi(x) = 0$ if and only if x = 0.
- $(3) \varphi(x+y) \le \varphi(x) + \varphi(y).$

The functions $\varphi(x) = x^p$, $0 , and <math>\varphi(x) = \ln(1+x)$ are modulus functions. In fact if φ is a modulus function, then $\psi(x) = \varphi(x)/(1+\varphi(x))$ is a modulus function. Further the composition of two modulus function is a modulus function.

For a modulus function φ and a Banach space X, let us denote by $L^{\varphi}(I,X)$, the space of all X-valued φ -integrable functions $f:I\to X$ on a certain positive complete σ -finite measure space $(I,\sum,\mu,)$ with $\int_I \varphi \|f(t)\| d\mu(t) < \infty$ and

$$l^{\varphi}(X) = \left\{ (x_k) : \sum_{k=1}^{\infty} \varphi \|x_k\| < \infty, \ x_k \in X \right\}.$$

For $a = (a_k) \in l^{\varphi}(X)$ and $f \in L^{\varphi}(I, X)$ set

$$\|a\|_{\varphi} = \sum_{k=1}^{\infty} \varphi \|a_k\|$$
 and $\|f\|_{\varphi} = \int_{I} \varphi \|f(t)\| d\mu(t).$

If X = C, the set of complex numbers, the spaces $l^{\varphi}(X)$ and $L^{\varphi}(I, X)$ is simply denoted by l^{φ} and $L^{\varphi}(I)$ respectively. It is known, [4], that $l^{\varphi} \subseteq l^1$, $L^{\varphi}(I) \supseteq L^1(I)$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 41A65; Secondary: 41A50.

Key words and phrases. Simultaneous, Approximation.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received Sept. 1, 2007, Accepted March 4, 2008.

and $\left(l^{\varphi}(X),\|.\|_{\varphi}\right)$ and $\left(L^{\varphi}(I,X),\|.\|_{\varphi}\right)$ are complete metric linear spaces. For more on l^{φ} and $L^{\varphi}(I)$ we refer to the reader to [3] and [5].

Note that the Banach space X is a metric space with the metric $d(x,y) = \varphi \|x - y\|$.

Definition 1.1. Let φ be a modulus function and G be a closed subspace of a Banach space X. We say that

(a) G is simultaneously proximinal in X if for each m-tuple of elements $(x_1, x_2, ..., x_m) \in X^m$ there exists $g \in G$ such that:

$$\sum_{i=1}^{m} \varphi \|x_i - g\| = dist_{\varphi}(x_1, x_2, ..., x_m, G) = \inf_{h \in G} \sum_{i=1}^{m} \varphi \|x_i - h\|.$$

In other words for every $h \in G$

$$\|(x_1, x_2, ..., x_m, 0, ...) - (g, g, ..., g, 0, ...)\|_{\varphi} \le \left\| \begin{array}{c} (x_1, x_2, ..., x_m, 0, ...) \\ -(h, h, ..., h, 0, ...) \end{array} \right\|_{Q}$$

(b) $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$ if for each m-tuple of elements $f_1, f_2, ..., f_m \in (L^{\varphi}(I,X))^m$ there exists $g \in L^{\varphi}(I,G)$ such that

$$\sum_{i=1}^{m} \|f_i - g\|_{\varphi} = dist_{\varphi}(f_1, f_2, ..., f_m, L^{\varphi}(I, G)) = \inf_{h \in L^{\varphi}(I, G)} \sum_{i=1}^{m} \|f_i - h\|_{\varphi}.$$

The problem of best simultaneous approximation has been studied by many authors e.g., [2], [9], [15] and [16]. Most of these works have dealt with the characterization of best simultaneous approximation in spaces of continuous functions with values in a Banach space X. Some existence and uniqueness results were obtained. Results on best simultaneous approximation in general Banach spaces may be found in [11] and [13]. Related results on $L^p(I,X)$, $1 \le p < \infty$, are given in [14]. In [14], it is shown that if G is a reflexive subspace of a Banach space X, then $L^p(I,G)$ is simultaneously proximinal in $L^p(I,X)$. If p=1, Abu Sarhan and Khalil [1], proved that if G is a reflexive subspace of the Banach space X or G is a 1-summand subspace of X, then $L^1(I,G)$ is simultaneously proximinal in $L^1(I,X)$.

