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Abstract: This paper introduces two biased estimators to avoid problems arising from multicollinearity in the logistic regression

model. We investigated the theoretical excellence of the proposed estimators according to the mean square error matrix (MSE) and the

scalar mean square error (MSE) criterion. We found that they have the superiority than some existing estimators. Moreover, we run

the simulation study, which depended on the simulated MSE (SMSE), squared bias (SB) and generalized cross validation (GCV) as

criteria to compare the estimators. The simulation results showed that the proposed estimators have the superiority than the estimators

under comparison at several factors and at the same time, they work well at the high level of correlation. In addition, we investigated

the behavior of the present estimators applying the real data. Under this trend, the results were consistent with the theoretical results.
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1 Introduction

Logistic Regression Model (LRM) is widely used in the social sciences, in economic research and in the medical fields [7].
The presence of multicollinearity in logistic regression model can pose challenges in accurately estimating the regression
parameters. Multicollinearity refers to a high degree of correlation between independent variables, which can inflate the
standard errors of the model parameters and lead to inaccurate estimation results. To address this issue, researchers have
proposed biased estimators, such as the Logistic Ridge, Logistic Liu, and estimators with two biasing parameters. These
biased estimators aim to mitigate the impact of multicollinearity and provide more stable parameter estimates in logistic
regression models. These biased estimators can help overcome the sensitivity of parameter estimates to multicollinearity
by introducing a controlled bias in the estimation process. By applying these biased estimators, researchers can obtain
more reliable and robust estimates of the regression parameters, even in the presence of multicollinearity. The almost
unbiased estimation procedure offers a solution to the multicollinearity problem by incorporating bias into the estimation
process, which helps stabilize parameter estimates and improves the accuracy of the LRM. Despite this, researchers are
still working on developing biased estimators to address the issue of multicollinearity, such that, the estimators take into
account the correlation among independent variables and adjust the parameter estimates accordingly.

1.1 Literature Review

Since biased estimators aim to mitigate the impact of multicollinearity and provide more stable parameter estimates
in LRM, [15] developed ridge logistic regression which was the most widely used estimator for LRM. Furthermore, a
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modified logistic ridge regression estimator was introduced by [14], to deal with the multicollinearity problem. Based on
the fact that ridge regression did not completely overcome the problem of ill-conditioning, Liu-type logistic estimator was
defined by [9]. [4,5] introduced new biased estimators depending on Liu – type estimator. [17] proposed the modified
almost unbiased Liu logistic estimator, while [10] suggested a modified estimator depending on ridge logistic estimator.
[11] proposed the modified ridge type logistic estimator, as well as [13] introduced a new alternative method based on
particle swarm optimization to estimate the (k, d) pair in Liu-type logistic estimator, simultaneously. Moreover, in the
study of Varathan [18] a modified almost unbiased ridge logistic estimator was proposed. Also, [7] proposed a new
estimator as a general estimator which includes other biased estimators.
The motivation of this paper can be given as follows: [1] introduced a new biased estimator called (AL) estimator for
linear regression model. Till now, no researchers have tried to reduce the bias of the AL estimator or to use AL estimator
for other regression models like logistic, Poisson, etc. Therefore, in this paper, two estimators are constructed based on
the AL estimator after transformation to LRM. The suggested estimators are called almost unbiased AL estimator and
modified almost unbiased AL estimator.
The rest of this paper is organized as follows: The methodology used in this paper is given in Section 2. The conditions
for superiority of the proposed estimators over the existing estimators are found with respect to the matrix of mean square
error (MSEM) and scalar mean square error (SMSE) criteria and are given in Section 3. In Section 4, the simulation study
has been conducted to investigate the performance of the proposed estimators in the SMSE sense. An application is given
in Section 5. Finally, the conclusion is given in Section 6.

2 Methodology

2.1 The Logistic Regression Model

The form of logistic regression model (LRM) is defined as:

γi = µi + εi, i = 1,2, . . . ,n (1)

where γi distributed as Bernoulli distribution, that is γi ∼ B(µi) where µi is given as:

µi =
exp(x′iβ )

1+ exp(x′iβ )
; i = 1, 2, . . . ., n (2)

where xi is the ith row of an n × (p+ 1) the design matrix X with n data pints and p independent explanatory variables
and β is a (p+ 1)× 1 vector of coefficients and εi is independent and distributed such that E(ε i) = 0 and Var(εi) =
µi (1− µi) = σi.
The most commonly used method of estimating β is the maximum likelihood estimation (MLE) method to maximize the
log-likelihood l(β ):

l(β ) =
n

∑
i=1

yix
′

iβ − ln
[
1+ ex

′
iβ
]
.