The aim of this paper is to prove that for a closed separable subspace G of X, $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$ if and only if G is simultaneously proximinal in X. Some results are inspired by the results in [14]. Other result on simultaneous approximation of $l^{\varphi}(G)$ in $l^{\varphi}(X)$ is presented.

Throughout this paper, $(I, \sum, \mu,)$ is a σ -finite measure space, X is a Banach space, G is a closed subspace of X and the norm of $v \in X$ is denoted by ||v||.

2. Distance Formulae

Progress in the discussion of simultaneous proximinality when X does not possess pleasant properties is greatly facilitated by the fact that the distance from an m-tuple of elements $f_1, f_2, ..., f_m \in L^{\varphi}(I, X)$ to a subspace $L^{\varphi}(I, G)$ is computed by the following theorem:

Theorem 2.1. Let φ be a modulus function and $f_1, f_2, ..., f_m \in L^{\varphi}(I, X)$. Then

$$dist_{\varphi}(f_1, f_2, ..., f_m, L^{\varphi}(I, G)) = \int_{I} dist_{\varphi}(f_1(s), f_2(s), ..., f_m(s), G) d\mu(s).$$

Proof. Let $f_1, f_2, ..., f_m \in L^{\varphi}(I, X)$. Then for each $i = 1, 2, ..., m, f_i$ is the limit almost everywhere of a sequence of simple functions $\{f_{i,n}\}$ in $L^{\varphi}(I, X)$. Since the distance function $\operatorname{dist}_{\varphi}(x, G)$ is continuous in $x \in X$, $\lim_{n \to \infty} \varphi\left(\|f_{i,n}(s) - f_i(s)\|\right) = 0, i = 1, 2, ..., m$, implies that

$$\lim_{n \to \infty} \left| \text{dist}_{\varphi} \left(f_{1,n}(s), ..., f_{m,n}(s), G \right) \right) - \text{dist}_{\varphi} \left(f_{1}(s), ..., f_{m}(s), G \right) \right| = 0.$$

Furthermore for each n, the function: $s \to \operatorname{dist}_{\varphi}(f_{1,n}(s), f_{2,n}(s), ..., f_{m,n}(s), G)$ is a simple function and so we may assume that $\operatorname{dist}_{\varphi}(f_1(s), f_2(s), ..., f_m(s), G)$ is measurable. Now for any $g \in L^{\varphi}(\mu, G)$

$$\int_{I} \operatorname{dist}_{\varphi} (f_{1}(s), f_{2}(s), ..., f_{m}(s), G) d\mu(s) \leq \int_{I} \sum_{i=1}^{m} \varphi (\|f_{i}(s) - g(s)\|) d\mu(s)
= \sum_{i=1}^{m} \int_{I} \varphi (\|f_{i}(s) - g(s)\|) d\mu(s).$$

Therefore

(1)
$$\int_{I} \operatorname{dist}_{\varphi} (f_1(s), f_2(s), ..., f_m(s), G) d\mu(s) \leq \operatorname{dist}_{\varphi} (f_1, f_2, ..., f_m, L^{\varphi}(I, G)).$$

For the reverse inequality fix $\epsilon > 0$. Since simple functions are dense in $L^{\varphi}(I,X)$, there exist simple functions, f'_j in $L^{\varphi}(I,X)$ such that $\|f_j - f'_j\|_{\varphi} < \frac{\epsilon}{m}$, j = 1, 2, ..., m. Assume that $f'_j(t) = \sum_{i=1}^n \varkappa_{A_i}(t) y_i^j$, j = 1, 2, ..., m, where \varkappa_{A_i} are the characteristic functions of the measurable sets A_i in I and $y_i^j \in X$. We can assume that $\sum_{i=1}^n \varkappa_{A_i} = 1$ and $\mu(A_i) > 0$. Given $\epsilon > 0$ for each i = 1, 2, ..., n, select $g_i \in G$ such that:

$$\sum_{j=1}^{m} \varphi \|y_i^j - g_i\| < dist_{\varphi}(y_i^1, y_i^2, ..., y_i^m, G) + \frac{\epsilon}{n\mu(A_i)}.$$

Let
$$g(t) = \sum_{i=1}^{n} \varkappa_{A_i}(t)g_i$$
. Clearly $g \in L^{\varphi}(I, G)$ and

$$\begin{aligned} \operatorname{dist}_{\varphi} \left(f_{1}, ..., f_{m}, \boldsymbol{L}^{\varphi} (I, G) \right) & \leq \sum_{j=1}^{m} \left\| f_{j} - f_{j}^{'} \right\|_{\varphi} \\ & + \operatorname{dist}_{\varphi} \left(f_{1}^{'}, f_{2}^{'}, ..., f_{m}^{'}, \boldsymbol{L}^{\varphi} (I, G) \right) \\ & \leq \epsilon + \sum_{j=1}^{m} \left\| f_{j}^{'} - g \right\|_{\varphi} \\ & = \epsilon + \sum_{j=1}^{m} \int_{I} \varphi \left\| f_{j}^{'}(s) - g(s) \right\| d\mu(s) \\ & = \epsilon + \sum_{j=1}^{m} \sum_{i=1}^{n} \int_{A_{i}} \varphi \left\| f_{j}^{'}(s) - g(s) \right\| d\mu(s) \\ & = \epsilon + \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\varphi \left\| y_{i}^{j} - g_{i} \right\| \right) \mu(A_{i}) \\ & = \epsilon + \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\varphi \left\| y_{i}^{j} - g_{i} \right\| \right) \mu(A_{i}) \\ & \leq \epsilon + \sum_{i=1}^{n} \mu(A_{i}) \mathrm{dist}_{\varphi} (y_{i}^{1}, y_{i}^{2}, ..., y_{i}^{m}, G) + \frac{\epsilon}{n} \\ & \leq 2\epsilon + \sum_{i=1}^{n} \int_{A_{i}} \mathrm{dist}_{\varphi} (y_{i}^{1}, y_{i}^{2}, ..., y_{i}^{m}, G) d\mu(s) \\ & = 2\epsilon + \int \mathrm{dist}_{\varphi} \left(f_{1}^{'}(s), f_{2}^{'}(s), ..., f_{m}^{'}(s), G \right) d\mu(s). \end{aligned}$$

Since

$$dist_{\varphi} \left(f'_{1}(s), f'_{2}(s), ..., f'_{m}(s), G \right) \leq dist_{\varphi} \left(f_{1}(s), f_{2}(s), ..., f_{m}(s), G \right) + \sum_{j=1}^{m} \varphi \left\| f'_{j}(s) - f(s) \right\|$$

then,

$$dist_{\varphi} (f_{1}, f_{2}, ..., f_{m}, L^{\varphi}(I, G)) \leq 2\epsilon + \sum_{j=1}^{m} \int_{I} \varphi \|f'_{j}(s) - f_{j}(s)\| d\mu(s)$$

$$+ \int_{I} \operatorname{dist}_{\varphi} (f_{1}(s), f_{2}(s), ..., f_{m}(s), G) d\mu(s)$$

$$= 2\epsilon + \sum_{j=1}^{m} \|f_{j} - f'_{j}\|_{\varphi}$$

$$+ \int_{I} \operatorname{dist}_{\varphi} (f_{1}(s), f_{2}(s), ..., f_{m}(s), G) d\mu(s)$$

$$\leq 3\epsilon + \int_{I} \operatorname{dist}_{\varphi} (f_{1}(s), f_{2}(s), ..., f_{m}(s), G) d\mu(s),$$

which (since ϵ is arbitrary) implies that

(2)
$$dist_{\varphi}(f_1, f_2, ..., f_m, L^{\varphi}(I, G)) \leq \int_I dist_{\varphi}(f_1(s), f_2(s), ..., f_m(s), G) d\mu(s).$$

Hence by 1 and 2 the proof is complete.

An application of Theorem 2.1 is

Corollary 2.2. An element $g \in L^{\varphi}(I,G)$ is a best simultaneous approximation of $f_1, f_2, ..., f_m \in L^{\varphi}(I,X)$ if and only if g(t) is a best simultaneous approximation of $f_1(t), f_2(t), ..., f_m(t) \in X$ for almost all $t \in I$.