The MLE estimator of β is computed by setting the first derivative of l(β ) with respect to β to zero. Therefore, the MLE
estimator is obtained by solving the following equation:

∂ l(β )

∂β
=

n

∑
i=1

[
yi −

ex
′
i β

1+ ex
′
iβ

]
xi =

n

∑
i=1

[yi − µi]xi = 0.

The iteratively weighted least squares (IWLS) is applied to obtain the solution to Equation
∂ l(β )

∂β = 0. The MLE estimator

of β is estimated by applying the IWLS algorithm as follows [13]:

β̂ =
(

X tÛX
)−1

X tŴZ = S−1X tŴZ, (3)

where S =
(

X tÛX
)

; Û = diag(µ̂i(1− µ̂i)) , Ŵ = diag [µ̂i (1− µ̂i)] and Z is a column vector such that the ith element

is logit(µ̂i)+
γi−µ̂i

µ̂i(1−µ̂i)
. The MLE is asymptotically unbiased where E

(
β̂
)
= E(arg max

β
l(β ) ), and by differentiate the

l(β ) with respect to β and take the expectation on both side, that is:

E

(
∂ l(β )

∂β

)
=

∂

∂β
E (l(β )) .
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So, E (l(β )) should be equal to maximum value of the l(β ), which is achieved at the β . The covariance matrix of

asymptotically normally distributed β̂ is defied by the inverse of the Hessian matrix, X tÛX which is given by the
following equation [13]:

Cov
(

β̂
)
= S−1. (4)

When the Hessian matrix is not invertible, this leads to problems [7], where the variance of MLE will be large and as a
result for that, the confidence interval will be large also. For this reason, the LRM suffers from unstably in case there is a
strong dependence among independent variables.

2.2 The Proposed Estimators

Alheety and Gore [1] suggested a biased estimator called AL estimator (ALE) for linear regression model by augmenting

the equation mX tX β̂OLSE = β + εt to Y = Xβ + ε and then they used the least square method to get the following form:

β̂AL = (1+m)(I+
(
X tX

)−1
)
−1

β̂OLSE (5)

Where, β̂OLSE = (X tX)−1
X tY, 0 ≤ m ≤ 1.

Now, if we convert the estimator in 5 to LRM, the ALE will take the following form:

β̂ALL = (1+m)(I+ S−1)
−1

β̂ = Qmβ̂ , (6)

where Qm = (1+m)(I+ S−1)
−1

and we will refer to it as AL logistic estimator (ALLE). Many researchers including [2,3],
used a method to decrease bias in biased estimators. This method aims at making a slight increase in variance to achieve
biased estimators with minimal bias according to the mean square error criterion. Such biased estimators are referred to
as “almost unbiased estimators ”.
Due to the limited research regarding this type of estimator, we propose a novel almost unbiased AL logistic estimator. To
derive this estimator, we first provide the following definition:

Definition 1.[20] Suppose β ∗ is a biased estimator of parameter vector β , and if the bias vector of β ∗is given by

Bias(β ∗) = E (β ∗) − β = Rβ , where R is a matrix, which shows that E (β ∗) − Rβ = β , then the estimator

β ∗∗ = β ∗−Rβ ∗ = (I−R)β ∗ is called the almost unbiased estimator based on the biased estimator β ∗.

Through addition and subtraction of the matrix S−1 in (I+mI) that given in β̂ALL, the ALLE can be rewritten as:

β̂ALL = (I+mI)
(
I + S−1

)−1
β̂ =

[
I+
(
mI − S−1

)(
I+ S−1

)−1
]

β̂ .

So,

E
(

β̂ALL

)
= β +

(
I+ S−1

)−1 (
mI − S−1

)
β .