3. Best Simultaneous Approximation in $L^{\varphi}(I,X)$

The main result in this section is, for a modulus function φ and a closed separable subspace G of a Banach space X, $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$ if and only if G is simultaneously proximinal in X. We begin with the following:

Theorem 3.1. If G is simultaneously proximinal in X, then for every m-tuple of simple function $f_1, f_2, ..., f_m \in L^{\varphi}(I, X)$, $P(f_1, f_2, ..., f_m, L^{\varphi}(I, X))$ is not empty, where $P(f_1, f_2, ..., f_m, L^{\varphi}(I, X))$ is the set of all elements $g \in L^{\varphi}(I, G)$ such that g is a best simultaneous approximation of m-tuple of the elements $f_1, f_2, ..., f_m$.

Proof. Let $f_1, f_2, ..., f_m$ be an m-tuple of simple functions in $L^{\varphi}(I, X)$. With no loss of generality we can assume that $f_j(t) = \sum_{i=1}^n \varkappa_{A_i}(t) y_i^j$, where A_i are disjoint measurable sets

such that $\bigcup_{i=1}^n A_i = I$. Pick $g_i \in G$ such that g_i is a best simultaneous approximation of

the m-tuple of elements $y_i^1, y_i^2, ..., y_i^m \in X, i = 1, 2, ..., n$. Set $g(t) = \sum_{i=1}^n \varkappa_{A_i}(t)g_i$. Then for any $h \in L^{\varphi}(I, X)$ we have:

$$\sum_{j=1}^{m} \|f_{j} - h\|_{\varphi} = \sum_{j=1}^{m} \int_{I} \varphi \|f_{j}(s) - h(s)\| d\mu(s)$$

$$= \int_{I} \sum_{j=1}^{m} \varphi \|f_{j}(s) - h(s)\| d\mu(s)$$

$$= \sum_{i=1}^{n} \int_{A_{i}} \sum_{j=1}^{m} \varphi \|y_{i}^{j} - h(s)\| d\mu(s)$$

$$\geq \sum_{i=1}^{n} \int_{A_{i}} \sum_{j=1}^{m} \varphi \|y_{i}^{j} - g_{i}\| d\mu(s)$$

$$= \int_{I} \sum_{j=1}^{m} \varphi \|f_{j}(s) - g(s)\| d\mu(s).$$

Hence
$$\sum_{j=1}^{m} \|f_j - g\|_{\varphi} = \inf_{h \in L^{\varphi}(I,G)} \sum_{j=1}^{m} \|f_j - h\|_{\varphi}$$

Theorem 3.2. If φ is a modulus function, then G is simultaneously proximinal in X if $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$.

Proof. Let $x_1, x_2, ..., x_m \in X$. Set $f_j = 1 \otimes x_j$, j = 1, 2, ..., m, where 1 is the constant function 1. Clearly for each j = 1, 2, ..., m, $f_j \in L^{\varphi}(I, X)$. By assumption there exists $g \in L^{\varphi}(I, G)$ such that for any $h \in L^{\varphi}(I, G)$

$$\sum_{j=1}^{m} \|f_j - g\|_{\varphi} \le \sum_{j=1}^{m} \|f_j - h\|_{\varphi}.$$

By Theorem 2.1

$$\sum_{j=1}^{m} \varphi \|f_j(t) - g(t)\| \le \sum_{j=1}^{m} \varphi \|f_j(t) - h(t)\|$$

a.e. in I. Or

$$\sum_{j=1}^{m} \varphi \|x_j - g(t)\| \le \sum_{j=1}^{m} \varphi \|x_j - h(t)\|.$$

Let h run over all functions $1 \otimes z$, for $z \in G$, we get

$$\sum_{j=1}^{m} \varphi \|x_j - g(t)\| \le \sum_{j=1}^{m} \varphi \|x_j - z\|.$$

Now we pose the following problem: If G is separable is it true that $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$? to solve this problem we begin by the following:

Lemma 3.3. [Lemma 2.9 of [9]] Assume $\mu(I) < +\infty$. Suppose (M, d) is a metric space and A is a subset of I such that $\mu^*(A) = \mu(I)$, where μ^* denotes the outer measure associated to μ . If g is a mapping from I to M with separable range, then for any $\epsilon > 0$ there exists a countable partition $\{E_n\}$ of I in measurable sets and $A_n \subset A \cap E_n$ such that $\mu^*(A_n) = \mu(E_n)$ and $diam(g(A_n)) < \epsilon$ for all n.

Theorem 3.4. Let G be a closed separable subspace of X. Let us suppose that G is simultaneously proximinal in X and $f_1, f_2, ..., f_m : I \to X$ be measurable functions. Then there is a measurable function $g: I \to X$ such that g(t) is a best simultaneous approximation of $(f_1(t), f_2(t), ..., f_m(t))$ in G for almost all t.

Proof. Let $f_1, f_2, ..., f_m : I \to X$ be measurable functions. So we may assume that $f_1(I), f_2(I), ..., f_m(I)$ are separable sets in X. Using the fact that μ is σ -finite we can find countable partitions $\{I_{1n}\}_{n=1}^{\infty}, \{I_{2n}\}_{n=1}^{\infty}, ..., \{I_{mn}\}_{n=1}^{\infty} \text{ of } I$ in measurable sets such that $\dim_{\varphi}(f_i(I_{in}) < \frac{1}{2} \text{ and } \mu(I_{in}) < \infty, i = 1, 2, ..., m$, for all n, where

$$\operatorname{diam}_{\scriptscriptstyle{\varphi}} A = \sup \left\{ \varphi \left\| x - y \right\| : x, y \in A \right\}.$$

Consider the partition $\{I_{n_1,n_2,...,n_m}\}_{n_i=1,i=1}^{\infty, m}$, where $I_{n_1,n_2,...,n_m} = \bigcap_{i=1}^m I_{in}$, for $1 \le n_i < \infty$.

Then $\dim_{\varphi}(f_i(I_{n_1,n_2,\dots,n_m})) < \frac{1}{2}$, $i = 1, 2, \dots, m$. For simplicity we write $\{I_{n_1,n_2,\dots,n_m}\}_{n_i,i=1}^{\infty,m}$ as $\{I_n\}_{n=1}^{\infty}$. For each $t \in I$, let $g_0(t)$ be a best simultaneous approximation of $(f_1(t), f_2(t), \dots, f_m(t))$ in G. Define g_0 from I into G such that $g_0(t)$ is a best simultaneous approximation of $(f_1(t), f_2(t), \dots, f_m(t))$. Applying Lemma 3.3 to the mapping g_0 in each I_n taking $\epsilon = \frac{1}{2}$ and $I = A = I_n$. We get a countable partition in each I_n and therefore a countable partition in the whole of I. Thus we get a countable partition $\{E_n\}_{n=1}^{\infty}$ of I in measurable sets and a sequence of subsets $\{A_n\}_{n=1}^{\infty}$ of I such that

$$A_n \subseteq E_n, \ \mu^*\left(A_n\right) = \mu\left(E_n\right) < +\infty,$$

$$\operatorname{diam}_{\varphi}(g_0(A_n)) < \frac{1}{2}, \ \operatorname{diam}_{\varphi}(f_i(E_n)) < \frac{1}{2}, \ i = 1, 2, ..., m.$$

Let us apply again the same argument in each E_n with $\epsilon = \frac{1}{2^2}$, $I = E_n$ and $A = A_n$. For each n we get a countable partition $\{E_{n_k}: 1 \leq k < \infty\}$ of E_n in measurable sets and a sequence $\{A_{n_k}: 1 \leq k < \infty\}$ of subsets of I such that

$$A_{n_k} \subseteq E_{n_k} \cap A_n, \ \mu^*(A_{n_k}) = \mu(E_{n_k}),$$

 $\dim_{\varphi}(g_0(A_{n_k})) < \frac{1}{2^2} \text{ and } \dim_{\varphi}(f_i(E_{n_k})) < \frac{1}{2^2}, i = 1, 2, ..., m,$

for all n and k. Let us proceed by induction. Now for each natural number k, let \triangle_k be the set of k-tuples of natural numbers and let $\triangle = \bigcup_{k=1}^{\infty} \triangle_k$. On this \triangle consider the partial order defined by $(m_1, m_2, ..., m_i) \le (n_1, n_2, ..., n_j)$ if and only if $i \le j$ and $m_k = n_k$

for k = 1, 2, ..., i. Then by induction for each natural number k, we can take a partition $\{E_{\alpha} : \alpha \in \Delta_k\}$ of subsets of I and a collection $\{A_{\alpha}\}_{\alpha \in \Delta_k}$ such that:

- (1) $A_{\alpha} \subseteq E_{\alpha}$ and $\mu^*(A_{\alpha}) = \mu(E_{\alpha})$ for each α .
- (2) $A_{\alpha} \subseteq A_{\beta}$ and $E_{\alpha} \subseteq E_{\beta}$ if $\beta \leq \alpha$.
- (3) $\operatorname{diam}_{\varphi}(f_i(E_{\alpha})) < \frac{1}{2^k}$ for i = 1, 2, ..., m and $\operatorname{diam}_{\varphi}(g_0(A_{\alpha})) < \frac{1}{2^k}$ if $\alpha \in \triangle_k$.