Therefore, the bias is:

B

(
β̂ALL

)
= E

(
β̂ALL

)
−β =

(
I+ S−1

)−1 (
mI− S−1

)
β

According to Definition 1, the almost unbiased AL logistic estimator (AUALLE) is given as follows:

β̂AUALL =
[
I −
(
mI− S−1

)(
I + S−1

)−1
]

β̂ALL

=
[
I −
(
mI− S−1

)(
I + S−1

)−1
][

I+
(
mI − S−1

)(
I+ S−1

)−1
]

β̂

=
[
I −
(
I+ S−1

)−2 (
mI− S−1

)2
]

β̂

=Wmβ̂ ,

(7)

Where, Wm =
[
I −
(
I+ S−1

)−2 (
mI− S−1

)2
]
.

By using β̂ALL instead of β̂ in 7, a new biased estimator is proposed which is called as the modified almost unbiased AL
logistic estimator (MAUALLE) and defined as:

β̂MAUALL =Wmβ̂ALL =WmQmβ̂ = Tmβ̂ , (8)

Where, Tm =WmQm = (1+m)
[
I −
(
I+ S−1

)−2 (
mI− S−1

)2
](

I+ S−1
)−1
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3 The MSE Comparison

The asymptotic scalar mean squared error (SMSE) and the asymptotic matrix mean squared error (MSEM) of an

estimator
̂̃
β = Zβ̂ , where Z is a matrix with proper order, and are defined in [7] as:

MMSE

(
̂̃
β

)
= E

(
̂̃
β −β

)(
̂̃
β −β

)′

= Z
(

β̂ −β
)(

β̂ −β
)′

Z
′
+(Z− I)β ′(Z − I)′

SMSE

(
̂̃
β

)
= E

(
̂̃
β −β

)′(
̂̃
β −β

)
=
(

β̂ −β
)′

Z
′
Z
(

β̂ −β
)
+(Z− I)′β ′β (Z − I)

Note that there is a relationship between MMSE and SMSE criteria, where SMSE

(
̂̃
β

)
= tr

(
MMSE

(
̂̃
β

))
and tr is a

trace of a square matrix. Therefore, the MSEM of MLE is:

MMSE
(

β̂
)
= S−1 (9)

Consider spectral decomposition of the matrix S. Let α = P
′
β , Λ = diag (λ1, λ2, . . . ,λp+1) = P

′
(

X
′
ŴX

)
P, where λ1 ≥

λ2 ≥ . . .≥ λp+1 ≥ 0 are the eigenvalues of X
′
ŴX , and P is the matrix whose columns are the eigenvectors of S. Since β̂

is asymptotically unbiased and ALLE depends on β̂ , the asymptotic properties of the ALLE are derived as follows:

The expectation: E
(

β̂ALL

)
= Qmβ (10)

The covariance: Cov
(

β̂ALL

)
= QmS−1Q′

m (11)

The bias: B
(

β̂ALL

)
= (Qm − I)β (12)

The MSEM: MMSE
(

β̂ALL

)
= QmS−1Q

′

m +(Qm − I)β β ′ (Qm − I)′ (13)

And the SMSE: SMSE
(

β̂ALL

)
=

p+1

∑
i=1

(1+m)2λi

(λi + 1)2
+

p+1

∑
i=1

[
mλi − 1

λi + 1

]2

α2
i . (14)

The asymptotic properties of AUALLE are obtained as in Equations 15-19, respectively:

E
(

β̂AUALL

)
=Wmβ (15)

Cov
(

β̂AUALL

)
=WmS−1W ′

m (16)

B
(

β̂AUALL

)
= (Wm − I)β =−

(
I + S−1

)−2 (
mI − S−1

)2
β (17)

MMSE
(

β̂AUALL

)
=WmS−1W

′

m +(Wm − I)β β ′ (Wm − I)′ , And (18)

SMSE
(

β̂AUALL

)
= tr

(
MMSE

(
β̂AUALL

))
=

p+1

∑
i=1

1

λi

[
1−

(mλi − 1)2

(λi + 1)2

]2

+
p+1

∑
i=1

[
mλi − 1

λi + 1

]4

α2
i (19)

Also, the asymptotic properties of MAUALLE are obtained as in Equations 20 - 24, respectively:

E
(

β̂MAUALL

)
= Tmβ (20)

Cov
(

β̂MAUALL

)
= TmS−1T ′

m (21)

B
(

β̂MAUALL

)
= (Tm − I)β (22)

MMSE
(

β̂MAUALL

)
= TmS−1T

′

m +(Tm − I)β β ′ (Tm − I)′ (23)
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Consequently, the SMSE is obtained as:

SMSE
(

β̂MAUALL

)
=

p

∑
i=1

(m+ 1)2

λi

[
1−

(mλi − 1)2

(λi + 1)2

]2

+
p

∑
i=1

[
(m+ 1)λi

λi + 1

[
1−

(mλi − 1)2

(λi + 1)2

]
− 1

]2

α2
i (24)

The new estimators are proposed to reduce the bias of ALLE estimator as well as to reduce the matrix mean square error
and scaler mean square error. Therefore, in the following section we compare the new estimators with ALLE and then
AUALLE with MAUALLE respectively.

3.1 Bias Comparison of Estimators

In this subsection, we will use the quadratic form of bias to compare the new estimators with the ALLE estimator.

Theorem 1. Let ‖.‖ denots the norm of a vector, then in logistic regression model, the following inequality is held:

∥∥∥B
(

β̂AUALL

)∥∥∥
2

<
∥∥∥B
(

β̂ALL

)∥∥∥
2

f or 0 < m < 1.

Proof.

∥∥∥B
(

β̂ALL

)∥∥∥
2

−
∥∥∥B
(

β̂AUALL

)∥∥∥
2

= β ′
(
I + S−1

)−2 (
mI− S−1

)2
β −β ′

(
I + S−1

)−4 (
mI − S−1

)4
β

= α ′
(
I +Λ−1

)−2 (
mI −Λ−1

)2
α −α ′

(
I +Λ−1

)−4 (
mI−Λ−1

)4
α

= α
′
Hα

Where ,

H =
(
I+Λ−1

)−2 (
mI−Λ−1

)2
−
(
I+Λ−1

)−4 (
mI−Λ−1

)4
= diag

(
(λi + 1)2 (mλi − 1)2 − (mλi − 1)4

(λi + 1)4

)

= diag

(
(mλi − 1)2

(λi + 1)4

[
(λi + 1)2 − (mλi − 1)4

])

As we observe;

(λi + 1)2 − (mλi − 1)4 = [(λi + 1)− (mλi − 1)] [(λi + 1)+ (mλi − 1)] = [(1−m)λ i + 2](1+m)λi.

Therefore, H is positive definite for 0< m < 1 and for that, α
′
Hα is positive definite. The proof is completed. To facilitate

comparative analysis aimed at evaluating the efficacy of the suggested estimators, it is important to consider the following
lemmas:

Lemma 1.[8] Let N be a positive definite matrix (pd), namely (N > 0) and let c be a nonzero vector then N − cc′ is

nonnegative definite; namely (N − cc′ > 0) if and only if c′N−1c < 1.

Lemma 2.[19] Suppose that Q is a positive definite matrix and N is a nonnegative definite matrix (NND), namely N ≥ 0.

Then

Q−N ≥ 0 ⇐⇒ λmax

(
NQ−1

)
≤ 1,

where λmax

(
NQ−1

)
is the largest eigenvalue of the matrix NQ−1.

Lemma 3.[6] Let α̂i i = 1,2 be two competing homogeneous linear estimators of α . Suppose that D = Cov (α̂1)− Cov

(α̂2) is a positive definite, where Cov (α̂i), i=1,2 is the covariance matrix of α̂i and bi =Bias (α̂i), consequently. Then ∆ =

MSEM (α̂1)−MSEM (α̂2) =D + b
′

1b1− b
′

2b2 ≥ 0 if and only if b
′

2 (D + b
′

1b1)b2< 1, where MSEM (α̂i) =Cov(α̂i)+b
′

ibi.
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3.2 Comparison the AUALLE Over ALLE

In order to compare the AUALLE over ALLE, the following theorem explains the conditions that must be met to show
the superiority of the AUALLE estimator over the ALLE estimator.

Theorem 2. Under logistic regression model, when m > 1
λi
, the AUALLE is better than ALLE in the sense of MSEM if

and only if b
′

2(D1 + b
′

1b1)b2 < 1.

Proof. We consider the MSEM difference of ALLE and AUALLE in order to show the superiority between them as
follows:

MMSE
(

β̂ALL

)
−MMSE

(
β̂AUALL

)
= P

(
NmΛ−1Nm

t −RmΛ−1Rm
t
)

Pt + b1b1
t − b2b2

t = PD1Pt + b1b1
t − b2b2

t ,

F =
(
I +Λ−1

)−1 (
mI−Λ−1

)
,

Nm = (I+mI)
(
I +Λ−1

)−1
,

Rm =
[
I −
(
I+Λ−1

)−2 (
mI−Λ−1

)2
]
,

b1 = Fβ , b2 = (Wm − I)β and

D1 = NmS−1Nm
t −RmS−1Rm

t .