We may assume that $A_{\alpha} \neq \emptyset$ for all α (forget the $\alpha's$ for which $A_{\alpha} = \emptyset$). For each $\alpha \in \Delta$ take $t_{\alpha} \in A_{\alpha}$ and define g_k from I into G by $g_k(.) = \sum_{\alpha \in \Delta_k} \varkappa_{E_{\alpha}}(.)g_0(t_{\alpha})$. Then for each $t \in I$ and $n \leq k$ we have:

$$\varphi \|g_n(t) - g_k(t)\| = \varphi \left\| \sum_{\alpha \in \wedge_n} \varkappa_{E_\alpha}(t) g_0(t_\alpha) - \sum_{\beta \in \wedge_k} \varkappa_{E_\beta}(t) g_0(t_\beta) \right\|.$$

But since $n \leq k$ by 1 and 2 we have:

$$\varphi \|g_n(t) - g_k(t)\| \leq \varphi \left\| \sum_{\beta \in \Delta_k} \varkappa_{E_\beta}(t) \left(g_0(t_\alpha) - g_0(t_\beta) \right) \right\| \\
\leq \sum_{\beta \in \Delta_k} \varphi \left\| \left(g_0(t_\alpha) - g_0(t_\beta) \right) \right\| \mu(E_\beta) \\
\leq \frac{1}{2^n}.$$

Therefore $(g_k(t))$ is a Cauchy sequence in X for every $t \in I$. Consequently $(g_k(t))$ is a convergent sequence for every $t \in I$. Let $g: I \to G$ be the point wise limit of (g_k) . Since g_k is measurable for each k, g is measurable. Let $t \in I$ and let n be a natural number. Suppose $t \in E_{\alpha}$. We have:

$$\sum_{i=1}^{m} \varphi \|f_{i}(t) - g_{n}(t)\| = \sum_{i=1}^{m} \varphi \|f_{i}(t) - g_{0}(t_{\alpha})\|$$

$$\leq \sum_{i=1}^{m} \varphi \|f_{i}(t) - f_{i}(t_{\alpha})\| + \varphi \|f_{i}(t_{\alpha}) - g_{0}(t_{\alpha})\|$$

$$\leq \sum_{i=1}^{m} \frac{1}{2^{n}} + \varphi \|f_{i}(t_{\alpha}) - g_{0}(t_{\alpha})\|$$

$$\leq \frac{m}{2^{n}} + \operatorname{dist}_{\varphi}((f_{1}(t_{\alpha}), f_{2}(t_{\alpha}), ..., f_{m}(t_{\alpha})), G)$$

$$\leq \frac{m}{2^{n}} + \sum_{i=1}^{m} \varphi \|f_{i}(t) - f_{i}(t_{\alpha})\|$$

$$+ \operatorname{dist}_{\varphi}((f_{1}(t), f_{2}(t), ..., f_{m}(t)), G)$$

$$\leq \frac{m}{2^{n-1}} + \operatorname{dist}_{\varphi}((f_{1}(t), f_{2}(t), ..., f_{m}(t)), G).$$

Letting $n \to \infty$ we get:

$$\sum_{i=1}^{m} \varphi \|f_i(t) - g(t)\| = \lim_{n \to \infty} \sum_{i=1}^{m} \varphi \|f_i(t) - g_n(t)\|$$
$$= \operatorname{dist}_{\varphi}((f_1(t), f_2(t), ..., f_m(t)), G).$$

and so g(t) is a best simultaneous approximation of $f_1(t), f_2(t), ..., f_m(t)$ in G.

Theorem 3.5. Let φ be a modulus function and G be a closed separable subspace of X. Then $L^{\varphi}(I,G)$ is simultaneously proximinal in $L^{\varphi}(I,X)$ if and only if G is simultaneously proximinal in X.