Now we are starting for finding the conditions make D1 a positive definite matrix (pd) namely; D1 > 0 . For that;

D1 = NmS−1N′
m −RmS−1Rm

t = diag

{
λi(1+m)2

(λi + 1)2
−

(λi(1−m)+ 2)2 λi
2(1+m)2

λi (λi + 1)4

}p+1

i=1

.

So, D1 > 0 when,

λi(1+m)2

(λi + 1)2
>

(λi(1−m)+ 2)2 λi(1+m)2

λi (λi + 1)4
⇒ (λi + 1)2 > (λi(1−m)+ 2)2 and then m >

1

λi

.

Therefore, using Lemma 3, the proof is completed.

3.3 Superiority of the MAUALLE Over AUALLE

The following theorem shows the superiority of the MAUALLE over AUALLE by specifying the necessary conditions.

Theorem 3. Under logistic regression model, when m < 1
λi
, i = 1, . . . ,n, the MAUALLE is better than AUALLE in the

sense of MSEM if and only if b
′

3(D2 + b
′

2b2)b3 < 1.

Proof. The MSEM difference of MAUALLE and AUALLE is given as follows:

∆1 = MMSE
(

β̂AUALL

)
−MMSE

(
β̂MAUALL

)
= D2 + b2b′2 − b3b

′

3,

Where, b3 = (Tm − I)β And, D2 = WmS−1W
′

m −TmS−1T
′

m

We can rewrite D2 in another form:

D2 = WmS−1W
′

m −TmS−1T
′

m =WmS−1W
′

m −WmQmS−1Q′
mW

′

m =Wm

{
S−1 −QmS−1Q′

m

}
W

′

m.

Since S−1 −QmS−1Q
′

m represent the difference between the variance of MLE and ALL estimators and as a result of
(Theorem 1) from [1], the proof is completed.

The above theorems indicate that the proposed estimators are better than the other estimators under conditions. Also,
the superiority of the estimators seems to depend on the unknown parameter β and on the choice of the value of the
biasing parameter m. For this reason and for practical purposes, we have to replace them by suitable estimates. Therefore,
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we replace β by MLE. Now, we have to estimate m by using SMSE of AUALLE. The procedure is to minimize the SMSE
of AUALLE by differentiate it with respect to m as follows:

∂ SMSE
(

β̂AUALL

)

∂m
=

p+1

∑
i=1

(mλi − 1)3
(
1−λiα

2
i

)
− (mλi − 1)(λi + 1)2

(λi + 1)4

Equate
∂ SMSE

(
β̂AUALL

)

∂m
to zero implies:

mλ 2
i

(
m2 − 1

)
−λ 2

i

(
3m2 + 2m− 1− aα2

i

)
+ 2λi = 0, i = 1,2, . . . , p+ 1

Where a = m3λ 3
i − 3m2λ 2

i + 3mλi− 1.
Due to the complexity of simplifying the equation with respect to m, therefore, it is recommended to utilize computer
software to determine the optimal value of m that can reduce the value of SMSE for AUALLE to minimum. Similarly,
using the same approach can determine the optimal estimated value of m for MAUALLE.

4 The Simulation Study

In this section, a simulation study is conducted to investigate and compare the accuracy of the new estimators AUALLE
and MAUALLE with other exist estimators MLE and ALLE.

4.1 Algorithm

[12] The following method can be used to produce independent variables with different level of correlation:

xi j = (1−ρ2)1/2zi j +ρzip i = 1,2, . . . ,n j = 1,2, . . . , p (25)

where zij are numbers represent independent variables which are distributed as standard normal pseudo-random and ρ
suggested to be to be (0.80, 0.90, 0.95, and 0.99) as the correlation values between any two independent variables. As
a limitation of this paper, the sample size n is considered to be 50, 100 and 200. In addition to that, the number of
independent variables is set to p = 4 and p = 8 in order to obtain a clear vision of the performance of the new estimators.
To analyze the dependent variable, the logistic regression model is employed. The values of pseudo random are derived
based on the Be(πi) distribution, where:

πi =
exp(xi

tβ )

1+ exp(xi
tβ )

Following [15], β is a vector and chosen to be the eigenvector corresponding to the largest eigenvalue of the matrix S such

that β
′
β = 1. Further, we consider some selected values for m (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.9). The simulation is

repeated 10000 times and the estimated mean square error (MSE) values of the estimators are obtained using the following
equation:

MSE(β ∗) =
1

10000

10000

∑
i=1

(β ∗
i −β )T (β ∗

i −β ),

where β ∗
i is the obtained estimator by ith simulation. The computer software used for this purpose is R program.

4.2 Results of the Simulation Study

The MSE values of the estimators are reported in Tables 3-8 . In all cases, regardless of the sample size, degree of
correlation and the number of explanatory variables, the performance of the proposed estimators was better than that of
the rest of the estimators. On the other hand, it can be observed that the MLE estimator has the worst performance because
it has the highest mean square error. In most cases, when the value of m is close to 1, the performance of the MAUALLE
estimator is better than the AUALE estimator, while the ALLE estimator does not perform at the desired level in all cases
compared to the performance of the proposed estimators. From Tables 3-8, the value of the mean square error is decreasing
with the increase of sample size (n), while the effect of the number of explanatory variables on the performance of the
estimators shows to be inversely related in terms of the value of the mean square error.
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5 Application to Real Data

In this section, the myopia dataset examined by [16,5] is considered. The dataset is based on a study of myopia where
it’s from 618 of the subjects who had at least five years of follow up and were not myopic when they entered the study
and includes 17 variables. However, following [16,5], only 5 variables as explanatory variables are used:
spherical equivalent refraction (SPHEQ), axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous
chamber depth (VCD) which are all continuous variables of same scale (mm). The focus of analysis lies in the dependent
variable, indicating the presence or absence of myopia, where myopia is represented by the numerical value 1 and its
absence by 0. Furthermore, the data matrix X is centered and standardized so that XTX will be in the correlation form.
The IRLS algorithm is used to fit the logistic regression model. Estimated regression parameters and the scalar MSE
values for MLE, ALLE, AULLE and MAUALLE estimators are given in Table 2 for different values of m.
According to Table 1, there is a high correlation between the explanatory variable’s axial length and vitreous chamber
depth (0.9419), and the condition number that is used as a measure of multicollinearity is calculated to be 393.3814,
which means the existence of sever multicollinearity in the data set. Difference values of the biasing parameter m have
been selected randomly and for each value of m, the value of SMSE for MLE, ALL, AUALL and MAUALL are given in
Table 2. The results in Table 2 detect that the proposed estimators AUALLE and MAUALLE outperform MLE and ALL
estimators for all values of 0 < m < 1.

On the other hand, it can be observed that the performance of MAUALL is better than AUALL for all m values, which
supports what was found in the simulation study.

SPHEQ AL ACD LT VCD

SPHEQ 1.0000 -0.3055 -0.2388 -0.0727 -0.2471

AL -0.3055 1.0000 0.4563 -0.3289 0.9419

ACD -0.2388 0.4563 1.0000 -0.3393 0.1994

LT -0.0727 -0.3289 -0.3393 1.0000 -0.4516

VCD -0.2471 0.9419 0.1994 -0.4516 1.0000

Table 1: Correlation matrix of the data set

m MLE ALL AUALL MAUALL

0.01 273.8544 34.04408 33.99584 33.08963

0.1 273.8544 34.03909 33.98851 33.08695

0.2 273.8544 34.03363 33.98069 33.08378

0.3 273.8544 34.02827 33.97323 33.08042

0.4 273.8544 34.02301 33.96615 33.07688

0.5 273.8544 34.01784 33.95939 33.07318

0.6 273.8544 34.01276 33.95295 33.06932

0.7 273.8544 34.00779 33.94684 33.06533

0.8 273.8544 34.0029 33.941 33.0612

0.9 273.8544 33.99812 33.93544 33.05697

0.99 273.8544 33.99389 33.9307 33.05306

Table 2: The SMSE values of different estimators of the data set
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m
ρ = 0.80

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 55.877 1.228 0.712 0.621 135.496 1.629 0.701 0.425