Proof. Necessity is in Theorem 3.2 Let us show sufficiency. Suppose that G is simultaneously proximinal in X, and let $f_1, f_2, ..., f_m$ be functions in $L^{\varphi}(I, X)$. Theorem 3.4 guarantees that there exists a measurable function g defined on I with values in X such that g(t) is a best simultaneous approximation of $f_1(t), f_2(t), ..., f_m(t)$ in G for almost all t. It follows from Corollary 2.2 that g is a best simultaneous approximation of $f_1, f_2, ..., f_m$ in $L^{\varphi}(I, G)$

Theorem 3.6. Let φ be a modulus function. Then if $g \in L^{\varphi}(I,G)$ is a best simultaneous approximation from $L^{\varphi}(I,G)$ of an m-tuple of elements $f_1, f_2, ..., f_m \in L^{\varphi}(I,X)$ then for every measurable subset A of I and every $h \in L^{\varphi}(I,G)$,

$$\int_{A} \varphi (\|f_{j_0}(s) - g(s)\|) d\mu(s) \le \int_{A} \varphi (\|f_{j_0}(s) - h(s)\|) d\mu(s),$$

for some $j_0 \in \{1, 2, ..., m\}$.

Proof. If $\mu(A) = 0$ then there is nothing to prove. Suppose that for some A satisfying $\mu(A) > 0$ and for some $h_0 \in L^{\varphi}(I, G)$, the inequality does not hold for J = 1, 2, ..., m. Now, define $g_0 \in L^{\varphi}(I, G)$ by

$$g_0(s) := \begin{cases} g(s) & \text{if } s \in I - A \\ h_0(s) & \text{if } s \in A \end{cases}$$

Then we have for j = 1, 2, ..., m

$$\int_{I} \varphi(\|f_{j}(s) - g_{0}(s)\|) d\mu = \int_{A} \varphi(\|f_{j}(s) - h_{0}(s)\|) d\mu(s)
+ \int_{I-A} \varphi(\|f_{j}(s) - g(s)\|) d\mu(s)
< \int_{A} \varphi(\|f_{j}(s) - g(s)\|) d\mu(s)
+ \int_{I-A} \varphi(\|f_{j}(s) - g(s)\|) d\mu(s)
= \int_{I} \varphi(\|f_{j}(s) - g(s)\|) d\mu(s).$$

This implies that

$$\sum_{j=1}^{m} \|f_j - g_0\|_{\varphi} < \sum_{j=1}^{m} \|f_j - g\|_{\varphi}$$

which contradict the fact that g is a best simultaneous approximation from $L^{\varphi}(I,G)$ of the m-tuple of elements $f_1, f_2, ..., f_m$.

As a corollary we get:

Corollary 3.7. If g is a best simultaneous approximation from $L^{\varphi}(I,G)$ of an m-tuple of elements $f_1, f_2, ..., f_m \in L^{\varphi}(I,X)$ then, for every measurable subset A if I,

$$\int_{A} \varphi(\|g(s)\|) d\mu(s) \leq 2 \max_{1 \leq j \leq m} \left(\int_{A} \varphi(\|f_{j}(s)\|) d\mu(s) \right).$$

Proof. Since, for j = 1, 2, ..., m

$$\int_{A} \varphi\left(\|g(s)\|\right) d\mu(s) \leq \int_{A} \varphi\left(\|f_{j}(s) - g(s)\|\right) d\mu(s) + \int_{A} \varphi\left(\|f_{j}(s)\|\right) d\mu(s),$$

we obtain, by using Theorem 3.6 with h =: 0, that for $j_0 \in \{1, 2, ..., m\}$

$$\int_{A} \varphi(\|g(s)\|) d\mu(s) \leq 2 \int_{A} \varphi(\|f_{j_{0}}(s)\|) d\mu(s)
\leq 2 \max_{1 \leq j \leq m} \left(\int_{A} \varphi(\|f_{j}(s)\|) d\mu(s) \right),$$

which completes the proof.

We end this paper with the following result on best simultaneous approximation of $l^{\varphi}(X)$ in $l^{\varphi}(G)$.

Theorem 3.8. Let φ be a modulus function. Then $l^{\varphi}(G)$ is simultaneously proximinal in $l^{\varphi}(X)$ if G is simultaneously proximinal in X.

Proof. Let $f_1, f_2, ..., f_m \in l^{\varphi}(X)$. Since G is simultaneously proximinal in X, for each n, there exists $g(n) \in G$ such that for every $y \in G$

$$\sum_{j=1}^{m} \varphi \|f_{j}(n) - g(n)\| \leq \sum_{j=1}^{m} \varphi \|f_{j}(n) - y\|.$$

Since $y = 0 \in G$, we get

$$\sum_{j=1}^{m} \varphi \|f_{j}(n) - g(n)\| \leq \sum_{j=1}^{m} \varphi \|f_{j}(n)\|.$$

But φ is increasing and subadditive so

$$m\varphi \|g(n)\| = \sum_{j=1}^{m} \varphi \|g(n) - f_{j}(n) + f_{j}(n)\|$$

$$\leq \sum_{j=1}^{m} \varphi \|g(n) - f_{j}(n)\| + \varphi \|f_{j}(n)\| \leq 2 \sum_{j=1}^{m} \varphi \|f_{j}(n)\|.$$

Consequently $g = (g(n)) \in l^{\varphi}(G)$. We claim that g is a best simultaneous approximation for $f_1, f_2, ..., f_m \in l^{\varphi}(X)$ in $l^{\varphi}(G)$. To see that let $h \in l^{\varphi}(G)$. Then

$$\sum_{j=1}^{m} \|f_{j} - h\|_{\varphi} = \sum_{j=1}^{m} \sum_{n=1}^{\infty} \varphi \|f_{j}(n) - h(n)\|$$

$$= \sum_{n=1}^{\infty} \sum_{j=1}^{m} \varphi \|f_{j}(n) - h(n)\|$$

$$\geq \sum_{n=1}^{\infty} \sum_{j=1}^{m} \varphi \|f_{j}(n) - g(n)\|$$

$$= \sum_{j=1}^{m} \sum_{n=1}^{\infty} \varphi \|f_{j}(n) - g(n)\|$$

$$= \sum_{j=1}^{m} \|f_{j} - g\|_{\varphi}.$$

References

[1] I. Abu-Sarhan and R. Khalil, Best simultaneous approximation in vector valued function spaces. Int. Journal of Mathematical Analysis 2(2008) 207-212.

- L. Chong and G.A. Watson, On the best simultaneously approximation, J. Approx. Theory 91(1997) 332-348.
- [3] W. Deeb and R. Khalil, On the tensor product of non-locally convex topological vector spaces, Illinois J. Math. Proc. 30 (1986), 594-601.
- [4] W. Deeb and R. Khalil, best approximation in $L^p(I, X)$, 0 J. Approx. Theory 58 (1989), 68-77.
- [5] W. Deeb and R. Younis, Extreme points in a class of non-locally convex topological vector spaces, Math. Reb. Toyama Univ. 6(1983),95-103.
- [6] R. Khalil and W. Deeb, best approximation in $L^p(I,X)$, ii J. Approx. Theory 59(1989), 296-299.
- [7] R. Khalil and F. Saidi, best approximation in $L^1(I, X)$, Proc. Amer. Math. Soc. 123(1995), 183-190.
- [8] W. Light, Proximinality in $L^p(S, Y)$, Rocky Mountain J. Math. (1989).
- [9] J. Mach, Best simultaneous approximation of vector valued functions with values in certain Banach spaces, Math. Ann. 240(1979), 157-164.
- [10] J. Mendoza, Proximinality in $L^p(\mu, X)$, J. Approx. Theory, 93 (1998), 331-343.
- [11] P.D.Milman, On best simultaneous approximation in normed linear spaces, J. Approx. Theory 20(1977), 223-238.
- [12] A. Pinkus, Uniqueness in vector valued approximation, J. Approx. Theory 73(1993), 17-92.
- [13] B.N.Sahney and S.P.Singh, On Best simultaneous approximation in Banach spaces, J. Approx. Theory 35(1982), 222-224.
- [14] F. Saidi, D. Hussein and R. Khalil, Best simultaneous approximation in $L^p(I, X)$, J. Approx. Theory 116(2002), 369-379.
- [15] S. Tanimoto, on of best simultaneous approximation, Math. Japonica 48(1998), 275-279.
- [16] G.A. Watson,, A characterization of best simultaneous approximation, J. Approx. Theory 75(1993),175-182.

DEPARTMENT OF MATHEMATICS, YARMOUK UNIVERSITY, IRBID JORDAN *E-mail address*: sharifa@yu.edu.jo