0.005 55.877 1.234 0.713 0.620 135.496 1.640 0.704 0.423

0.01 55.877 1.242 0.715 0.618 135.496 1.653 0.706 0.422

0.05 55.877 1.306 0.726 0.606 135.496 1.760 0.730 0.410

0.1 55.877 1.389 0.743 0.593 135.496 1.898 0.763 0.401

0.5 55.877 2.160 0.973 0.600 135.496 3.170 1.175 0.486

0.9 55.877 3.037 1.377 0.831 135.496 4.659 1.855 0.761

m

ρ = 0.90

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 105.641 0.953 0.620 0.589 260.435 1.060 0.529 0.388

0.005 105.641 0.957 0.621 0.588 260.435 1.066 0.530 0.386

0.01 105.641 0.962 0.622 0.586 260.435 1.073 0.531 0.385

0.05 105.641 1.006 0.627 0.573 260.435 1.137 0.542 0.374

0.1 105.641 1.063 0.637 0.560 260.435 1.219 0.560 0.364

0.5 105.641 1.584 0.803 0.578 260.435 1.958 0.827 0.454

0.9 105.641 2.140 1.127 0.821 260.435 2.786 1.321 0.693

Table 3: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=200

m
ρ = 0.95

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 205.992 0.791 0.568 0.571 513.531 0.738 0.435 0.370

0.005 205.992 0.795 0.568 0.570 513.531 0.742 0.436 0.369

0.01 205.992 0.798 0.568 0.568 513.531 0.747 0.436 0.368

0.05 205.992 0.830 0.571 0.556 513.531 0.785 0.441 0.357

0.1 205.992 0.872 0.577 0.542 513.531 0.834 0.450 0.348

0.5 205.992 1.242 0.705 0.565 513.531 1.260 0.637 0.441

0.9 205.992 1.601 0.984 0.816 513.531 1.693 1.030 0.666

m

ρ = 0.99

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 996.388 0.648 0.524 0.558 2521.382 0.459 0.358 0.359

0.005 996.388 0.650 0.524 0.556 2521.382 0.461 0.358 0.357

0.01 996.388 0.653 0.523 0.554 2521.382 0.463 0.358 0.356

0.05 996.388 0.674 0.523 0.542 2521.382 0.479 0.357 0.345

0.1 996.388 0.701 0.525 0.529 2521.382 0.499 0.359 0.337

0.5 996.388 0.932 0.620 0.556 2521.382 0.644 0.478 0.436

0.9 996.388 1.109 0.858 0.812 2521.382 0.713 0.786 0.654

Table 4: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=200
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m
ρ = 0.80

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 62.328 1.131 0.683 0.625 158.344 1.436 0.657 0.443

0.005 62.328 1.137 0.684 0.623 158.344 1.444 0.659 0.441

0.01 62.328 1.144 0.685 0.621 158.344 1.456 0.661 0.439

0.05 62.328 1.201 0.693 0.607 158.344 1.547 0.677 0.424

0.1 62.328 1.276 0.705 0.591 158.344 1.667 0.701 0.408

0.5 62.328 1.984 0.894 0.559 158.344 2.786 1.021 0.422

0.9 62.328 2.810 1.240 0.730 158.344 4.120 1.569 0.636

m
ρ = 0.90

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 120.204 0.889 0.601 0.593 304.308 0.958 0.511 0.406

0.005 120.204 0.893 0.602 0.592 304.308 0.964 0.511 0.404

0.01 120.204 0.898 0.602 0.590 304.308 0.971 0.512 0.402

0.05 120.204 0.938 0.605 0.575 304.308 1.026 0.519 0.387

0.1 120.204 0.990 0.612 0.559 304.308 1.098 0.530 0.371

0.5 120.204 1.477 0.744 0.537 304.308 1.765 0.731 0.398

0.9 120.204 2.017 1.021 0.724 304.308 2.531 1.130 0.603

Table 5: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=100

m
ρ = 0.95

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 236.190 0.747 0.555 0.576 596.129 0.684 0.432 0.390

0.005 236.190 0.750 0.555 0.575 596.129 0.688 0.432 0.389

0.01 236.190 0.754 0.555 0.573 596.129 0.692 0.432 0.386

0.05 236.190 0.783 0.556 0.558 596.129 0.725 0.434 0.372

0.1 236.190 0.821 0.558 0.542 596.129 0.769 0.438 0.357

0.5 236.190 1.175 0.659 0.527 596.129 1.163 0.572 0.393

0.9 236.190 1.536 0.898 0.727 596.129 1.578 0.887 0.597

m
ρ = 0.99

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 1152.709 0.614 0.512 0.561 2913.353 0.436 0.362 0.376

0.005 1152.709 0.616 0.512 0.559 2913.353 0.437 0.361 0.374

0.01 1152.709 0.618 0.511 0.557 2913.353 0.439 0.361 0.372

0.05 1152.709 0.637 0.509 0.542 2913.353 0.453 0.357 0.357

0.1 1152.709 0.663 0.509 0.526 2913.353 0.471 0.355 0.343

0.5 1152.709 0.889 0.579 0.515 2913.353 0.616 0.429 0.385

0.9 1152.709 1.082 0.783 0.725 2913.353 0.708 0.668 0.586

Table 6: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=100
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m
ρ = 0.80

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 64.556 1.030 0.674 0.665 210.234 1.140 0.617 0.516

0.005 64.556 1.034 0.674 0.664 210.234 1.146 0.618 0.514

0.01 64.556 1.040 0.675 0.662 210.234 1.154 0.619 0.512

0.05 64.556 1.088 0.679 0.646 210.234 1.220 0.626 0.492

0.1 64.556 1.152 0.686 0.628 210.234 1.306 0.637 0.470

0.5 64.556 1.775 0.818 0.545 210.234 2.143 0.820 0.391

0.9 64.556 2.536 1.080 0.614 210.234 3.177 1.172 0.486

m
ρ = 0.90

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 125.662 0.813 0.595 0.629 407.191 0.774 0.494 0.466

0.005 125.662 0.816 0.595 0.627 407.191 0.778 0.494 0.464

0.01 125.662 0.820 0.595 0.625 407.191 0.783 0.494 0.462

0.05 125.662 0.853 0.595 0.608 407.191 0.821 0.494 0.442

0.1 125.662 0.898 0.597 0.589 407.191 0.873 0.495 0.419

0.5 125.662 1.331 0.679 0.511 407.191 1.375 0.590 0.349

0.9 125.662 1.844 0.883 0.600 407.191 1.980 0.833 0.455

Table 7: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=50

m
ρ = 0.95

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 247.118 0.681 0.550 0.609 801.378 0.569 0.432 0.445

0.005 247.118 0.684 0.550 0.607 801.378 0.572 0.431 0.443

0.01 247.118 0.686 0.550 0.605 801.378 0.574 0.430 0.440

0.05 247.118 0.710 0.547 0.588 801.378 0.597 0.426 0.420

0.1 247.118 0.742 0.545 0.568 801.378 0.628 0.422 0.398

0.5 247.118 1.054 0.597 0.493 801.378 0.929 0.468 0.335

0.9 247.118 1.406 0.765 0.593 801.378 1.273 0.650 0.449

m
ρ = 0.99

p = 4 p = 8

ML ALL AUALL MAUALL ML ALL AUALL MAUALL

0.001 1263.320 0.568 0.513 0.593 4117.243 0.389 0.380 0.430

0.005 1263.320 0.570 0.513 0.592 4117.243 0.390 0.379 0.428

0.01 1263.320 0.571 0.512 0.589 4117.243 0.391 0.378 0.425

0.05 1263.320 0.587 0.507 0.572 4117.243 0.399 0.369 0.405

0.1 1263.320 0.607 0.503 0.553 4117.243 0.411 0.361 0.383

0.5 1263.320 0.810 0.530 0.481 4117.243 0.530 0.362 0.324

0.9 1263.320 1.018 0.667 0.590 4117.243 0.638 0.487 0.439

Table 8: Estimated MSE of ML, ALL, AUALL and MAUALL for different values of m when n=50
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6 Conclusion

In this paper, new estimators called almost unbiased logistic AL estimator (AUALL) and modified almost unbiased logistic
AL estimator (MAUALLE) are proposed for logistic regression model when the multicollinearity problem exists. The
superiority conditions for the proposed estimators with the existing estimators MLE, ALL are derived with respect to
MSEM and SMSE criteria. Further, from the real data application and the Monte Carlo simulation study, it can be observed
that the performance of MAUALL is better than AUALL for all m values; where it has smaller SMSE than MLE, ALL,
and AUALL when a high multicollinearity exists among the explanatory variables.
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